Chapter 3

- **3-1.** (a) SQRT returns the square root of a number or result of a calculation.
 - (b) AVERAGE returns the arithmetic mean of a series of numbers.
 - (c) PI returns the value of pi accurate to 15 digits
 - (d) FACT returns the factorial of a number, equal to $1 \times 2 \times 3 \times ... \times$ number.
 - (e) EXP returns e raised to the value of a given number.
 - (f) LOG returns the logarithm of a number to a base specified by the user.
- **3-2.** Count(value 1, value2,...) returns the number of cells that contain numbers and numbers within the list of arguments. As it appears in Figure 3-10, the COUNT function should return a value of 8 for the number of data values in each column of the spreadsheet.
- **3-3.** One method is to add comments for the appropriate cells. The comment group is found under the Review tab. An example for finding the mean (average) of four numbers is shown below.

1	A	В	С	D	E
1		Data			
2		25.0			
3		23.7	User ent	tries	
4		24.5	-		
5		22.8			
6			AVEDAC	E(B2:B5)	•
7	AVERAGE	24.0	AVENAU	E(DZ.DJ)	

Another method is to add a text box to the worksheet by clicking on Text Box in the Insert tab. An arrow could be added pointing to the appropriate cell by clicking on Shapes in the Illustrations group under the Insert tab. **3-4.** Replacing these values gives the worksheet below. Obviously, Column C has a

nonsensical result with the replacement.

1	A	В	С	D
1	Gravimetric Determination of Chloride			
2	Samples	1	2	3
3	Mass of bottle plus sample, g	26.6115	26.2185	26.8105
4	Mass of bottle less sample, g	26.2185	26.8105	26.4517
5	Mass of sample, g	0.393	-0.592	0.3588
6				
7	Crucible masses, with AgCl, g	21.4296	23.4915	21.8323
8	Crucible masses, empty, g	20.7926	22.8311	21.2483
9	Mass of AgCI, g	0.637	0.6604	0.584
10				
11	%Chloride	40.09453	-27.5946	40.26231
12				

3-5. The result is:

1	Α	В
1		
2		22
3		23
4		27
5		31
6		33
7		35
8		36
9		45
10		48
11		55
12		61

3-6. The answer is contained in the problem.

Chapter 4

4-1. (a) The *millimole* is an amount of a chemical species, such as an atom, an ion, a molecule or an electron. There are

$$6.02 \times 10^{23} \frac{\text{particles}}{\text{mole}} \times 10^{-3} \frac{\text{mole}}{\text{millimole}} = 6.02 \times 10^{20} \frac{\text{particles}}{\text{millimole}}$$

- (b) The molar mass is the mass in grams of one mole of a chemical species.
- (c) The *millimolar mass* is the mass in grams of one millimole of a chemical species.
- (d) Parts per million, c_{ppm} , is a term expressing the concentration of dilute solutions.

Thus,

$$c_{\rm ppm} = \frac{\rm mass of solute}{\rm mass of solution} \times 10^6 \rm ppm$$

The units of mass in the numerator and the denominator must be the same.

4-2. The molar species concentration is number of moles of that species contained in one liter of solution. The molar analytical concentration is the total number of moles of a solute in 1 liter of the solution, regardless of the solute's chemical state.

4-3. The liter:
$$1 \text{ L} = \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{1 \text{ cm}^3}{1 \text{ mL}} \times \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^3 = 10^{-3} \text{ m}^3$$

Molar concentration:
$$1 \text{ M} = \frac{1 \text{ mol}}{1 \text{ L}} \times \frac{1 \text{ L}}{10^{-3} \text{ m}^3} = \frac{1 \text{ mol}}{10^{-3} \text{ m}^3}$$

4-4. (a)
$$3.2 \times 10^8$$
 Hz $\times \frac{1 \text{ MHz}}{10^6 \text{ Hz}} = 320 \text{ MHz}$

(b)
$$4.56 \times 10^{-7} \text{g} \times \frac{10^9 \text{ ng}}{1 \text{ g}} = 456 \text{ ng}$$

Chapter 4

(c)
$$8.43 \times 10^7 \,\mu\text{mol} \times \frac{1 \,\text{mol}}{10^6 \,\mu\text{mol}} = 84.3 \,\text{mol}$$

(d)
$$6.5 \times 10^{10}$$
 s $\times \frac{1 \text{ Gs}}{10^9 \text{ s}} = 65 \text{ Gs}$

(e)
$$8.96 \times 10^6 \text{ nm} \times \frac{1 \text{ mm}}{10^6 \text{ nm}} = 8.96 \text{ mm}$$

(f) 48,000 g ×
$$\frac{1 \text{ kg}}{1000 \text{ g}}$$
 = 48 kg

4-5. For oxygen, for example 15.999 u/atom = $15.999 \text{ g}/6.022 \times 10^{23} \text{ atoms} = 15.999 \text{ g/mol}$. So 1 u = 1 g/mol.

Thus, $1g = 1 \mod u$.

4-6. From Pb. 4-5, 1 g = 1 mol u =
$$6.022 \times 10^{23}$$
 u

 $1 u = 1/12 mass of {}^{12}C atom$

So 1 kg = 1000 g = 1000× Avogadro's number of u =

 $1000 \times \text{Avogadro's number} \times 1/12 \text{ mass of } {}^{12}\text{C} \text{ atom} =$

1000/12 \times Avogadro's number \times mass of ^{12}C atom

4-7.
$$2.92 \text{ g } \text{Na}_{3}\text{PO}_{4} \times \frac{1 \text{ mol } \text{Na}_{3}\text{PO}_{4}}{163.94 \text{ g}} \times \frac{3 \text{ mol } \text{Na}^{+}}{1 \text{ mol } \text{Na}_{3}\text{PO}_{4}} \times \frac{6.022 \times 10^{23} \text{ Na}^{+}}{1 \text{ mol } \text{Na}^{+}} = 3.22 \times 10^{22} \text{ Na}^{+}$$

4-8. 3.41 mol
$$K_2$$
HPO₄ × $\frac{2 \text{ mol } K^+}{1 \text{ mol } K_2$ HPO₄ × $\frac{6.022 \times 10^{23} \text{ K}^+}{1 \text{ mol } K^+}$ = 4.11×10²⁴ K⁺

4-9. (a) 8.75 g B₂O₃ ×
$$\frac{2 \mod B}{1 \mod B_2O_3}$$
 × $\frac{1 \mod B_2O_3}{69.62 g B_2O_3}$ = 0.251 mol B

(b)

$$\frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{7 \text{ mol O}}{1 \text{ mol Na}_2 \text{ B}_4 \text{ O}_7 \bullet 10 \text{ H}_2 \text{ O}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{7 \text{ mol O}}{1 \text{ mol Na}_2 \text{ B}_4 \text{ O}_7 \bullet 10 \text{ H}_2 \text{ O}} = 3.07 \times 10^{-3} \text{ mol O} = 3.07 \text{ mmol}$$

Chapter 4

(c)
$$4.96 \text{ g } \text{Mn}_{3}\text{O}_{4} \times \frac{1 \text{ mol } \text{Mn}_{3}\text{O}_{4}}{228.81 \text{ g } \text{Mn}_{3}\text{O}_{4}} \times \frac{3 \text{ mol } \text{Mn}_{3}\text{O}_{4}}{1 \text{ mol } \text{Mn}_{3}\text{O}_{4}} = 6.50 \times 10^{-2} \text{ mol } \text{Mn}$$

(d) $333 \text{ mg } \text{CaC}_{2}\text{O}_{4} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{\text{mol } \text{CaC}_{2}\text{O}_{4}}{128.10 \text{ g } \text{CaC}_{2}\text{O}_{4}} \times \frac{2 \text{ mol } \text{C}}{1 \text{ mol } \text{CaC}_{2}\text{O}_{4}} = 5.20 \times 10^{-3} \text{ mol } \text{C}$
 $= 5.20 \text{ mmol}$
4-10. (a) $850 \text{ mg } \text{P}_{2}\text{O}_{3} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol } \text{P}_{2}\text{O}_{5}}{141.94 \text{ g } \text{P}_{2}\text{O}_{5}} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times \frac{2 \text{ mol } \text{P}}{1 \text{ mol } \text{P}_{2}\text{O}_{5}}$
 $= 11.98 \text{ mmol } \text{P}$
(b) $40.0 \text{ g } \text{CO}_{2} \times \frac{1 \text{ mol } \text{CO}_{2}}{44.01 \text{ g } \text{CO}_{2}} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times \frac{1 \text{ mol } \text{C}}{1 \text{ mol } \text{CO}_{2}} = 909 \text{ mmol } \text{C}$
(c) $12.92 \text{ g } \text{ NaHCO}_{3} \times \frac{1 \text{ mol } \text{NaHCO}_{3}}{84.01 \text{ g } \text{ NaHCO}_{3}} \times \frac{1000 \text{ mmol}}{1 \text{ mol } \text{ X}} \times \frac{3 \text{ mol } \text{O}}{1 \text{ mol } \text{ NaHCO}_{3}} = 461.4 \text{ mmol } \text{O}$
 $57 \text{ mg } \text{ MgNH}_{4}\text{PO}_{4} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol } \text{MgNH}_{4}\text{PO}_{4}}{1 \text{ mol } \text{ NaHCO}_{3}} \times \frac{1000 \text{ mmol}}{1 \text{ mol } \text{ X}} \frac{3 \text{ mol } \text{O}}{1 \text{ mol } \text{ mol } \text{C}}{1 \text{ mol } \text{Mg}}$
 4-11. (a) $\frac{0.0555 \text{ mol } \text{KMnO}_{4}}{1 \text{ mol } \text{MgNH}_{4}\text{PO}_{4}} \approx \frac{1000 \text{ mmol}}{1 \text{ mol}} \times 2.00 \text{ L} = 111 \text{ mmol } \text{KMnO}_{4}$
(b) $\frac{3.25 \times 10^{-3} \text{ M } \text{KSCN}}{1 \text{ mol } \text{ mol } \times \frac{1000 \text{ mmol}}{1 \text{ mol}}} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times 750 \text{ mL}$
 $= 2.44 \text{ mmol } \text{KSCN}$
(c) $\frac{3.33 \text{ mg } \text{CuSO}_{4}}{1 \text{ L}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol } \text{CuSO}_{4}}{1 \text{ mol}} \times 250 \text{ mL} = 103.5 \text{ mmol } \text{KC1}$

4-12. (a)
$$\frac{0.320 \text{ mol } \text{HClO}_4 \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 226 \text{ mL}}{1 \text{ cm}} \times 226 \text{ mL}}$$

= 72.3 mmol HClO_4
(b) $\frac{8.05 \times 10^{-3} \text{ mol } \text{K}_2 \text{CrO}_4}{1 \text{ L}} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times 25.0 \text{ L}}{1 \text{ mol}} \times 25.0 \text{ L}}{201 \text{ mmol } \text{K}_3 \text{CrO}_4}$
(c) $\frac{6.75 \text{ mg } \text{AgNO}_3}{1 \text{ L}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol } \text{AgNO}_3}{169.87 \text{ g } \text{AgNO}_3} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times 6.00 \text{ L}}{1 \text{ mol}} \times 6.00 \text{ M}}$
= 0.238 mmol AgNO_3
(d) $\frac{0.0200 \text{ mol } \text{KOH}}{1 \text{ L}} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 537 \text{ mL}}{1 \text{ mol } \text{ KOH}}$
= 10.7 mmol KOH
4-13. (a) $0.367 \text{ mol } \text{HNO}_3 \times \frac{63.01 \text{ g } \text{HNO}_3}{1 \text{ mol } \text{HNO}_3} \times \frac{1000 \text{ mg}}{1 \text{ g}} = 2.31 \times 10^4 \text{ mg } \text{HNO}_3$
(b) $245 \text{ mmol } \text{MgO} \times \frac{1 \text{ mol}}{1000 \text{ mmol}} \times \frac{40.30 \text{ g } \text{MgO}}{1 \text{ mol } \text{MgO}} \times \frac{1000 \text{ mg}}{1 \text{ g}} = 9.87 \times 10^3 \text{ mg } \text{MgO}$
(c) $12.5 \text{ mol } \text{MgO}_3 \times \frac{80.04 \text{ g } \text{NH}_4 \text{NO}_3}{1 \text{ mol } \text{NH}_4 \text{NO}_3} \times \frac{1000 \text{ mg}}{1 \text{ g}} = 1.00 \times 10^6 \text{ mg } \text{NH}_4 \text{NO}_3$
(d) $\frac{4.95 \text{ mol } (\text{NH}_4)_2 \text{Ce}(\text{NO}_3)_6 \times \frac{548.23 \text{ g } (\text{NH}_4)_2 \text{Ce}(\text{NO}_3)_6}{1 \text{ mol } \text{NH}_4 \text{NO}_3} \times \frac{1000 \text{ mg}}{1 \text{ g}} = 2.71 \times 10^6 \text{ mg } (\text{NH}_4)_2 \text{Ce}(\text{NO}_3)_6$
4-14. (a) $3.20 \text{ mol } \text{KBr} \times \frac{119.0 \text{ g } \text{KBr}}{1 \text{ mol } \text{KBr}} = 381 \text{ g } \text{KBr}$
(b) $18.9 \text{ mmol } \text{PbO} \times \frac{1 \text{ mol}}{1000 \text{ mmol}} \times \frac{223.20 \text{ g } \text{PbO}}{1 \text{ mol } \text{PbO}} = 4.22 \text{ g } \text{PbO}$

Chapter 4

(c)
$$6.02 \mod MgSO_4 \times \frac{120.37 \text{ g } MgSO_4}{1 \mod MgSO_4} = 725 \text{ g } MgSO_4$$

(d) $10.9 \mod Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O \times \frac{1 \mod}{1000 \mod} \times \frac{392.23 \text{ g } Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O}{1 \mod Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O}$
= 4.28 g Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O
4-15. (a) $\frac{0.350 \mod \text{sucrose}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{342 \text{ g } \text{sucrose}}{1 \mod \text{sucrose}} \times \frac{1000 \text{ mg}}{1 \text{ g}}$
 $\times 16.0 \text{ mL} = 1.92 \times 10^3 \text{ mg } \text{sucrose}$
(b) $\frac{3.76 \times 10^{-3} \text{mol } \text{ H}_2O_2}{1 \text{ L}} \times \frac{34.02 \text{ g } \text{ H}_2O_2}{1 \mod \text{H}_2O_2} \times \frac{1000 \text{ mg}}{1 \text{ g}}$
 $\times 1.92 \text{ L} = 246 \text{ mg } \text{ H}_2O_2$
(e) $\frac{2.96 \text{ mg } Pb(NO_3)_2}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 356 \text{ mL}$
 $= 1.05 \text{ mg } Pb(NO_3)_2$
(d) $\frac{0.0819 \text{ mol } \text{KNO}_3}{1 \text{ L}} \times \frac{101.10 \text{ g } \text{ KNO}_3}{1 \text{ mol}} \times \frac{1000 \text{ mg}}{1 \text{ g}} \times \frac{1 \text{ L}}{1000 \text{ mL}}$
 $\times 5.75 \text{ mL} = 47.6 \text{ mg } \text{ KNO}_3$
4-16. (a) $\frac{0.264 \text{ mol } \text{ H}_2O_2}{1 \text{ L}} \times \frac{34.02 \text{ g } \text{ H}_2O_2}{1 \text{ mol } \text{H}_2O_2} \times 250 \text{ mL}$
 $= 2.25 \text{ g } \text{ H}_2O_2$

5

$$\begin{array}{l} \frac{5.75 \times 10^{-4} \text{mol benzoic acid}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{122 \text{ g benzoic acid}}{1 \text{ mol benzoic acid}} \\ \times 37.0 \text{ mL} = 2.60 \times 10^{-3} \text{ g benzoic acid} \\ \text{(c)} \quad \frac{31.7 \text{ mg SnCl}_2}{1 \text{ L}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times 4.50 \text{ L} = 0.143 \text{ g SnCl}_2 \\ \text{(d)} \quad \frac{0.0225 \text{ mol KBrO}_3}{1 \text{ L}} \times \frac{11 \text{ L}}{1000 \text{ mL}} \times \frac{167 \text{ g KBrO}_3}{1 \text{ mol KBrO}_3} \times 11.7 \text{ mL} \\ = 4.40 \times 10^{-2} \text{ g KBrO}_3 \\ \text{(d)} \quad \frac{0.0225 \text{ mol KBrO}_3}{1 \text{ L}} \times \frac{1000 \text{ mL}}{1 \text{ mol KBrO}_3} \times 11.7 \text{ mL} \\ = 4.40 \times 10^{-2} \text{ g KBrO}_3 \\ \text{4-17.} \quad \text{(a) } \text{pNa} = -\log(0.0635 + 0.0403) = -\log(0.1038) = 0.9838 \\ \text{pCl} = -\log(0.0635) = 1.197 \\ \text{pOH} = -\log(0.0403) = 1.395 \\ \text{(b)} \quad \text{pBa} = -\log(4.65 \times 10^{-3}) = 2.333 \\ \text{pMn} = -\log(2.54) = -0.405 \\ \text{pCl} = -\log(2 \times 4.65 \times 10^{-3} + 2 \times 2.54) = -\log(5.089) = -0.707 \\ \text{(c)} \\ \text{pH} = -\log(0.400) = 0.398 \\ \text{pCl} = -\log(0.400 + 2 \times 0.100) = -\log(0.600) = 0.222 \\ \text{pZn} = -\log(0.100) = 1.00 \\ \text{(d)} \\ \text{pCu} = -\log(5.78 \times 10^{-2}) = 1.238 \\ \text{pZn} = -\log(0.204) = 0.690 \\ \text{pNO}_3 = -\log(2 \times 0.0578 + 2 \times 0.204) = -\log(0.5236) = 0.281 \\ \end{array}$$

Chapter 4

(e)

$$pK = -log(4 \times 1.62 \times 10^{-7} + 5.12 \times 10^{-7}) = -log(1.16 \times 10^{-6}) = 5.936$$

 $pOH = -log(5.12 \times 10^{-7}) = 6.291$
 $pFe(CN)_6 = -log(1.62 \times 10^{-7}) = 6.790$
(f)
 $pH = -log(4.75 \times 10^{-4}) = 3.32$
 $pBa = -log(2.35 \times 10^{-4}) = 3.63$
 $pClO_4 = -log(2 \times 2.35 \times 10^{-4} + 4.75 \times 10^{-4}) = -log(9.45 \times 10^{-4}) = 3.02$
4-18. (a) $pH = 4.31$, $log[H_3O^+] = -4.31$, $[H_3O^+] = 4.9 \times 10^{-5}$ M
as in part (a)
(b) $[H_3O^+] = 3.3 \times 10^{-5}$ M
(c) $[H_3O^+] = 1.3 \times 10^{-14}$ M
(e) $[H_3O^+] = 1.3 \times 10^{-14}$ M
(f) $[H_3O^+] = 2.4 \times 10^{-8}$ M
(f) $[H_3O^+] = 5.8$ M
(h) $[H_3O^+] = 2.6$ M
4-19. (a) $pNa = pBr = -log(0.0300) = 1.523$

(b)
$$pBa = -log(0.0200) = 1.699$$
; $pBr = -log(2 \times 0.0200) = 1.398$
(c) $pBa = -log(5.5 \times 10^{-3}) = 2.26$; $pOH = -log(2 \times 5.5 \times 10^{-3}) = 1.96$
(d) $pH = -log(0.020) = 1.70$: $pNa = -log(0.010) = 2.00$

$$pCl = -log(0.020 + 0.010) = -log(0.030) = 1.52$$
(e) $pCa = -log(8.7 \times 10^{-3}) = 2.06$; $pBa = -log(6.6 \times 10^{-3}) = 2.18$
 $pCl = -log(2 \times 8.7 \times 10^{-3} + 2 \times 6.6 \times 10^{-3}) = -log(0.0306) = 1.51$
(f) $pZn = -log(2.8 \times 10^{-8}) = 7.55$; $pCd = -log(6.6 \times 10^{-7}) = 6.18$
 $pNO_3 = -log(2.8 \times 10^{-8} + 2 \times 6.6 \times 10^{-7}) = 5.87$
4-20. (a) $pH = 1.020$; $log[H_3O^+] = -1.020$; $[H_3O^+] = 0.0955$ M
(b) $pOH = 0.0025$; $log[OH^-] = -0.0025$; $[OH^-] = 0.99$ M
(c) $pBr = 7.77$; $[Br^-] = 1.70 \times 10^{-8}$ M
(d) $pCa = -0.221$; $[Ca^{2+}] = 1.66$ M
(e) $pLi = 12.35$; $[Li^+] = 4.5 \times 10^{-13}$ M
(f) $pNO_3 = 0.034$; $[NO_3^{-7}] = 0.92$ M
(g) $pMn = 0.135$; $[Mn^{2+}] = 0.733$ M
(h) $pCl = 9.67$; $[Cl^-] = 2.14 \times 10^{-10}$ M
4-21. (a) 1.08×10^3 ppm Na⁺ $\times \frac{1}{10^6}$ ppm $\times \frac{1.02}{1}$ mL $\times \frac{1000}{1}$ mL $\times \frac{1}{22.99}$ m $g = 4.79 \times 10^{-2}$ M Na⁺

270 ppm SO₄²⁻ ×
$$\frac{1}{10^6 \text{ ppm}}$$
 × $\frac{1.02 \text{ g}}{1 \text{ mL}}$ × $\frac{1000 \text{ mL}}{1 \text{ L}}$ × $\frac{1 \text{ mol SO}_4^{3-}}{96.06 \text{ g}}$ = 2.87×10⁻³ M SO₄²⁻

(b) $pNa = -log(4.79 \times 10^{-2}) = 1.320$

$$pSO_4 = -log(2.87 \times 10^{-3}) = 2.542$$

4-22. (a) $300 \text{ nmol/L} = 300 \times 10^{-9} \text{ mol/L}$ or 300 nM in plasma

2.2 mmol/L = 2.2×10^{-3} mol/L or 2.2 mM in whole blood

(b) pHb in plasma = $-\log(300 \times 10^{-9}) = 6.52$

pHb in blood = $-\log(2.2 \times 10^{-3}) = 2.66$

Chapter 4

4-23. (a)

$$\frac{5.76 \text{ g KCl} \cdot \text{MgCl}_{2} \cdot 6\text{H}_{2}\text{O}}{2.00 \text{ L}} \times \frac{1 \text{ mol KCl} \cdot \text{MgCl}_{2} \cdot 6\text{H}_{2}\text{O}}{277.85 \text{ g}} = 1.04 \times 10^{-2} \text{M KCl} \cdot \text{MgCl}_{2} \cdot 6\text{H}_{2}\text{O}}$$
(b) There is 1 mole of Mg²⁺ per mole of KCl · MgCl₂, so the molar concentration of Mg²⁺ is the same as the molar concentration of KCl · MgCl₂ or 1.04×10^{-2} M
(c) 1.04×10^{-2} M KCl · MgCl₂ · 6H₂O $\times \frac{3 \text{ mol Cl}^{-1}}{1 \text{ mol KCl} \cdot \text{MgCl}_{2} \cdot 6\text{H}_{2}\text{O}} = 3.12 \times 10^{-2}$ M Cl⁻
(d) $\frac{5.76 \text{ g KCl} \cdot \text{MgCl}_{2} \cdot 6\text{H}_{2}\text{O}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 100\% = 0.288\% \text{ (w/v)}$
(e) $\frac{3.12 \times 10^{-2} \text{ mol Cl}^{-1}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{1000 \text{ mmol}}{1 \text{ mol KCl} \cdot \text{MgCl}_{2} \cdot 6\text{H}_{2}\text{O}} \times \frac{39.10 \text{ g K}^{+}}{1 \text{ mol K}^{+}} \times \frac{1000 \text{ mg}}{1 \text{ g}}$
(f) $= \frac{407 \text{ mg}}{1 \text{ L}} = 407 \text{ ppm K}^{+}$
(g) pMg = $-\log(1.04 \times 10^{-2}) = 1.983$
(h) pCl = $-\log(3.12 \times 10^{-2}) = 1.506$

Chapter 4

4-25.

$$\frac{1210 \text{ mg } \text{K}_{3}\text{Fe}(\text{CN})_{6}}{775 \text{ mL}} \times \frac{100 \text{ mL}}{1 \text{ L}} \times \frac{1 \text{ g}}{1000 \text{ mg}} = \frac{1210 \text{ g } \text{ K}_{3}\text{Fe}(\text{CN})_{6}}{775 \text{ L}}$$

$$\frac{1210 \text{ g } \text{ K}_{3}\text{Fe}(\text{CN})_{6}}{775 \text{ L}} \times \frac{\text{mol } \text{K}_{3}\text{Fe}(\text{CN})_{6}}{329.2 \text{ g}} = 4.74 \times 10^{-3} \text{ M } \text{K}_{3}\text{Fe}(\text{CN})_{6}$$
(b) $4.74 \times 10^{-3} \text{ M } \text{K}_{3}\text{Fe}(\text{CN})_{6} \times \frac{3 \text{ mol } \text{K}^{+}}{\text{mol } \text{K}_{3}\text{Fe}(\text{CN})_{6}} = 1.42 \times 10^{-2} \text{ M } \text{K}^{+}$
(c) $4.74 \times 10^{-3} \text{ M } \text{ K}_{3}\text{Fe}(\text{CN})_{6} \times \frac{\text{mol } \text{Fe}(\text{CN})_{6}^{3-}}{\text{mol } \text{ K}_{3}\text{Fe}(\text{CN})_{6}} = 4.74 \times 10^{-3} \text{ M } \text{Fe}(\text{CN})_{6}^{3-}$
(d) $\frac{1210 \text{ mg } \text{K}_{3}\text{Fe}(\text{CN})_{6} \times \frac{\text{g}}{1000 \text{ mg}} \times 100\% = 0.156\% \text{ (w/v)}$
(e) $\frac{1.42 \times 10^{-2} \text{ mol } \text{K}^{+}}{\text{L}} \times \frac{1000 \text{ mmol } \text{K}^{+}}{\text{mol } \text{ K}_{3}\text{Fe}(\text{CN})_{6}} \times \frac{\text{g}}{\text{mol } \text{mol } \text{K}_{3}^{-1}} \times 50 \text{ mL} = 7.1 \times 10^{-1} \text{ mmol } \text{K}^{+}$
(f) $\frac{4.74 \times 10^{-3} \text{ mol } \text{K}_{3}\text{Fe}(\text{CN})_{6} \times \frac{\text{mol } \text{Fe}(\text{CN})_{6}^{3-}}{\text{mol } \text{K}_{3}^{-1}\text{Ee}(\text{CN})_{6}} \times \frac{1000 \text{ mmol } \text{K}^{+}}{\text{mol } \text{K}_{3}\text{Fe}(\text{CN})_{6}} \times \frac{211.95 \text{ g } \text{Fe}(\text{CN})_{6}^{3-}}{\text{mol } \text{Fe}(\text{CN})_{6}^{3-}} \times \frac{1000 \text{ mp } \text{Fe}(\text{CN})_{6}^{3-}}{\text{mol } \text{K}_{3}\text{Fe}(\text{CN})_{6}} \times \frac{1000 \text{ mp } \text{Fe}(\text{CN})_{6}^{3-}}{\text{mol } \text{Fe}(\text{CN})_{6}^{3-}} \times \frac{1000 \text{ mp } \text{Fe}(\text{CN})_{6}^{3-}}{1 \text{ L}} \times \frac{1001 \text{ Fe}(\text{NO}_{3})_{3}}{1 \text{ L}} \times \frac{1001 \text{ Fe}(\text{NO}_{3})_{3}}{1 \text{ L}} \times \frac{1001 \text{ Fe}(\text{NO}_{3})_{3}}{1 \text{ mol } \text{Fe}(\text{NO}_{3})_{3}} = 2.81 \times 10^{-1} \text{ M } \text{Fe}(\text{NO}_{3})_{3} = 0.281 \text{ M}$
(b)
$$2.81 \times 10^{-1} \text{ M } \text{Fe}(\text{NO}_{3})_{3} = \frac{2.81 \times 10^{-1} \text{mol } \text{Fe}(\text{NO}_{3})_{3}}{\text{L}} \times \frac{3 \text{ mol } \text{NO}_{3}^{-}}{1 \text{ mol } \text{Fe}(\text{NO}_{3})_{3}} = 8.43 \times 10^{-1} \text{ M } \text{NO}_{3}^{-}}$$

(c)
$$\frac{2.81 \times 10^{-1} \text{ mol Fe}(\text{NO}_3)_3}{\text{L}} \times \frac{241.86 \text{ g Fe}(\text{NO}_3)_3}{1 \text{ mol}} \times 1 \text{ L} = 6.80 \times 10^1 \text{ g Fe}(\text{NO}_3)_3 = 68.0 \text{ g}$$

10

4-26. (a)
$$12.5\% \text{ NiCl}_2 = \frac{12.5 \text{ g NiCl}_2}{100 \text{ g solution}} \times \frac{1.149 \text{ g}}{1 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{1 \text{ mol NiCl}_2}{129.61 \text{ g}} = 1.11 \text{ M NiCl}_2$$

(b) $1.11 \text{ M NiCl}_2 = \frac{1.11 \text{ mol NiCl}_2}{\text{L}} \times \frac{2 \text{ mol Cl}^-}{1 \text{ mol NiCl}_2} = 2.22 \text{ M Cl}^-$
(c) $\frac{1.11 \text{ mol NiCl}_2}{\text{L}} \times \frac{129.61 \text{ g NiCl}_2}{\text{mol}} \times 1 \text{ L} = 1.44 \times 10^2 \text{ g NiCl}_2$
4-27. (a) $\frac{4.75 \text{ g C}_2\text{H}_5\text{OH}}{100 \text{ mL soln}} \times 500 \text{ mL soln} = 2.38 \times 10^1 \text{ g C}_2\text{H}_5\text{OH}$

Weigh 23.8 g ethanol and add enough water to give a final volume of 500 mL

4.75% (w/w)
$$C_2H_5OH = \frac{4.75 \text{ g } C_2H_5OH}{100 \text{ g soln}} \times 500 \text{ g soln} = 2.38 \times 10^1 \text{ g } C_2H_5OH$$

(b) 500 g soln=23.8 g C_2H_5OH+x g water x g water = 500 g soln - 23.8 g C_2H_5OH = 476.2 g water

Mix 23.8 g ethanol with 476.2 g water

(c)

$$\frac{4.75\% (v/v) C_2 H_5 OH}{\frac{4.75 \text{ mL } C_2 H_5 OH}{100 \text{ mL soln}}}$$

$$\frac{4.75 \text{ mL } C_2 H_5 OH}{100 \text{ mL soln}} \times 500 \text{ mL soln} = 2.38 \times 10^1 \text{ mL } C_2 H_5 OH$$

Dilute 23.8 mL ethanol with enough water to give a final volume of 500 mL.

4-28. (a)
$$\frac{21.0 \text{ g C}_3 \text{H}_8 \text{O}_3}{100 \text{ mL soln}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times 2.50 \text{ L soln} = 5.25 \times 10^2 \text{ g C}_3 \text{H}_8 \text{O}_3$$

Weigh 525 g glycerol and add enough water to give a final volume of 2.50 L.

21.0% (w/w)
$$C_3H_8O_3 = \frac{21.0 \text{ g } C_3H_8O_3}{100 \text{ g soln}} \times \frac{1000 \text{ g}}{1 \text{ kg}} \times 2.50 \text{ kg soln} = 5.25 \times 10^2 \text{ g } C_3H_8O_3$$

(b) 2.50 kg soln=0.525 kg $C_3H_8O_3 + x \text{ kg water}$

x kg water=2.50 kg soln -0.525 kg C₃H₈O₃=1.98 kg water

Mix 525 g glycerol with 1.98 kg water.

(c)

21.0% (v/v)
$$C_3H_8O_3 = \frac{21.0 \text{ mL } C_3H_8O_3}{100 \text{ mL soln}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times 2.50 \text{ L soln} = 5.25 \times 10^2 \text{ mL } C_3H_8O_3$$

Dilute 525 mL glucored with enough water to give a final volume of 2.50 L

Dilute 525 mL glycerol with enough water to give a final volume of 2.50 L.

4-29.

$$\frac{6.00 \text{ mol } \text{H}_{3}\text{PO}_{4}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 750 \text{ mL} = 4.50 \text{ mol } \text{H}_{3}\text{PO}_{4}$$

$$\frac{86 \text{ g } \text{H}_{3}\text{PO}_{4}}{100 \text{ g reagent}} \times \frac{1.71 \text{ g reagent}}{\text{g water}} \times \frac{\text{g water}}{\text{mL}} \times \frac{1000 \text{ mL}}{\text{L}} \times \frac{\text{mol } \text{H}_{3}\text{PO}_{4}}{98.0 \text{ g}}$$

$$= \frac{1.50 \times 10^{1} \text{mol } \text{H}_{3}\text{PO}_{4}}{\text{L}}$$

volume 86% (w/w) H_3PO_4 required = 4.50 mol $H_3PO_4 \times \frac{L}{1.50 \times 10^1 \text{mol } H_3PO_4} = 3.00 \times 10^{-1} \text{L}$

4-30.

$$\frac{3.00 \text{ mol HNO}_3}{L} \times \frac{L}{1000 \text{ mL}} \times 900 \text{ mL} = 2.70 \text{ mol HNO}_3$$

$$\frac{70.5 \text{ g HNO}_3}{100 \text{ g reagent}} \times \frac{1.42 \text{ g reagent}}{\text{ g water}} \times \frac{1 \text{ g water}}{1 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{\text{mol HNO}_3}{63.0 \text{ g}}$$

$$= \frac{1.59 \times 10^1 \text{mol HNO}_3}{L}$$
volume 70.5% HNO₃ required = 2.70 mol HNO₃ × $\frac{L}{1.59 \times 10^1 \text{mol HNO}_3} = 1.70 \times 10^{-1} \text{L}$

Dilute 170 mL of the concentrated reagent to 900 mL with water.

$$0.0750 \text{ M AgNO}_{3} = \frac{0.0750 \text{ mol AgNO}_{3}}{L}$$

$$4-31. \quad \textbf{(a)} = \frac{0.0750 \text{ mol AgNO}_{3}}{L} \times \frac{169.87 \text{ g AgNO}_{3}}{1 \text{ mol}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 500 \text{ mL}$$

$$= 6.37 \text{ g AgNO}_{3}$$

Dissolve 6.37 g AgNO₃ in enough water to give a final volume of 500 mL.

Chapter 4

(b)
$$\frac{\frac{0.285 \text{ mol HCl}}{L} \times 1 \text{ L} = 0.285 \text{ mol HCl}}{0.285 \text{ mol HCl} \times \frac{1 \text{ L}}{6.00 \text{ mol HCl}} = 4.75 \times 10^{-2} \text{ L HCl}$$

Take 47.5 mL of the 6.00 M HCl and dilute to 1.00 L with water.

(c)
$$\frac{\frac{0.0810 \text{ mol } \text{K}^{+}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 400 \text{ mL} = 3.24 \times 10^{-2} \text{ mol } \text{K}^{+}}{3.24 \times 10^{-2} \text{ mol } \text{K}^{+} \times \frac{1 \text{ mol } \text{K}_{4} \text{Fe}(\text{CN})_{6}}{4 \text{ mol } \text{K}^{+}} \times \frac{368.43 \text{ g } \text{K}_{4} \text{Fe}(\text{CN})_{6}}{\text{mol}} = 2.98 \text{ g } \text{K}_{4} \text{Fe}(\text{CN})_{6}$$

Dissolve 2.98 g K₄Fe(CN)₆ in enough water to give a final volume of 400 mL.

(d)
$$\frac{\frac{3.00 \text{ g BaCl}_2}{100 \text{ mL soln}} \times 600 \text{ mL} = 1.8 \times 10^1 \text{g BaCl}_2}{1.8 \times 10^1 \text{g BaCl}_2 \times \frac{1 \text{ mol BaCl}_2}{208.23 \text{ g}} \times \frac{L}{0.400 \text{ mol BaCl}_2} = 2.16 \times 10^{-1} \text{ L}$$

Take 216 mL of the 0.400 M BaCl₂ solution and dilute to 600 mL with water

(e)

$$\frac{0.120 \text{ mol HClO}_{4}}{L} \times 2.00 \text{ L} = 0.240 \text{ mol HClO}_{4}$$

$$\frac{71 \text{ g HClO}_{4}}{100 \text{ g reagent}} \times \frac{1.67 \text{ g reagent}}{1 \text{ g water}} \times \frac{1 \text{ g water}}{1 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{\text{mol HClO}_{4}}{100.46 \text{ g}}$$

$$= \frac{1.18 \times 10^{1} \text{mol HClO}_{4}}{L}$$

volume 71% (w/w) HClO_4 required = 0.240 mol $\text{HClO}_4 \times \frac{\text{L}}{1.18 \times 10^1 \text{mol HClO}_4} = 2.03 \times 10^{-2} \text{ L}$ Take 20.3 mL of the concentrated reagent and dilute to 2.00 L with water.

$$60 \text{ ppm Na}^{+} = \frac{60 \text{ mg Na}^{+}}{\text{L soln}}$$

$$(f) \frac{\frac{60 \text{ mg Na}^{+}}{\text{L soln}} \times 9.00 \text{ L} = 5.4 \times 10^{2} \text{ mg Na}^{+}}{5.4 \times 10^{2} \text{ mg Na}^{+} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol Na}^{+}}{22.99 \text{ g}} = 2.35 \times 10^{-2} \text{ mol Na}^{+}$$

$$2.35 \times 10^{-2} \text{ mol Na}^{+} \times \frac{1 \text{ mol Na}_{2}\text{SO}_{4}}{2 \text{ mol Na}^{+}} \times \frac{142.04 \text{ g Na}_{2}\text{SO}_{4}}{1 \text{ mol}} = 1.7 \text{ g Na}_{2}\text{SO}_{4}$$

Dissolve 1.7 g Na₂SO₄ in enough water to give a final volume of 9.00 L.

4-32. (a)
$$\frac{0.0500 \text{ mol } \text{KMnO}_4}{\text{L}} \times 5.00 \text{ L} \times \frac{158.03 \text{ g } \text{KMnO}_4}{1 \text{ mol}} = 3.95 \times 10^1 \text{g } \text{KMnO}_4$$

Dissolve 39.5 g KMnO₄ in enough water to give a final volume of 5.00 L.

(b)
$$\frac{\frac{0.250 \text{ mol HClO}_4}{\text{L}} \times 4.00 \text{ L} = 1.00 \text{ mol HClO}_4}{1.00 \text{ mol HClO}_4 \times \frac{1 \text{ L}}{8.00 \text{ mol reagent}} = 1.25 \times 10^{-1} \text{L reagent}}$$

Take 125 mL of the 8.00 M reagent and dilute a final of volume of 4.00 L with water.

(c)
$$\frac{\frac{0.0250 \text{ mol } I^{-}}{L} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 400 \text{ mL} = 1.00 \times 10^{-2} \text{ mol } I^{-}}{1.00 \times 10^{-2} \text{ mol } I^{-} \times \frac{1 \text{ mol } \text{MgI}_{2}}{2 \text{ mol } I^{-}} \times \frac{278.11 \text{ g } \text{MgI}_{2}}{1 \text{ mol}} = 1.39 \text{ g } \text{MgI}_{2}}$$

Dissolve 1.39 g MgI₂ in enough water to give a final volume of 400 mL

1.00% (w/v) CuSO₄ =
$$\frac{1.00 \text{ g CuSO}_4}{100 \text{ mL soln}}$$

(d) $\frac{1.00 \text{ g CuSO}_4}{100 \text{ mL soln}} \times 200 \text{ mL} = 2.00 \text{ g CuSO}_4$
 $2.00 \text{ g CuSO}_4 \times \frac{1 \text{ mol CuSO}_4}{159.60 \text{ g}} \times \frac{L}{0.365 \text{ mol CuSO}_4} = 3.43 \times 10^{-2} \text{ L}$

Take 34.3 mL of the 0.365 M CuSO₄ and dilute to a final volume of 200 mL with water

Chapter 4

(e)

$$\frac{0.215 \text{ mol NaOH}}{L} \times 1.50 \text{ L} = 0.322 \text{ mol NaOH}$$

$$50\% \text{ (w/w) NaOH} = \frac{50 \text{ g NaOH}}{100 \text{ g reagent}}$$

$$\frac{50 \text{ g NaOH}}{100 \text{ g reagent}} \times \frac{1.525 \text{ g reagent}}{1 \text{ g water}} \times \frac{1 \text{ g water}}{1 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{\text{mol NaOH}}{40.00 \text{ g}}$$

$$= \frac{1.9 \times 10^{1} \text{mol NaOH}}{L}$$

$$\text{volume 50\% (w/w) NaOH required} = 0.322 \text{ mol NaOH} \times \frac{L}{100 \text{ mol NaOH}} = 1.7 \times 10^{-2} \text{ L}$$

Take 17 mL of the concentrated reagent and dilute to a final volume of 1.50 L with water

(**f**)

$$12.0 \text{ ppm } \text{K}^{+} = \frac{12 \text{ mg } \text{K}^{+}}{\text{L soln}}$$

$$\frac{12 \text{ mg } \text{K}^{+}}{\text{L soln}} \times 1.50 \text{ L} = 1.8 \times 10^{1} \text{ mg } \text{K}^{+}$$

$$1.8 \times 10^{1} \text{ mg } \text{K}^{+} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol } \text{K}^{+}}{39.10 \text{ g}} = 4.60 \times 10^{-4} \text{ mol } \text{K}^{+}$$

$$4.60 \times 10^{-4} \text{ mol } \text{K}^{+} \times \frac{1 \text{ mol } \text{K}_{4} \text{Fe}(\text{CN})_{6}}{4 \text{ mol } \text{K}^{+}} \times \frac{368.35 \text{ g } \text{K}_{4} \text{Fe}(\text{CN})_{6}}{1 \text{ mol }} = 4.24 \times 10^{-2} \text{ g } \text{K}_{4} \text{Fe}(\text{CN})_{6}$$

Dissolve 42.4 mg K_4 Fe(CN)₆ in enough water to give a final volume of 1.50 L.

4-33.

$$\frac{0.250 \text{ mol } \text{La}^{3+}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 50.0 \text{ mL} = 1.25 \times 10^{-2} \text{ mol } \text{La}^{3+}$$
$$0.302 \text{ M } \text{IO}_{3}^{-} = \frac{0.302 \text{ mol } \text{IO}_{3}^{-}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 75.0 \text{ mL} = 2.27 \times 10^{-2} \text{ mol } \text{IO}_{3}^{-}$$

Because each mole of $La(IO_3)_3$ requires three moles IO_3^- , IO_3^- is the limiting reagent.

Thus,

$$2.27 \times 10^{-2} \text{ mol IO}_{3}^{-} \times \frac{1 \text{ mol La(IO}_{3})_{3}}{3 \text{ mol IO}_{3}^{-}} \times \frac{663.6 \text{ g La(IO}_{3})_{3}}{1 \text{ mol}} = 5.01 \text{ g La(IO}_{3})_{3} \text{ formed}$$

4-34

$$\frac{0.125 \text{ mol Pb}^{2+}}{L} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 200 \text{ mL} = 2.50 \times 10^{-2} \text{ mol Pb}^{2+}$$
$$\frac{0.175 \text{ mol Cl}^{-}}{L} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 400 \text{ mL} = 7.00 \times 10^{-2} \text{ mol Cl}^{-}$$

Because each mole of PbCl₂ requires two moles Cl^{-} , Pb²⁺ is the limiting reagent. Thus,

$$2.50 \times 10^{-2} \text{ mol Pb}^{2+} \times \frac{1 \text{ mol PbCl}_2}{1 \text{ mol Pb}^{2+}} \times \frac{278.10 \text{ g PbCl}_2}{1 \text{ mol}} = 6.95 \text{ g PbCl}_2 \text{ formed}$$

4-35. A balanced chemical equation can be written as:

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2(g)$$

$$0.2220 \text{ g } \text{Na}_{2}\text{CO}_{3} \times \frac{1 \text{ mol } \text{Na}_{2}\text{CO}_{3}}{105.99 \text{ g}} = 2.094 \times 10^{-3} \text{ mol } \text{Na}_{2}\text{CO}_{3}$$
$$\frac{0.0731 \text{ mol } \text{HCl}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 100.0 \text{ mL} = 7.31 \times 10^{-3} \text{ mol } \text{HCl}$$

Because one mole of CO₂ is evolved for every mole Na₂CO₃ reacted, Na₂CO₃ is the

limiting reagent. Thus

$$2.094 \times 10^{-3} \text{ mol } \text{Na}_{2}\text{CO}_{3} \times \frac{1 \text{ mol } \text{CO}_{2}}{1 \text{ mol } \text{Na}_{2}\text{CO}_{3}} \times \frac{44.00 \text{ g } \text{CO}_{2}}{1 \text{ mol}} = 9.214 \times 10^{-2} \text{ g } \text{CO}_{2} \text{ evolved}$$

(b)

amnt HCl left =
$$7.31 \times 10^{-3}$$
 mol - $(2 \times 2.094 \times 10^{-3}$ mol) = 3.12×10^{-3} mol

$$\frac{3.12 \times 10^{-3} \text{ mol HCl}}{100.0 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 3.12 \times 10^{-2} \text{ M HCl}$$

4-36. A balanced chemical equation can be written as

$$Na_3PO_4 + 3HgNO_3 \rightarrow 3NaNO_3 + Hg_3PO_4$$

(a)

$$\frac{0.3757 \text{ mol Na}_{3}\text{PO}_{4}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 25.0 \text{ mL} = 9.39 \times 10^{-3} \text{ mol Na}_{2}\text{PO}_{4}$$
$$\frac{0.5151 \text{ mol HgNO}_{3}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 100.0 \text{ mL} = 5.151 \times 10^{-2} \text{ mol HgNO}_{3}$$

The limiting reagent is Na₂PO₄. Thus,

$$9.39 \times 10^{-3} \text{ mol Na}_2 \text{PO}_4 \times \frac{1 \text{ mol Hg}_3 \text{PO}_4}{1 \text{ mol Na}_3 \text{PO}_4} \times \frac{696.74 \text{ g Hg}_3 \text{PO}_4}{\text{mol}} = 6.54 \text{ g Hg}_3 \text{PO}_4 \text{ formed}$$

(b)

mol HgNO₃ unreacted =
$$5.151 \times 10^{-2}$$
 mol – ($3 \times 9.39 \times 10^{-3}$ mol) = 2.33×10^{-2} mol

$$\frac{2.33 \times 10^{-2} \text{ mol HgNO}_3}{125.0 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 1.87 \times 10^{-1} \text{ M HgNO}_3$$

4-37 A balanced chemical equation can be written as:

$$Na_2SO_3 + 2HClO_4 \rightarrow 2NaClO_4 + H_2O + SO_2(g)$$

(a)

$$0.3132 \text{ M Na}_{2}\text{SO}_{3} = \frac{0.3132 \text{ mol Na}_{2}\text{SO}_{3}}{\text{L}} \times \frac{\text{L}}{1000 \text{ mL}} \times 75 \text{ mL} = 2.3 \times 10^{-2} \text{mol Na}_{2}\text{SO}_{3}$$
$$0.4025 \text{ M HClO}_{4} = \frac{0.4025 \text{ mol HClO}_{4}}{\text{L}} \times \frac{\text{L}}{1000 \text{ mL}} \times 150.0 \text{ mL} = 6.038 \times 10^{-2} \text{mol HClO}_{4}$$

Because one mole SO_2 is evolved per mole Na_2SO_3 , Na_2SO_3 is the limiting reagent.

Thus,

$$2.3 \times 10^{-2} \text{ mol Na}_2 \text{SO}_3 \times \frac{\text{mol SO}_2}{\text{mol Na}_2 \text{SO}_3} \times \frac{64.06 \text{ g SO}_2}{\text{mol}} = 1.5 \text{ g SO}_2 \text{ evolved}$$

(b)

$$\frac{1.4 \times 10^{-2} \text{ mol HClO}_{4} \text{ unreacted} = (6.038 \times 10^{-2} \text{ mol} - (2 \times 2.3 \times 10^{-2}) = 1.4 \times 10^{-2} \text{ mol}}{1.4 \times 10^{-2} \text{ mol HClO}_{4}} \times \frac{1000 \text{ mL}}{\text{L}} = 6.4 \times 10^{-2} \text{ M HClO}_{4} = 0.064 \text{ M}$$

4-38. A balanced chemical equation can be written as:

$$MgCl_2 + Na_3PO_4 + NH_4^+ \rightarrow MgNH_4PO_4(s) + 3Na^+ + 2Cl^-$$

$$\frac{1.000 \text{ g MgCl}_2}{100 \text{ mL}} \times 200.0 \text{ mL} \times \frac{1 \text{ mol MgCl}_2}{95.21 \text{ g}}$$
$$= 2.101 \times 10^{-2} \text{ mol MgCl}_2$$

$$\frac{0.1753 \text{ mol } \text{Na}_2 \text{PO}_4}{\text{L}} \times \frac{\text{L}}{1000 \text{ mL}} \times 40.0 \text{ mL} = 7.01 \times 10^{-3} \text{ mol } \text{Na}_2 \text{PO}_4 \text{ Na}_2 \text{PO}_4 \text{ is the}$$

limiting reagent. Thus,

amnt MgCl₂ unreacted =
$$(2.101 \times 10^{-2} - 7.01 \times 10^{-3}) = 1.40 \times 10^{-2}$$
 mol

$$\frac{1.40 \times 10^{-2} \text{ mol MgCl}_2}{240.0 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 5.83 \times 10^{-2} \text{ M MgCl}_2$$

4-39. A balanced chemical equation can be written as:

$$AgNO_3 + KI \rightarrow AgI(s) + KNO_3$$

24.31 ppt KI ×
$$\frac{1}{10^{3} \text{ppt}}$$
 × $\frac{1 \text{ g}}{1 \text{ mL}}$ × 200.0 mL × $\frac{1 \text{ mol KI}}{166.0 \text{ g}}$ = 2.93×10⁻² mol KI
2.93 × 10⁻² mol KI × $\frac{1 \text{ mol AgNO}_{3}}{1 \text{ mol KI}}$ × $\frac{1 \text{ L}}{0.0100 \text{ mol AgNO}_{3}}$ = 2.93 L AgNO₃

2.93 L of 0.0100 M AgNO₃ would be required to precipitate I^- as AgI.

4-40. A balanced chemical equation can be written as

 $3Ba(NO_3)_2 + Al_2(SO_4)_3 \rightarrow 3BaSO_4 + 2Al^{+3} + 6NO_3^{-1}$

$$480.4 \text{ ppm Ba}(\text{NO}_{3})_{2} \times \frac{1}{10^{6}\text{ppm}} \times \frac{1 \text{ g}}{1 \text{ mL}} \times 750.0 \text{ mL} \times \frac{\text{mol Ba}(\text{NO}_{3})_{2}}{261.34 \text{ g}}$$

$$=1.38 \times 10^{-3} \text{ mol Ba}(\text{NO}_{3})_{2}$$

$$\frac{0.03090 \text{ mol Al}_{2}(\text{SO}_{4})_{3}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 200.0 \text{ mL}$$

$$= 6.18 \times 10^{-3} \text{ mol Al}_{2}(\text{SO}_{4})_{3}$$

 $Ba(NO_3)_2$ is the limiting reagent. Thus,

$$1.38 \times 10^{-3}$$
 mol Ba(NO₃)₂ × $\frac{3 \text{ mol BaSO}_4}{3 \text{ mol Ba(NO}_3)_2}$ × $\frac{233.39 \text{ g BaSO}_4}{1 \text{ mol}}$ = 3.22×10^{-1} g BaSO₄ formed

(b) Since 3 moles of $Ba(NO_3)_2$ react with 1 mole of $Al_2(SO_4)_3$,

amnt Al₂(SO₄)₃ unreacted = (6.18×10⁻³ mol – (1/3 × 1.38 × 10⁻³mol)=5.72 × 10⁻³ mol $\frac{5.72 \times 10^{-3} \text{mol Al}_2(\text{SO}_4)_3}{950.0 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 6.02 \times 10^{-3} \text{ M Al}_2(\text{SO}_4)_3$

Chapter 5

5-1. (a) Random error causes data to be scattered more or less symmetrically around a mean value while systematic error causes the mean of a data set to differ from the accepted value.

(**b**) The magnitude of a constant error stays essentially the same as the size of the quantity measured is varied while proportional errors increase or decrease according to the size of the sample taken for analysis.

(c) The absolute error of a measurement is the difference between the measured value and the true value while the relative error is the absolute error divided by the true value.

(d) The mean of a data set is obtained by dividing the sum of replicate measurements by the number of measurements in the set while the median is the middle result when replicate data are arranged according to increasing or decreasing value.

5-2. (1) Meter stick slightly longer or shorter than 1.0 m – systematic error.

(2) Markings on the meter stick always read from a given angle – systematic error.

(3) Variability in the sequential movement of the 1-m metal rule to measure the full 3-m table width – random error.

(4) Variability in interpolation of the finest division of the meter stick – random error.

5-3. (1) Instrumental errors

- (2) Method errors
- (3) Personal errors
- **5-4.** (1) The analytical balance is miscalibrated.

(2) After weighing an empty vial, fingerprints are placed on the vial while adding sample to the vial.

(3) A hygroscopic sample absorbs water from the atmosphere while placing it in a weighing vial.

5-5. (1) The pipet is miscalibrated and holds a slightly different volume of liquid than the indicated volume.

(2) The user repetitively reads the volume marking on the pipet from an angle rather than at eye level.

- (3) The inner surfaces of the pipet are contaminated.
- **5-6.** Systematic method errors are detected by application of the method to the analysis of a standard reference material having one or more analytes at known concentration levels.
- **5-7.** Both constant and proportional systematic errors can be detected by varying the sample size. Constant errors do not change with the sample size while proportional errors increase or decrease with increases or decreases in the samples size.
- **5-8.** (a) $(-0.4 \text{ mg}/500 \text{ mg}) \times 100\% = -0.08\%$
 - As in part (a)
 - **(b)** 0.16%
 - (c) 0.27%
 - $(\mathbf{d}) 0.57\%$
- **5-9.** (a) First determine how much gold is needed to achieve the desired relative error.

 $(-0.4 \text{ mg}/-0.1\%) \times 100\% = 400 \text{ mg gold}$

Then determine how much ore is needed to yield the required amount of gold.

 $(400 \text{ mg}/1.2\%) \times 100\% = 33,000 \text{ mg}$ ore or 33 g ore

- **(b)** 8.3 g ore
- (c) 4.2 g ore
- (**d**) 3.0 g ore
- **5-10** (a) $(0.03/50.00) \times 100\% = 0.060\%$

As in part (a)

- **(b)** 0.30%
- **(c)** 0.12%
- (**d**) 0.10%
- **5-11.** (a) $(-0.4/30) \times 100\% = -1.3\%$

As in part (a)

- **(b)** 0.27%
- **(c)** 0.13%

(d) – 0.08%

5-12. mean =
$$\left(\frac{0.0110 + 0.0104 + 0.0105}{3}\right) = 0.01063 \approx 0.0106$$

Arranging the numbers in increasing value the median is:

0.0104 0.0105 ← median 0.0110

The deviations from the mean are:

|0.0104 - 0.01063| = 0.00023|0.0105 - 0.01063| = 0.00013|0.0110 - 0.01063| = 0.00037

mean deviation =
$$\left(\frac{0.00023 + 0.00013 + 0.00037}{3}\right) = 0.00024 \approx 0.0002$$

(b) Using a spreadsheet

- A	A	В	C				
1	Pb 5-12(I)					
2	1	Data	Deviation				
3		24.53	0.174				
4	1	24.68	0.024				
5	1	24.77	0.066				
6		24.81	0.106				
7		24.73	0.026				
8							
9	Mean	24.704	0.0792				
10	Median	24.73					
11							
12	Spreads	heet Docum	nentation				
13	B9=AVE	RAGE(B3:B7	7)				
14	B10=MEDIAN(B3:B7)						
15	C3=ABS(B3-\$B\$9)						
16	C9=AVE	RAGE(C3:C7	7)				
47	1		r in				

(c) mean = 190	median = 189	mean deviation = 2
deviations 1.75, 0.25	, 4.25, 2.75. rounded to 2, 0, 4	4, 3
(d) mean = 4.54×10^{-3}	median = 4.53×10^{-3}	mean deviation = 4.7×10^{-5}
deviations, 1.5×10^{-5}	5 , 6.5 × 10 ⁻⁵ , 9.5 × 10 ⁻⁵ , 5.5 ×	$10^{-5}, 5.0 \times 10^{-6}, 4.5 \times 10^{-5}$
(e) mean = 39.59	median = 39.65	mean deviation $= 0.17$
rounded deviations 0	.24, 0.02, 0.34, 0.09	
(f) mean = 859	median = 862	mean deviation = 7.6
deviations 9, 3, 10, 1	0, 6	

Chapter 6

- 6-1. (a) The *standard error of the mean* is the standard deviation of the mean and is given by the standard deviation of the data set divided by the square root of the number of measurements.
 - (**b**) The *coefficient of variation* is the percent relative standard deviation or $(s/\overline{x}) \times 100\%$.
 - (c) The *variance* is the square of the standard deviation.

(d) *Significant figures* are all the digits in a number that are known with certainty plus the first uncertain digit.

6-2. (a) The term *parameter* refers to quantities such as the mean and standard deviation of a population or distribution of data. The term *statistic* refers to an estimate of a parameter that is made from a sample of data.

(b) The population mean is the true mean for the population of data. The sample mean is the arithmetic average of a limited sample drawn from the population.

(c) *Random errors* result from uncontrolled variables in an experiment while *systematic errors* are those that can be ascribed to a particular cause and can usually be determined.

(d) *Accuracy* represents the agreement between an experimentally measured value and the true or accepted value. *Precision* describes the agreement among measurements that have been performed in exactly the same way.

6-3. (a) The *sample standard deviation s* is the standard deviation of a sample drawn from the

population. It is given by $s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}}$, where \overline{x} is the sample mean.

The *population standard deviation* σ is the standard deviation of an entire population

given by
$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$
, where μ is the population mean.

(b) In statistics, a sample is a small set of replicate measurements. In chemistry, a sample is a portion of a material that is taken for analysis.

- 6-4. The standard error of a mean, s_m is the standard deviation of the set of data, s, divided by the square root of the number of data in the set, i.e. $s_m = s/\sqrt{N}$. The standard error of the mean s_m is lower than the standard deviation of the data points in a set s because a set of data made up of means will have less spread than a set of data made up of data points. In the equations for s_m , the denominator (\sqrt{N}) always has a value greater than 1 so that s_m will always be less than s.
- 6-5. Since the probability that a result lies between -1σ and $+1\sigma$ is 0.683, the probability that a result will lie between 0 and $+1\sigma$ will be half this value or 0.342. The probability that a result will lie between $+1\sigma$ and $+2\sigma$ will be half the difference between the probability of the result being between -2σ and $+2\sigma$, and -1σ and $+1\sigma$, or $\frac{1}{2}$ (0.954-0.683) = 0.136.
- 6-6. Since the probability that a result lies between -2σ and $+2\sigma$ is 0.954, the probability that a result will lie outside this range is (1 0.954) = 0.046. The probability that a result will be more negative than -2σ will be half this value, or 0.023.
- **6-7.** Listing the data from Set A in order of increasing value:

x_i	x_i^2
9.5	90.25
8.5	72.25
9.1	82.81
9.3	86.49
9.1	82.81
$\Sigma x_i = 45.5$	$\Sigma x_i^2 = 414.61$

(a) mean: $\overline{x} = 45.5/5 = 9.1$

- **(b)** median = 9.1
- (c) spread: w = 9.5 8.5 = 1.0

(**d**) standard deviation:
$$s = \sqrt{\frac{414.61 - (45.5)^2 / 5}{5 - 1}} = 0.37$$

(e) coefficient of variation: $CV = (0.37/9.1) \times 100\% = 4.1\%$

Results for Sets A through F, obtained in a similar way, are given in the following table.

	А	В	С	D	Е	F
\overline{x}	9.1	55.29	0.650	5.1	20.61	0.958
median	9.1	55.32	0.653	5.0	20.64	0.954
W	1.0	0.15	0.108	1.5	0.14	0.049
S	0.37	0.08	0.056	0.6	0.07	0.02
CV, %	4.1	0.14	8.5	12.2	0.32	2.1

6-8. For Set A, E = 9.1 - 9.0 = 0.1

 $E_r = (0.1/9.0) \times 1000 \text{ ppt} = 11.1 \text{ ppt}$

- Set B, E = -0.040 $E_r = -0.7$ ppt
- Set C E = 0.0195 $E_r = 31$ ppt
- Set D E = -0.34 $E_r = -63$ ppt
- Set E E = 0.03 $E_r = 1.3$ ppt
- Set F E = -0.007 $E_r = -6.8$ ppt

6-9. (a)
$$s_y = \sqrt{(0.03)^2 + (0.001)^2 + (0.001)^2} = 0.030$$

 $CV = (0.03/-2.082) \times 100\% = -1.4\%$
 $y = -2.08(\pm 0.03)$

(b)
$$s_y = \sqrt{(0.04)^2 + (0.0001)^2 + (0.08)^2} = 0.089$$

 $CV = (0.089/19.1637) \times 100\% = 0.46\%$
 $y = 19.16(\pm 0.09)$

(c)
$$\frac{s_y}{y} = \sqrt{\left(\frac{0.3}{29.2}\right)^2 + \left(\frac{0.02 \times 10^{-17}}{2.034 \times 10^{-17}}\right)^2} = 0.01422$$

 $CV = (0.0142) \times 100\% = 1.42\%$
 $s_y = (0.0142) \times (5.93928 \times 10^{-16}) = 0.08446 \times 10^{-16}$
 $y = 5.94(\pm 0.08) \times 10^{-16}$
(d) $\frac{s_y}{y} = \sqrt{\left(\frac{1}{326}\right)^2 + \left(\frac{2}{740}\right)^2 + \left(\frac{0.006}{1.964}\right)^2} = 0.00510$
 $CV = (0.00510) \times 100\% = 0.510\%$
 $s_y = (0.00510) \times (122830.9572) = 626$
 $y = 1.228(\pm 0.006) \times 10^5$
(e) $s_{nun} = \sqrt{(6)^2 + (3)^2} = 6.71$ $y_{num} = 187 - 89 = 98$
 $s_{den} = \sqrt{(1)^2 + (8)^2} = 8.06$ $y_{den} = 1240 + 57 = 1297$
 $\frac{s_y}{y} = \sqrt{\left(\frac{6.71}{98}\right)^2 + \left(\frac{8.06}{1297}\right)^2} = 0.0688$

4

Chapter 6

$$CV = (0.0688) \times 100\% = 6.88\%$$

$$s_y = (0.0688) \times (0.075559) = 0.00520$$

$$y = 7.6(\pm 0.5) \times 10^{-2}$$
(f)
$$\frac{s_y}{y} = \sqrt{\left(\frac{0.01}{3.56}\right)^2 + \left(\frac{3}{522}\right)^2} = 0.006397$$

$$CV = (0.006397) \times 100\% = 0.6397\%$$

$$s_y = (0.006397) \times (6.81992 \times 10^{-3}) = 4.36 \times 10^{-5}$$

$$y = 6.82(\pm 0.04) \times 10^{-3}$$

6-10. (a)
$$s_y = \sqrt{(0.02 \times 10^{-8})^2 + (0.2 \times 10^{-9})^2} = 2.83 \times 10^{-10}$$

 $y = 1.02 \times 10^{-8} - 3.54 \times 10^{-9} = 6.66 \times 10^{-9}$
 $CV = \frac{2.83 \times 10^{-10}}{6.66 \times 10^{-9}} \times 100\% = 4.25\%$
 $y = 6.7 \pm 0.3 \times 10^{-9}$
(b) $s_y = \sqrt{(0.08)^2 + (0.06)^2 + (0.004)^2} = 0.10$
 $y = 90.31 - 89.32 + 0.200 = 1.190$
 $CV = \frac{0.10}{1.190} \times 100\% = 8.41\%$
 $y = 1.2(\pm 0.1)$

(c)
$$\frac{s_y}{y} = \sqrt{\left(\frac{0.0005}{0.0040}\right)^2 + \left(\frac{0.02}{10.28}\right)^2 + \left(\frac{1}{347}\right)} = 0.1250$$

$$CV = (0.1250) \times 100\% = 12.5\%$$

 $y = 0.0040 \times 10.28 \times 347 = 14.27$

$$s_{y} = (0.125) \times (14.27) = 1.78$$

$$y = 14(\pm 2)$$
(d)
$$\frac{s_{y}}{y} = \sqrt{\left(\frac{0.03 \times 10^{-14}}{223 \times 10^{-14}}\right)^{2} + \left(\frac{0.04 \times 10^{-16}}{1.47 \times 10^{-16}}\right)^{2}} = 0.0272$$

$$CV = (0.027) \times 100\% = 2.7\%$$

$$y = 1.63 \times 10^{-14} / 1.03 \times 10^{-16} = 1.517 \times 10^{4}$$

$$s_{y} = (0.0272) \times (1.517 \times 10^{4}) = 0.0413 \times 10^{4}$$

$$y = 1.52(\pm 0.04) \times 10^{4}$$

(e)
$$\frac{s_{y}}{y} = \sqrt{\left(\frac{1}{100}\right)^{2} + \left(\frac{1}{2}\right)^{2}} = 0.500$$

$$CV = (0.500) \times 100\% = 50.0\%$$

$$y = 100 / 2 = 50.0$$

$$s_{y} = (0.500) \times (50.0) = 25$$

$$y = 50(\pm 25)$$

(f)
$$s_{num} = \sqrt{\left(0.02 \times 10^{-2}\right)^{2} + \left(0.06 \times 10^{-3}\right)^{2}} = 2.09 \times 10^{-4}$$

num = 0.0149 - 0.00497 = 0.00993

$$s_{\rm den} = \sqrt{\left(0.7\right)^2 + \left(0.08\right)^2} = 0.704$$

den = 27.1 + 8.99 = 36.09

$$\frac{s_y}{y} = \sqrt{\left(\frac{0.000209}{0.00993}\right)^2 + \left(\frac{0.704}{36.09}\right)^2} = 0.0287$$

$$CV = (0.0287) \times 100\% = 2.87\%$$

$$y = 0.00993/36.09 = 2.751 \times 10^{-4}$$

$$s_y = (0.0287) \times (2.751 \times 10^{-4}) = 7.899 \times 10^{-6}$$

$$y = 2.75(\pm 0.08) \times 10^{-4}$$

$$(0.434)(0.03 \times 10^{-4})$$

6-11. (a) $y = \log(2.00 \times 10^{-4}) = -3.6989$ $s_y = \frac{(0.434)(0.03 \times 10^{-1})}{(2.00 \times 10^{-4})} = 6.51 \times 10^{-3}$

y = −3.699 ± 0.0065 CV = (0.0065/3.699) × 100% = 0.18%

(b) As in part (a):
$$y = 37.645 \pm 0.001$$

CV = 0.003%

(c) $y = \operatorname{antilog}(1.200) = 15.849$ $\frac{s_y}{y} = (2.303)(0.003) = 0.0069$

$$s_y = (0.0069)(15.849) = 0.11$$
 $y = 15.8 \pm 0.1$

 $CV = (0.11/15.8) \times 100\% = 0.69\%$

(d) As in part (c): $y = 3.5(\pm 0.3) \times 10^{49}$

$$\mathrm{CV} = 9.2\%$$

6-12. (a)
$$y = (4.17 \times 10^{-4})^3 = 7.251 \times 10^{-11}$$
 $\frac{s_y}{y} = 3 \left(\frac{0.03 \times 10^{-4}}{4.17 \times 10^{-4}} \right) = 0.0216$
 $s_y = (0.0216)(7.251 \times 10^{-11}) = 1.565 \times 10^{-12}$ $y = 7.3(\pm 0.2) \times 10^{-11}$

$$CV = (1.565 \times 10^{-12} / 7.251 \times 10^{-11}) \times 100\% = 2.2\%$$

(b) As in part (a):
$$y = 1.3090(\pm 0.0002)$$

$$CV = 0.02\%$$

6-13. From the equation for the volume of a sphere, we have

$$V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = \frac{4}{3}\pi \left(\frac{2.15}{2}\right)^3 = 5.20 \text{ cm}^3$$

Hence, we may write

$$\frac{s_V}{V} = 3 \times \frac{s_d}{d} = 3 \times \frac{0.02}{2.15} = 0.0279$$
$$s_V = 5.20 \times 0.0279 = 0.145$$
$$V = 5.2(\pm 0.1) \text{ cm}^3$$

6-14. The mean diameter of the tank is $\overline{d} = \frac{5.2 + 5.7 + 5.3 + 5.5}{4} = 5.425$ m The standard

deviation of the diameter is $s_d = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}} = 0.222$. The standard deviation of the

mean diameter is $s_d / \sqrt{4} = 0.111$.

The mean height of the tank is $\overline{h} = \frac{7.9 + 7.8 + 7.6}{3} = 7.767$ m and $s_h = 0.153$. The

standard deviation of the mean height is $s_h / \sqrt{3} = 0.0883$

The volume of the tank is given by

$$V = h \times \pi \left(\frac{d}{2}\right)^2 = 7.767(\pm 0.0883) \times \pi \times \left(\frac{5.425(\pm 0.111)}{2}\right)^2$$

The error in the 3rd term is given by

$$\frac{s_y}{y} = \sqrt{\left(\frac{0.111}{5.425}\right)^2} = 0.02046 \qquad y = \frac{1}{2} (5.425) = 2.7125 \qquad s_y = 0.02046 \times 2.7125 = 0.0555$$
$$V = 7.767(\pm 0.0883) \times (3.14159) \times (2.7125(\pm 0.0555))^2$$
$$\frac{s_y}{y} = 2\left(\frac{0.0555}{2.7125}\right) = 0.0409 \qquad y = (2.7125)^2 = 7.358 \qquad s_y = (0.0409)(7.358) = 0.301$$
$$V = 7.767(\pm 0.0883) \times (3.14159) \times 7.358(\pm 0.301)$$

Next, we propagate the error in volume by assuming the error in pi is negligible.

$$\frac{s_y}{y} = \sqrt{\left(\frac{0.0883}{7.767}\right)^2 + \left(\frac{0.301}{7.358}\right)^2} = 0.04246 \qquad y = 7.767 \times 3.14159 \times 7.358 = 179.5$$

$$s_y = (0.04246)(179.5) = 7.62$$

$$y = 180(\pm 8) \text{ m}^3$$

Converting to liters, we have

$$V = 180(\pm 8) \text{ m}^3 \times \frac{1000L}{m^3} = 1.8(\pm 0.08) \times 10^5 L$$

6-15. Since the titrant volume equals the final buret reading minus the initial buret reading, we can introduce the values given into the equation for %A.

 $%A = [9.26(\pm 0.03) - 0.19(\pm 0.02)] \times equivalent mass \times 100/[45.0(\pm 0.2)]$

Obtaining the value of the first term and the error in the first term

$$s_y = \sqrt{(0.03)^2 + (0.02)^2} = 0.0361$$
 $y = 9.26 - 0.19 = 9.07$

We can now obtain the relative error of the calculation

$$\frac{s_{\frac{96}{A}}}{\frac{96}{A}} = \sqrt{\left(\frac{0.036}{9.07}\right)^2 + \left(\frac{0.2}{45.0}\right)^2} = 0.00596$$

The coefficient of variation is then

 $CV = (0.00596) \times 100\% = 0.596\%$ or 0.6%

6-16. To obtain a CV in *S* of 1% or less,

$$\frac{s_{s}}{S} \leq 0.01 = \sqrt{\left(\frac{s_{k'}}{k'}\right)^2 + \left(\frac{s_{e^{-E/kT}}}{e^{-E/kT}}\right)^2}$$

Since k' is a constant, the first term is zero resulting in:

$$0.01 = \frac{s_{e^{-E/kT}}}{e^{-E/kT}} \qquad \text{From Table 6-4} \qquad \frac{s_{e^{-E/kT}}}{e^{-E/kT}} = s_{-E/kT}$$

 $s_{-E/kT}$ can be determined by evaluation of the errors in each of the numbers.

$$\frac{s_{-E/kT}}{-E/kT} = \sqrt{\left(\frac{s_E}{E}\right)^2 + \left(\frac{s_k}{k}\right)^2 + \left(\frac{s_T}{T}\right)^2}$$

Since both *E* and *k* have no uncertainty, this equation reduces to:

$$s_{-E/kT} = \left(\frac{s_T}{T}\right) \times \frac{-E}{kT} = \left(\frac{s_T}{6500}\right) \left(\frac{-6.12 \times 10^{-19}}{\left(1.3807 \times 10^{-23}\right) \left(6500\right)}\right) = 0.01$$

Solving for *s*_T gives:

$$s_T \leq 9.5 \text{ K}$$

6-17. We first calculate the mean transmittance and the standard deviation of the mean.

mean T =
$$\left(\frac{0.213 + 0.216 + 0.208 + 0.214}{4}\right) = 0.2128$$

 $s_T = 0.0034$

(a)
$$c_{\rm X} = \left(\frac{-\log T}{\varepsilon b}\right) = \frac{-\log(0.2128)}{3312} = 2.029 \times 10^{-4} \,\mathrm{M}$$

(b) For $-\log T$, $s_y = (0.434)s_T/T = 0.434 \times (0.0034/0.2128) = 0.00693$

$$-\log(0.2128) = 0.672$$

$$c_x = \frac{-\log T}{\varepsilon b} = \frac{0.672 \pm 0.00693}{3312 \pm 12}$$

$$\frac{s_{C_x}}{c_x} = \sqrt{\left(\frac{0.00693}{0.672}\right)^2 + \left(\frac{12}{3312}\right)^2} = 0.0109$$

$$s_{C_x} = (0.0109)(2.029 \times 10^{-4}) = 2.22 \times 10^{-6}$$

(c)
$$\text{CV} = (2.22 \times 10^{-6} / 2.029 \times 10^{-4}) \times 100\% = 1.1\%$$

6-18. (a) and (b)

1	A	В	С	D	E	F	G	Н	I.	J	K	L
1	Problem 6-	18	1									1
2												
3	Sample	1	$(x_i - x_{ave})^2$	2	$(x_i - x_{ave})^2$	3	$(x_i - x_{ave})^2$	4	$(x_i - x_{ave})^2$	5	$(x_i - x_{ave})^2$	
4												No. Sets
5		6.02	0.0031	7.48	0.0044	3.90	0.0090	4.48	0.0060	5.29	0.0067	5
6		6.04	0.0058	7.47	0.0032	3.96	0.0012	4.65	0.0086	5.13	0.0061	
7		5.88	0.0071	7.29	0.0152	4.16	0.0272	4.68	0.0150	5.14	0.0046	
8		6.06	0.0092			3.96	0.0012	4.42	0.0189	5.28	0.0052	
9		5.82	0.0207							5.20	0.0001	
10												
11	mean	5.964		7.413		3.995		4.558		5.208		Total
12	S	0.107		0.107		0.114		0.127		0.075		
13	N		5		3		4		4		5	21
14	$\Sigma(x_i - x_{ave})^2$		0.0459		0.0229		0.0387		0.0485		0.0227	0.17864
15												
16	Spooled	0.11										
17												
18	Spreadshe	et Docum	entation									
19												
20	B11=AVER	AGE(B5:B9	9)									
21	B12=STDE	/(B5:B9)										
22	C5=(B5-\$B\$											
23	C13=COUN	T(C5:C9)										
24	C14=SUM(C5:C9)											
25	L13=SUM(0											
26	L14=SUM(C	:14:K14)										
27	B16=SQRT	(L14/(L13-L	_5))									

Chapter 6

Chapter 6

(c) Pooling the variations in %K from the five samples gives a better estimate of σ because several data sets are used. Thus the pooled standard deviation uses a larger number of data points and can reflect variations that arise because of sample selection and sample preparation.

-	A	В	C	D	E	F	G	Н	1	J	K	L	M
1	Problem	6-19		-				1			1		
2													
3	Sample	1	$(x_i - x_{ave})^2$	2	$(x_i - x_{ave})^2$	3	(X _i -X _{ave}) ²	4	$(x_i - x_{ave})^2$	5	(X i - X ave)	6	(X _i -X _{ave}) ²
4													
5	3	1.02	0.0049	1.13	0.0020	1.12	0.0071	0.77	0.0100	0.73	0.0144	0.73	0.0008
6		0.84	0.0121	1.02	0.0042	1.32	0.0135	0.58	0.0081	0.92	0.0049	0.88	0.0150
7		0.99	0.0016	1.17	0.0072	1.13	0.0055	0.61	0.0036	0.90	0.0025	0.72	0.0014
8				1.02	0.0042	1.20	0.0000	0.72	0.0025			0.70	0.0033
9						1.25	0.0021						
10													
11	mean	0.950		1.085		1.204		0.670		0.850		0.758	
12	s	0.096		0.077		0.084		0.090		0.104		0.083	
13	N		3		4		5		4		3		4
14	Σ(xi-xave	e) ²	0.0186		0.0177		0.0281		0.0242		0.0218		0.0205
15													
16	Spooled	0.088							No	. Sets	6		
17													
18	Spreads	heet l	Documen	tation	1					NTotal	23		
19									$\Sigma(x_i -$	x _{ave}) ²	0.1309		
20	B11=AV	ERAG	E(B5:B9)										
21	B12=ST	DEV(B	5:B9)										
22	C5=(B5-\$												
23	C13=CO						2	8					-
	C14=SUI												
	K18=SU			1									
	K19=SU												
27			9/(K18-K1	(6))									

6-19.

(a) The standard deviations are $s_1 = 0.096$, $s_2 = 0.077$, $s_3 = 0.084$, $s_4 = 0.090$, $s_5 = 0.104$, $s_6 = 0.090$

0.083

(b) $s_{\text{pooled}} = 0.088 \text{ or } 0.09$

6-20.

	A	В	С	D	E	F
1	Problem 6-20					
2						
3	Sample	x1	X2	mean	$(X_1 - X_{ave})^2$	$(x_2 - x_{ave})^2$
4	1	2.24	2.27	2.255	0.00022	0.00023
5	2	8.4	8.7	8.55	0.02250	0.02250
6	3	7.6	7.5	7.55	0.00250	0.00250
7	4	11.9	12.6	12.25	0.12250	0.12250
8	5	4.3	4.2	4.25	0.00250	0.00250
9	6	1.07	1.02	1.045	0.00063	0.00062
10	7	14.4	14.8	14.6	0.04000	0.04000
11	8	21.9	21.1	21.5	0.16000	0.16000
12	9	8.8	8.4	8.6	0.04000	0.04000
13						
14	N	18		Total	0.39085	0.39085
15	No. of Sets	9				
16	Spooled	0.29				
17						
18	Spreadsheet Do	ocumenta	ation			
19						
20	D4=AVERAGE(E	34:C4)				
21	E4=(B4-\$D\$4)^2	<u> </u>				
22	F4=(C4-\$D4)^2					
23	B14=COUNT(B4	:C12)				
24	E14=SUM(E4:E1	2)				
25	B16=SQRT((E14		14-B15))			

6-21.

	A	В	C	D	E	F	G	Н
1	Problem 6	5-21						
2								
3	Sample	1	$(x_i - x_{ave})^2$	2	$(x_i - x_{ave})^2$	3	$(x_i - x_{ave})^2$	
4								No. Sets
5		13	0.06	42	2.78	29	5.76	3
6		19	39.06	40	0.11	25	2.56	
7		12	0.56	39	1.78	26	0.36	
8		7	33.06			23	12.96	
9						30	11.56	
10								
11	mean	12.75		40.33		26.60		Total
12	S	4.92		1.53		2.88		
13	N		4		3		5	12
14	Σ(x i - x ave)	2	72.75		4.67		33.20	110.62
15								
16	Spooled	3.5						
17								
18	Spreadsh	eet Docum	nentation					
19								
20	B11=AVEF	RAGE(B5:B	39)					
21	B12=STDE	V(B5:B9)						
22	C5=(B5-\$B							
23	C13=COU							
24	C14=SUM							
25	H13=SUM							
26	H14=SUM	C14:G14)						
27	B16=SQR		-H5))		1			

6-22.

	Excel value	NIST value
Mean	2.00185600000000	2.00185600000000
SD	0.000429123454003085	0.000429123454003053

The means are the same in both cases. There is some difference, however, in the standard deviations in the last two digits. The differences could arise because of the different algorithms used to calculate the SD and to roundoff errors in the calculations. The first 16 digits are identical.

Chapter 7

- **7-1.** The distribution of means is narrower than the distribution of single results. Hence, the standard error of the mean of 5 measurements is smaller than the standard deviation of a single result. The mean is thus known with more confidence than is a single result
- 7-2 (a) Looking at Table 7-1, we find that for z = 2.58, CL = 99%
 - **(b)** CL = 95%
 - (c) CL = 99.9%
 - (d) CL = 68%

7-3. (a) Since $CI = \overline{x} \pm \frac{z\sigma}{\sqrt{N}}$, as the standard deviation, σ , increases the confidence interval

increases.

(**b**) As the desired confidence level increases, *z* inceases and thus the confidence interval increases.

(c). as the sample size, *N*, increases the confidence interval decreases.

7-4. For Set A

x_i	x_i^2
2.7	7.29
3.0	9.00
2.6	6.76
2.8	7.84
3.2	10.24
$\Sigma x_i = 14.3$	$\Sigma x_i^2 = 41.13$

mean: $\bar{x} = 14.3/5 = 2.86$

Fundamentals of Analytical Chemistry: 9th ed.

standard deviation:
$$s = \sqrt{\frac{41.13 - (14.3)^2 / 5}{5 - 1}} = 0.24$$

Since, for a small set of measurements we cannot be certain *s* is a good approximation of σ , we should use the *t* statistic for confidence intervals. From Table 7-3, at 95% confidence *t* for 4 degrees of freedom is 2.78, therefore for set A,

CI for
$$\mu = 2.86 \pm \frac{(2.78)(0.24)}{\sqrt{5}} = 2.86 \pm 0.30$$

Similarly, for the other data sets, we obtain the results shown in the following table:

	Α	В	С	D	Ε	F
\overline{x}	2.86	0.494	70.19	3.1	0.824	70.53
S	0.24	0.016	0.08	0.37	0.051	0.22
CI	2.86 ± 0.30	0.494 ± 0.020	70.19 ± 0.20	3.1 ±0.46	0.824 ± 0.081	70.53 ± 0.34

The 95% confidence interval is the range within which the population mean is expected to lie with a 95% probability.

7-5. If *s* is a good estimate of σ then we can use z = 1.96 for the 95% confidence level. For set A, at the 95% confidence,

CI for
$$\mu = 2.86 \pm \frac{(1.96)(0.30)}{\sqrt{5}} = 2.86 \pm 0.26$$
. Similarly for sets B-F, the limits are:

	Α	В	С	D	Ε	F
CI	2.86±0.26	0.494±0.013	70.19±0.079	3.1±0.18	0.824 ± 0.009	70.53 ±0.015

7-6. For set A: $Q = \frac{|3.2 - 3.0|}{3.2 - 2.6} = 0.33$ and $Q_{crit} = 0.710$ for 5 observations at the 95%

confidence level.

Since $Q < Q_{crit}$ the outlier value 2.5 cannot be rejected with 95% confidence.

	А	В	С	D	E	F
Q	0.33	0.33	0.86	0.60	0.81	0.95
$Q_{ m crit}$	0.710	0.710	0.970	0.710	0.829	0.829
Decision	Keep	Keep	Keep	Keep	Keep	Reject

7-7. (a) 99% CI = $18.5 \pm 2.58 \times 3.6 = 18.5 \pm 9.3 \ \mu g \ Fe/mL$

95% CI = $18.5 \pm 1.96 \times 3.6 = 18.5 \pm 7.1 \ \mu g \ Fe/mL$

(b) 99% CI =
$$18.5 \pm \frac{2.58 \times 3.6}{\sqrt{2}} = 18.5 \pm 6.6 \ \mu \text{g Fe/mL}$$

95% CI =
$$18.5 \pm \frac{1.96 \times 3.6}{\sqrt{2}} = 18.5 \pm 5.0 \ \mu\text{g Fe/mL}$$

(c) 99% CI =
$$18.5 \pm \frac{2.58 \times 3.6}{\sqrt{4}} = 18.5 \pm 4.6 \ \mu\text{g Fe/mL}$$

95% CI = 18.5 ±
$$\frac{1.96 \times 3.6}{\sqrt{4}}$$
 = 18.5 ± 3.5 µg Fe/mL

7-8. (a) 95% CI =
$$7.91 \pm 1.96 \times 0.27 = 7.91 \pm 0.53 \ \mu g \ Cu/mL$$

99% CI = 7.91
$$\pm$$
 2.58 \times 0.27 = 7.91 \pm 0.70 μ g Cu/mL

(b) 95% CI = 7.91 ±
$$\frac{1.96 \times 0.27}{\sqrt{4}}$$
 = 7.91 ± 0.26 µg Cu/mL

99% CI = 7.91 ±
$$\frac{2.58 \times 0.27}{\sqrt{4}}$$
 = 7.91 ± 0.35 µg Cu/mL

(c) 95% CI = 7.91 ±
$$\frac{1.96 \times 0.27}{\sqrt{16}}$$
 = 7.91 ± 0.13 µg Cu/mL

99% CI = 7.91±
$$\frac{2.58 \times 0.32}{\sqrt{16}}$$
 = 7.91 ± 0.17 µg Cu/mL

7-9.
$$2.2 = \frac{1.96 \times 3.6}{\sqrt{N}}$$
 For a 95% CI, $N = 10.3 \cong 11$

$$2.2 = \frac{2.58 \times 3.6}{\sqrt{N}}$$
 For a 99% CI, $N = 17.8 \cong 18$

7-10. (a)
$$0.20 = \frac{1.96 \times 0.27}{\sqrt{N}}$$
 For the 95% CI, $N = 7$

(b)
$$0.20 = \frac{2.58 \times 0.27}{\sqrt{N}}$$
 For a 99% CI, $N = 12.13 \cong 13$

7-11. For the data set, $\overline{x} = 3.22$ and s = 0.06

(a) 95% CI =
$$3.22 \pm \frac{4.30 \times 0.06}{\sqrt{3}} = 3.22 \pm 0.15 \text{ meq Ca/L}$$

(b) 95% CI =
$$3.22 \pm \frac{1.96 \times 0.056}{\sqrt{3}} = 3.22 \pm 0.06 \text{ meq Ca/L}$$

7-12. For the data set,
$$\bar{x} = 7.24$$
 and $s = 0.29$

(a) 90% CI = 7.24 ±
$$\frac{2.92 \times 0.29}{\sqrt{3}}$$
 = 7.24 ± 0.49 % lindane

(b) 90% CI = 7.24 ±
$$\frac{1.64 \times 0.28}{\sqrt{3}}$$
 = 7.24 ± 0.27 % lindane

7-13 (a)
$$0.3 = \frac{2.58 \times 0.38}{\sqrt{N}}$$
 For the 99% CI, $N = 10.7 \cong 11$

(b)
$$0.3 = \frac{1.96 \times 0.38}{\sqrt{N}}$$
 For the 95% CI, $N = 6.1 \cong 7$

(c)
$$0.2 = \frac{1.64 \times 0.38}{\sqrt{N}}$$
 For the 90% CI, $N = 9.7 \cong 10$

7-14. This is a two-tailed test and from Table 7-1, $z_{crit} = 1.96$ for the 95% confidence level. For carbon,

$$z = \frac{68.5 - 68.8}{0.004 \times 68.8\% / \sqrt{2}} = -1.54 \ge -1.96$$

Systematic error is NOT indicated at 95% confidence level.

For hydrogen, $z = \frac{4.882 - 4.953}{0.006 \times 4.953\% / \sqrt{2}} = -3.38 \le -1.96$

Systematic error IS indicated at 95% confidence level.

7-15. This is a two-tailed test where $s \rightarrow \sigma$ and from Table 7-1, $z_{crit} = 2.58$ for the 99% confidence level.

For As:
$$z = \frac{129 - 119}{9.5\sqrt{\frac{3+3}{3\times 3}}} = 1.28 \le 2.58$$

No significant difference exists at the 99% confidence level .

Proceeding in a similar fashion for the other elements

Element	Z	Significant Difference?
As	1.28	No
Со	-3.43	Yes
La	2.45	No
Sb	0.20	No
Th	-3.42	Yes

For two of the elements there is a significant difference, but for three there are not. Thus, the defendant might have grounds for claiming reasonable doubt. It would be prudent, however, to analyze other windows and show that these elements are good diagnostics for the rare window.

7-16. The null hypothesis is that $\mu = 5.0$ ppm dissolved O₂ and the alternative hypothesis is that $\mu < 5.0$ ppm dissolved O₂. This is a one-tailed test and from Table 7-1, $t_{crit} = 1.90$ for the 95% confidence level and 7 degrees of freedom.

For the data set, $\overline{x} = 4.888$ and s = 0.40

 $t = \frac{4.888 - 5.0}{0.40/\sqrt{8}} = -0.79 \ge -1.64$ Thus, we must accept the null hypothesis that the mean

dissolved O₂ is 5.0 ppm at the 95% confidence level.

7-17. $Q = \frac{|5.6-5.1|}{5.6-4.3} = 0.385$ and Q_{crit} for 8 observations at 95% confidence = 0.526.

Since $Q < Q_{crit}$ the outlier value 5.6 cannot be rejected at the 95% confidence level.

- **7-18.** H_0 : $\mu = 1.0$ ppb for the impurity: H_a : $\mu < 1.0$ ppb for the impurity. This is a one-tailed test. The type I error for this situation would be that we reject the null hypothesis when, in fact, it is true, i.e. we decide the impurity is < 1.0 ppb at some level of confidence when, in fact, it is not < 1.0 ppb. The type II error would be that we accept the null hypothesis when, in fact, it is false, i.e. we decide the impurity is not < 1.0 ppb at some level of confidence when, in fact, it is false, i.e. we decide the impurity is not < 1.0 ppb at some level of confidence when, in fact, it is false, i.e. we decide the impurity is not < 1.0 ppb at some level of confidence when, in fact, it is false, i.e. we decide the impurity is not < 1.0 ppb at some level of confidence when, in fact, it is < 1.0 ppb.
- **7-19.** The null hypothesis is that for the pollutant the current level = the previous level (H_0 : $\mu_{current} = \mu_{previous}$). The alternative hypothesis is H_a : $\mu_{current} > \mu_{previous}$ This would be a one-tailed test. The type I error for this situation would be that we reject the null hypothesis when, in fact, it is true, i.e. we decide the level of the pollutant is > the previous level at some level of confidence when, in fact, it is not. The type II error would be that we accept the null hypothesis when, in fact, it is false, i.e. we decide the level of the pollutant = the previous level when, in fact, it is > than the previous level.

6

7-20. (a) $H_0: \mu_{ISE} = \mu_{EDTA}, H_a: \mu_{ISE} \neq \mu_{EDTA}$. This would be a two-tailed test. The type I error for this situation would be that we decide the methods agree when they do not. The type II error would be that we decide the methods do not agree when they do.

(**b**) H_0 : $\mu = 7.03$ ppm; H_a : $\mu = < 7.03$ ppm. This is a one-tailed test. The type I error for this situation would be that we reject H_0 decide that a systematic error exists when it does not. The type II error would be that we accept H_0 decide a systematic error does not exist when it does.

(c) $H_0: \sigma_X^2 = \sigma_Y^2$; $H_a \sigma_X^2 < \sigma_Y^2$. This is a one-tailed test. The type I error would be that we decide that $\sigma_X^2 < \sigma_Y^2$ when it is not. The type II error would be that we decide that $\sigma_X^2 = \sigma_Y^2$ when actually $\sigma_X^2 < \sigma_Y^2$.

(d) $H_0: \sigma_{AA}^2 = \sigma_{EC}^2; H_a: \sigma_{AA}^2 < \sigma_{EC}^2$. This is a one-tailed test. The type I error for this situation would be that we decide AA results are less precise than electrochemistry results, when the precision is the same. The type II error would be that we decide the precision is the same when they electrochemical results are more precise.

7-21. (a) For the Top data set, $\bar{x} = 26.338$

For the bottom data set, $\bar{x} = 26.254$

 $s_{\text{pooled}} = 0.1199$

degrees of freedom = 5+5-2 = 8

For 8 degrees of freedom at 95% confidence $t_{crit} = 2.31$

 $t = \frac{26.338 - 26.254}{0.1199\sqrt{\frac{5+5}{5\times 5}}} = 1.11$ Since $t < t_{crit}$, we conclude that no significant difference

exists at 95% confidence level.

(**b**) From the data, N = 5, $\overline{d} = 0.084$ and $s_d = 0.015166$

For 4 degrees of freedom at 95% confidence t = 2.78

$$t = \frac{0.084 - 0}{0.015 / \sqrt{5}} = 12.52$$

Since 12.52 > 2.78, a significant difference does exist at 95% confidence level.

- (c) The large sample to sample variability causes s_{Top} and s_{Bottom} to be large and masks the differences between the samples taken from the top and the bottom.
- **7-22.** (a) A paired *t* test should definitely be used in this case due to the large variation in the Cl concentrations resulting from the various contact times and various locations from which the samples were obtained.
 - (**b**) H_0 : $\mu_d = 0$; H_a : $\mu_A \neq 0$, where μ_d is the mean difference between the methods From the data N = 8, $\overline{d} = -0.414$ and $s_d = 0.32$

From the data N = 8, a = -0.414 and $s_d = 0.52$

For 7 degrees of freedom at 90% confidence level, $t_{crit} = 1.90$

$$t = \frac{0.414 - 0}{0.32/\sqrt{8}} = 3.65$$

Since $t > t_{crit}$, a significant difference is indicated at the 90% confidence level

(c) For 7 degrees of freedom at 95% confidence level, $t_{crit} = 2.36$

Therefore, a significant difference in the 2 methods exists at the 95% confidence level.

For 7 degrees of freedom at the 99% confidence level, $t_{crit} = 3.50$

Thus, a significant difference is indicated even at the 99% confidence level. The conclusion does not depend on which of the three confidence levels is used.

7-23. For the first data set: $\overline{x} = 2.2978$

For the second data set: $\overline{x} = 2.3106$

 $s_{\text{pooled}} = 0.0027$

Degrees of freedom = 4 + 3 - 2 = 5

$$t = \frac{2.2978 - 2.3106}{0.0027\sqrt{\frac{4+3}{4\times3}}} = -6.207$$

For 5 degrees of freedom at the 99% confidence level, t = 4.03 and at the 99.9% confidence level, t = 6.87. Thus, we can be between 99% and 99.9% confident that the nitrogen prepared in the two ways is different. The Excel TDIST(x,df,tails) function can be used to calculate the probability of getting a t value of -6.207. In this case we find TDIST(6.207,5,2) = 0.0016. Therefore, we can be 99.84% confident that the nitrogen prepared in the two ways is different. There is a 0.16% probability of this conclusion being in error.

7-24. (a)

Source	SS	df	MS	F
Between soils	0.374 - 0.0972 = 0.2768	3 - 1 = 2	0.2768/2 = 0.1384	0.1384/0.0081 = 17.09
Within soils	$12 \times 0.0081 = 0.0972$	15 - 3 = 12	0.0081	
Total	0.374	15 - 1 = 14		

(b) H_0 : $\mu_{\text{samp1}} = \mu_{\text{samp2}} = \mu_{\text{samp3}}$; H_a : at least two of the means differ.

(c) From Table 7-4 the *F* value for 12 degrees of freedom in the denominator and 2 degrees of freedom in the numerator at the 95% confidence level is 3.89. Since the *F* value calculated in the table exceeds *F* critical, we reject H_0 and conclude that the phosphorous contents of the soil samples taken from the 3 locations are different.

7-25 (a)

Source	SS	df	MS	F
Between juices	$4 \times 7.715 = 30.86$	5 - 1 = 4	$0.913 \times 8.45 = 7.715$	8.45
Within juices	$25 \times 0.913 = 22.825$	30 - 5 = 25	0.913	
Total	30.86 + 22.82 = 50.68	30 - 1 = 29		

(b) H_0 : $\mu_{\text{brand1}} = \mu_{\text{brand2}} = \mu_{\text{brand3}} = \mu_{\text{brand4}} = \mu_{\text{brand5}}$; H_a : at least two of the means differ.

(c) The Excel FINV(prob,df1,df2) function can be used to calculate the *F* value for the above problem. In this case we find FINV(0.05,4,25) = 2.76. Since *F* calculated exceeds *F* critical, we reject the null hypothesis and conclude that the average ascorbic acid contents of the 5 brands of orange juice differ at the 95% confidence level.

7-26. (a)
$$H_0: \mu_{\text{LabA}} = \mu_{\text{LabB}} = \mu_{\text{LabC}} = \mu_{\text{LabD}} = \mu_{\text{LabE}}; H_a:$$
 at least two of the means differ.

(b) See spreadsheet next page. From Table 7-4 the *F* value for 4 degrees of freedom in the numerator and 10 degrees of freedom in the denominator at 95% is 3.48. Since *F* calculated exceeds *F* tabulated we reject H_0 and conclude that the laboratories differ at 95% confidence. We can also be 99% confident that the laboratories differ, but we cannot be 99.9% confident that the laboratories differ.

(c) Based on the calculated LSD value laboratories A, C and E differ from laboratory D, but laboratory B does not. Laboratories E and A differ from laboratory B, but laboratory C does not. No significant difference exists between laboratories E and A.

	А	В	С	D	E	F	G	Н
1	Result No.	Lab A	Lab B	Lab C	Lab D	Lab E		
2	1	10.3	9.5	10.1	8.6	10.6		
3	2	11.4	9.9	10.0	9.3	10.5		
4	3	9.8	9.6	10.4	9.2	11.1		
5								
6	Average	10.50	9.67	10.17	9.03	10.73		
7	St. Dev.	0.818535	0.208167	0.208167	0.37859389	0.321455		
8	Variance	0.67000	0.043333	0.043333	0.143333	0.103333		
9								
10	Grand Mean	10.020			Differences			
11	SSF	5.577333			10.73-9.03=	1.70	Significan	t difference
12	SSE	2.006667			10.50-9.03=	1.47	Significan	t difference
13	SST	7.584			10.17-9.03=	1.14	Significan	t difference
14					9.67-9.03=	0.64	No sig. diff	F
15	MSF	1.394333			10.73-9.67=	1.06	Significan	t difference
16	MSE	0.200667			10.50-9.67=			t difference
17					10.17-9.67	0.5	No sig. diff	F
18	F	6.948505		Labs	10.73-10.17=	0.56	No sig. diff	F.
19					10.50-10.17=	0.33	No sig. diff	F.
20	LSD	0.816			10.73-10.50=	0.23	No sig. diff	F
21							100 C 100 C 100 C 100 C	
22	Spreadsheet	t Documen	tation					
23	B6=AVERAG	E(B2:B4)			1			
	B7=STDEV(B							
	B8=VAR(B2:8							
26	B10=AVERA	GE(B2:F4)						
27	B11=3*((B6-B	310)^2+(C6-	B10)^2+(D6	5-B10)^2+(E	E6-B10)^2+(F6-	B10)^2)		
28	B12=2*SUM(
29	B13=B11+B1							
30	B15=B11/4						1	
31	B16=B12/10							
32	B18=B15/B16	5						
33	B20=2.23*SQ	RT(2*B16/3	3)		0			
34								

7-27. (a) $H_0: \mu_{\text{Analyst}1} = \mu_{\text{Analyst}2} = \mu_{\text{Analyst}3} = \mu_{\text{Analyst}4}; H_a: \text{ at least two of the means differ.}$

(b) See spreadsheet next page. From Table 7-4 the *F* value for 3 degrees of freedom in the numerator and 12 degrees of freedom in the denominator at 95% is 3.49. Since *F* calculated exceeds *F* critical, we reject the null hypothesis and conclude that the analysts differ at 95% confidence. The *F* value calculated of 13.60 also exceeds the critical values at the 99% and 99.9% confidence levels so that we can be certain that the analysts differ at these confidence levels.

(c) Based on the calculated LSD value there is a significant difference between analyst 2 and analysts 1 and 4, but not analyst 3. There is a significant difference between analyst 3 and analyst 1, but not analyst 4. There is a significant difference between analyst 1 and analyst 4.

Spreadsheet for Problem 7-27.

4	A	В	С	D	E	F	G
1	Detmn	Analys 1	Analyst 2	Analyst 3	Analyst 4		·
2	1	10.24	10.14	10.19	10.19		
3	2	10.26	10.12	10.11	10.15		
4	3	10.29	10.04	10.15	10.16		
5	4	10.23	10.07	10.12	10.10		
6							
7	Mean	10.26	10.09	10.14	10.15		
8	Std. Dev.	0.02646	0.04573	0.03594	0.03742		
9	Variance	0.00070	0.00209	0.00129	0.00140		
10							
11	Grand Mean	10.16					
12	SSF	0.05595		Differences			
13	SSE	0.01645		10.26-10.09=	0.17	Significant	difference
14	SST	0.07240		10.15-10.09=		Significant	
15				10.14-10.09=		No sig. dif	
16	MSF	0.01865		10.26-10.14=		Significant	
17	MSE	0.001371		10.15-10.14=		No sig. dif	
18				10.26-10.15=		Significant	
19	F	13.60486					
20							
21	LSD	0.057335					
22							
23	Spreadshee	t Documer	ntation				
24							
25							· · · · · ·
	B9=VAR(B2:						
27							
28	the second s			7-B11)^2+(E7-	B11)^2)		
29					., -,		
	B14=B12+B1						
31							
32							
33		7					
34	B21=2.19*SC		4)				
05							

7-28. (a) $H_0: \mu_{\text{Des}1} = \mu_{\text{Des}2} = \mu_{\text{Des}3} = \mu_{\text{Des}4}; H_a:$ at least two of the means differ.

(b) See Spreadsheet.

	A	В	С	D	E
1	Meas. No.	Design 1	Design 2	Design 3	Design 4
2	1	72	93	96	100
3	2	93	88	95	84
4	3	76	97	79	91
5	4	90	74	82	94
6	1.				
7	Mean	82.75	88.00	88.00	92.25
8	Std. Dev.	10.30776		8.75595	
9	Variance	106.2500	100.6667	76.6667	44.2500
10					
11	Grand mean	87.750			
12	SSF	181.5			
13	SSE	983.5			
14	SST	1165			
15					
16	MSF	60.500			
17	MSE	81.95833			
18					
19	F	0.73818			
20	and the second second				
21	Spreadsheet		tation		·
22	B7=AVERAG				
23	B8=STDEV(B	1			· · · · · · · · · · · · · · · · · · ·
24	B9=VAR(B2:E				
25	B11=AVERA				
26	B12=4*((B7-B		B11)^2+(D7	'-B11)^2+(E	7-B11)^2)
27	B13=3*SUM(8	1			
28		3			
29					
30	B17=B13/12				
31	B19=B16/B17				

From Table 7-4 the F value for 3 degrees of freedom in the numerator and 12 degrees of freedom in the denominator at 95% is 3.49. Since F calculated is less than F critical, we accept the null hypothesis and conclude that 4 flow cell designs give the same results at the 95% confidence level.

(c) No differences were detected.

7-29. (a) $H_0: \mu_{\text{ISE}} = \mu_{\text{EDTA}} = \mu_{\text{AA}}; H_a:$ at least two of the means differ.

(0)	See Spreaus						
-	A	В	C	D	E	F	G
1	Repetition	ISE	EDTA	At. Abs.			
2	1	39.2	29.9	44.0			
3	2	32.8	28.7	49.2			
4	3	41.8	21.7	35.1			
5	4	35.3	34.0	39.7			
6	5	33.5	39.1	45.9			
7							
8	Mean	36.52	30.68	42.78			
9	Std. Dev.	3.85707	6.46313	5.49791			
10	Variance	14.877	41.772	30.227			
11							
12	Grand Mean	36.660		Differences			
13	SSF	366.172		42.78-30.68=	12.1	Significant	difference
14	SSE	347.504		36.52-30.68=	5.94	No sig. diff	
15	SST	713.676		42.78-36.52=	6.26	No sig. diff	
16							
17	MSF	183.086					
18	MSE	28.95867					
19	F	6.322321					
20	LSD	7.453554					
21	1.						
22	Spreadshee	et Documen	tation				
23	B8=AVERAG	GE(B2:B6)					
24	B9=STDEV(B2:B6)					
25	B10=VAR(B2	2:B6)					
26	B12=AVERA	GE(B2:D6)					
27	B13=5*((B8-	B12)^2+(C8-	B12)^2+(D	08-B12)^2)			
28	B14=4*SUM	(B10:D10)					
29	B15=B13+B	14					
30	B17=B13/2						
31	B18=B14/12						
32	B19=B17/B1	8					
33	B20=2.19*S0	QRT(2*B18/	5)				
-			-				

(b) See Spreadsheet

From Table 7-4 the F value for 2 degrees of freedom in the numerator and 12 degrees of freedom in the denominator at 95% is 3.89. Since F calculated is greater than F critical, we reject the null hypothesis and conclude that the 3 methods give different results at the 95% confidence level.

(c) Based on the calculated LSD value there is a significant difference between the atomic absorption method and the EDTA titration. There is no significant difference

between the EDTA titration method and the ion-selective electrode method and there is no significant difference between the atomic absorption method and the ion-selective electrode method.

7-30. (a)
$$Q = \frac{|41.27 - 41.61|}{41.84 - 41.27} = 0.596$$
 and Q_{crit} for 4 observations at 95% confidence = 0.829.

Since $Q < Q_{crit}$ the outlier value 41.27 cannot be rejected with 95% confidence.

(b)
$$Q = \frac{|7.388 - 7.295|}{7.388 - 7.284} = 0.894$$
 and Q_{crit} for 4 observations at 95% confidence = 0.829.

Since $Q > Q_{crit}$ the outlier value 7.388 can be rejected with 95% confidence.

7-31. (a)
$$Q = \frac{|85.10 - 84.70|}{85.10 - 84.62} = 0.833$$
 and Q_{crit} for 3 observations at 95% confidence = 0.970.

Since $Q < Q_{crit}$ the outlier value 85.10 cannot be rejected with 95% confidence.

(**b**)
$$Q = \frac{|85.10 - 84.70|}{85.10 - 84.62} = 0.833$$
 and Q_{crit} for 4 observations at 95% confidence = 0.829.

Since $Q > Q_{crit}$ the outlier value 85.10 can be rejected with 95% confidence.

7-32.
$$Q = \frac{|4.60 - 4.50|}{4.60 - 4.40} = 0.5$$
 and Q_{crit} for 5 observations at 95% confidence = 0.710.

Since $Q < Q_{crit}$ the outlier value 4.60 ppm cannot be rejected with 95% confidence.

Chapter 8

- 8-1. The sample size is in the micro range and the analyte level is in the trace range. Hence, the analysis is a micro analysis of a trace constituent.
- **8-2.** The objective of the sampling step is to produce a homogeneous laboratory sample of a few hundred grams or less having a composition that is identical to the average composition of the bulk of the material being sampled. Statistically, we try to obtain a mean value that is an unbiased estimate of the population mean and a variance that is an unbiased estimate of the population variance.
- **8-3.** Step 1: Identify the population from which the sample is to be drawn.

Step 2: Collect the gross sample.

Step 3: Reduce the gross sample to a laboratory sample, which is a small quantity of homogeneous material

8-4. The gross sample mass is determined by (1) the uncertainty that can be tolerated between the composition of the gross sample and that of the whole, (2) the degree of heterogeneity of the whole, and (3) the level of particle size at which heterogeneity begins.

8-5.
$$s_o^2 = s_s^2 + s_m^2$$

From the NIST sample: $s_m^2 = 0.00947$

From the gross sample: $s_o^2 = 0.15547$

 $s_s = \sqrt{0.15547 - 0.00947} = 0.38$

The relative standard deviation = $\left(\frac{s_s}{\overline{x}}\right) \times 100\% = \left(\frac{0.38}{49.92}\right) \times 100\% = 0.76\%$

8-6. (a)
$$\sigma_r = \sqrt{(1-p)/Np}$$
 (where $p = 14/250 = 0.0560$)

$$\sigma_r = \sqrt{(1 - 0.0560)/(250 \times 0.0560)} = 0.260$$
 or 26%

(b) $\sigma = 14 \times 0.26 = 3.6 = 4 \text{ tablets}$

95% CI =
$$14 \pm z\sigma\sqrt{N} = 14 \pm 1.96 \times 3.6/\sqrt{1} = 14 \pm 7$$

(where z = 1.96 was obtained from Table 7-1)

(c) $N = (1 - 0.056)/[(0.05)^2 \times 0.056] = 6743 = 6.743 \times 10^3$

8-7. (a)
$$N = \frac{(1-p)}{p\sigma_r^2} = \frac{(1-0.02)}{0.02(0.20)^2} = \frac{49.0}{(0.20)^2} = 1225$$

(b) $N = 49.0/(0.12)^2 = 3403$
(c) $N = 49.0/(0.07)^2 = 10000$
(d) $N = 49.0/(0.02)^2 = 122500$

8-8. (a) $250 = \frac{(1-52/250)}{(52/250) \times \sigma_r^2}$

 $\sigma_r = 0.12 = 12\%$

(b) Here, the absolute standard deviation σ of the estimate is sought.

 $\sigma = 750 \times 12(52/250)0.12 = 224.6 = 220$ broken bottles

(c) 90% CI = $750 \times 12 \times 52/250 \pm zs/\sqrt{N} = 1872 \pm 1.64 \times 224.6/\sqrt{1}$

 $= 1872 \pm 368 = 1900 \pm 400$ broken bottles

Fundamentals of Analytical Chemistry: 9th ed.

(**d**)
$$N = \frac{(1-0.21)}{0.21(0.05)^2} = 1500$$
 bottles

8-9.
$$N = p(1-p) \left(\frac{d_A d_B}{d^2}\right)^2 \left(\frac{P_A - P_B}{\sigma_r P}\right)^2$$

(a) $d = 7.3 \times 0.15 + 2.6 \times 0.85 = 3.3$
 $P = 0.15 \times 7.3 \times 0.87 \times 100 / 3.3 = 29\%$
 $N = 0.15(1-0.15) \left(\frac{7.3 \times 2.6}{(3.3)^2}\right)^2 \left(\frac{87-0}{0.020 \times 29}\right)^2 = 8714 \text{ particles}$
(b) mass = $(4/3)\pi(r)^3 \times d \times N = (4/3)\pi (0.175 \text{ cm})^3 \times 3.3(g/\text{cm}^3) \times 8.714 \times 10^3$
 $= 650 \text{ g}$
(c) $0.500 = (4/3)\pi(r)^3 \times 3.3(g/\text{cm}^3) \times 8.714 \times 10^3$
 $r = 0.016 \text{ cm}$ (diameter = 0.32 mm)

8-10. Recall that $s_o^2 = s_s^2 + s_m^2$. For both Scheme A and Scheme B the contribution of the method variance, s_m^2 , will be both small relative to the sampling variance, s_s^2 , and essentially the same. The sampling variance will be lower for Scheme A, however, since 5 samples are blended and then evaluated as opposed to 3 samples that are unblended in Scheme B. Thus, Scheme A will have the lower variance.

8-11. (a) The following single-factor ANOVA table was generated using Excel's Data

Ana	lysis	Tool	ls:
-----	-------	------	-----

Count 3	Sum				
	Sum				
3		Average	Variance		
3	185	61.66667	2.333333		
3	172	57.33333	0.333333		
3	146	48.66667	4.333333		
3	170	56.66667	6.333333		
SS	df	MS	F	P-value	F crit
264.25	3	88.08333	26.425	0.000167	4.066181
6.66667	8	3.333333			
90.9167	11			2	
	3 3 3 SS 264.25 6.66667	3 146 3 170 SS df 264.25 3 6.666667 8	3 146 48.66667 3 170 56.66667 SS df MS 264.25 3 88.08333 6.66667 8 3.333333	3 146 48.66667 4.333333 3 170 56.66667 6.333333 SS df MS F 264.25 3 88.08333 26.425 6.66667 8 3.333333	3 146 48.66667 4.333333 3 170 56.66667 6.333333 3 170 56.66667 6.333333 SS df MS F P-value 264.25 3 88.08333 26.425 0.000167 6.66667 8 3.333333 0.000167 0.000167

The Between Groups *SS* value of 264.25 compared to the Within Groups value of 26.66667 indicates that the mean concentrations vary significantly from day to day.

- (b) SST is the total variance and is the sum of the within day variance, SSE, and the day-today variance, SSF; SST = SSE + SSF. The within day variance, SSE, reflects the method variance, SSM. The day-to-day variance, SSF, reflects the sum of the method variance, SSM, and the sampling variance, SSS; SSF = SSM + SSS. Thus, SST = SSM + SSM + SSS and SSS = SST - 2×SSM SSS = 290.92 - 2×26.67 = 237.58. Dividing 3 degrees of freedom gives a mean square (estimates sampling variance σ_s^2) of 79.19.
- (c) The best approach to lowering the overall variance would be to reduce the sampling variance, since this is the major component of the total variance ($\sigma_t^2 = 88.08333$).

8-12. See Example 8-1

$$d = 7.3 \times 0.01 + 2.6 \times 0.99 = 2.6 \text{ g/cm}^3$$

$$P = 0.01 \times 7.3 \times 0.87 \times 100 / 2.6 = 2.4\%$$

$$N = 0.01(1 - 0.01) \left(\frac{7.3 \times 2.6}{2.6 \times 2.6}\right)^2 \left(\frac{87 - 0}{0.05 \times 2.4}\right)^2 = 4.1 \times 10^4 \text{ particles}$$
mass = $(4/3)\pi (0.25)^3 \times 2.6 \times 4.1 \times 10^4 / 454 = 15 \text{ lb}$;
Since the seller took only a 5 lb sample and 15 lbs was needed, this is insufficient.

8-13. See Example 8-3

Using
$$t = 1.96$$
 for infinite samples $N = \frac{(1.96)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 5.16$
Using $t = 2.78$ for 5 samples (4 df) $N = \frac{(2.78)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 10.36$
Using $t = 2.26$ for 10 samples $N = \frac{(2.26)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 6.85$
Using $t = 2.45$ for 7 samples $N = \frac{(2.45)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 8.05$
Using $t = 2.36$ for 8 samples $N = \frac{(2.36)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 7.47$

The iterations converge at between 7 and 8 samples, so 8 should be taken for safety.

	A	В	С	D		E	F	G	Н		J	K
1	Pb 8-14								-			
2	Cx	Reading	6		101		01		50F		ia	
3	0.00	0.06	Ĭ	2								
4	5.00	1.48	_									
5	10.00	2.28	5	8-								
6	15.0	3.98			y = 0.2	$32 \times \pm 0$	162					
7	20.0	4.61	4			= 0.983			. /			
8	Unknown	2.84		8	N -	- 0.965	4		•/			
9	Part (b)		Reading 3					/				
10	Slope	0.232	10 3	1				/				
	Intercept	0.162	Re				/					
	Std. Error	0.275245										
13		5	2	20		/	/					
14	Sxx	250				•						
	ybar	2.482	1	-	/	200						
	Part (e)				/							
17		1										
	Cunknown	11.5431	0				1	2	12			
	SD in c	1.304786		0.00	5	.00	10.0	D	15.00	20.00	25.00	-
	CV	11.3036	_				S	ulfate co	nc.			
	Part (f)											
22		6	-									
23	Cunknown	11.5431										
	SD in c	0.727673										
	CV	6.303965										
26												
27	Spreadsh	eet Docume	entation									
		PE(B3:B7,A3										
		RCEPT(B3:B										
		/X(B3:B7,A3:										
	B13=COU											
	B14=DEV											
		RAGE(B3:B7	7)									
	B18=(B8-E		3.									
		B10)*SQRT(1/B17+1/E	313+((B8-B15)*2	2)/((B10	0^2)*B14))					
	B20=B19/											
	B22=(B8-E											
38	B23=(B12/	B10)*SQRT(1/B22+1/E	313+((B8-B15)*2	2)/((B10	0^2)*B14))					
	B24=B24/											

8-14.

(a) See spreadsheet

- **(b)** m = 0.232 and b = 0.162
- (c) See spreadsheet

Fundamentals of Analytical Chemistry: 9th ed.

	A	В	С	D	E	F	G	Н	
1	SUMMARY OUTPU	Т							
2									
3	Regression Si	tatistics							
4	Multiple R	0.991660198							
5	R Square	0.983389947							
6	Adjusted R Square	0.977853263							
7	Standard Error	0.275245345							
8	Observations	5							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	1	13.456	13.456	177.6135	0.000913111			
13	Residual	3	0.22728	0.07576					
14	Total	4	13.68328						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	0.162	0.213204128	0.759835	0.502609	-0.51651069	0.840511	-0.51651069	0.84051069
18	X Variable 1	0.232	0.017408044	13.32717	0.000913	0.176599834	0.2874	0.17659983	0.28740017
19	·								

(d) Regression statistic generated using Excel's Data Analysis Tools

The large *F* value of 177.6 indicates that the regression is significant. The R^2 value of 0.9834 measures the fraction of the variation explained by the regression. The adjusted

 R^2 value of 0.9779 indicates the price to pay for adding an additional parameter.

(e)
$$c_{\text{Unk}} = 11.5 \text{ mg/mL}; s_{\text{Unk}} = 1.3 \text{ mg/mL}; \text{ CV} = 11.3\%$$

(f) $c_{\text{Unk}} = 11.5 \text{ mg/mL}; s_{\text{Unk}} = 0.73 \text{ mg/mL}; \text{ CV} = 6.3\%$

8-15.

	A	B	С	D	E	F	G	Н		J
1	Pb 8-15									
2	pCa	E, mV								
3	5.00	-53.8		80 -						
4	4.00	-27.7								
5	3.00	2.7		50 -	1					
6	2.00	31.9	· · · · ·	40 -						
7	1.00	65.1				*				
8	unknown	15.3		20 -						
9	Part (b)		N E	0			-			
10	Slope	-29.74	μ ù							
	Intercept	92.86	-	20 -		74	26	-		
12	Std. Error	2.138224		40 -		9.74x + 92.	30			
13	N	5			R	= 0.9985				
14	Sxx	10	1	50 -						
15	ybar	3.64	-1	80						
	Part (d)			0.00	1.00	2.00	3.00	4.00	5.00	6.00
17		1		0.00	1.00	2.00	5.00	4.00	5.00	0.00
	pCa unknwn	2.607935		Ì			pCa			
	SD in pCa	0.079262								
	RSD	0.030393								
	Part(e)									
22		2		1		1				1
23	SD in pCa	0.06081		1						
	RSD	0.023317		1		0		1		
25	М	8								
26	SD in pCa	0.041946								
27	RSD	0.016084								
28	Spreadshee	t Document	ation							
29	B10=SLOPE	(B3:B7,A3:A	.7)							
30	B11=INTERC	EPT(B3:B7,	A3:A7)							
31	B12=STEYX(B3:B7,A3:A	7)							
32	B13=COUNT	(A3:A7)								
33	B14=DEVSQ	(A3:A7)								
	B15=AVERA						-			
	B18=(B8-B11			hamper			a dem			
	B19=ABS((B		RT(1/B17	+1/B13+((B8-B15)^2)/	((B10^2)*B	14)))			
	B20=B19/B1								1)
	B23=ABS((B		RT(1/B22	+1/B13+((B8-B15)^2)/	((B10^2)*B	14)))			
	B24=B23/B1									
	B26=ABS((B		RT(1/B25	+1/B13+((B8-B15)^2)/	((B10^2)*B	14)))			1
41	B27=B26/B1	8								

(a) See spreadsheet

(**b**) Equation of the line: y = -29.74 x + 92.86

Fundamentals of Analytical Chemistry: 9th ed.

4	A	B	С	D	E	F	G	Н	I
1	SUMMARY OUTPU	Т							
2									
3	Regression S	Statistics							
4	Multiple R	0.999225519							
5	R Square	0.998451638							
6	Adjusted R Square	0.997935517							
7	Standard Error	2.138223562							
8	Observations	5							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	1	8844.676	8844.676	1934.531	2.58702E-05			
	Residual	3	13.716	4.572					
14	Total	4	8858.392						
15		100000000000	and the second						
16	S	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	92.86	2.242587791	41.40752	3.1E-05	85.72308477	99.99692	85.72308477	99.9969152
18	X Variable 1	-29.74	0.67616566	-43.9833	2.59E-05	-31.89186091	-27.5881	-31.8918609	-27.588139
19									

(c) Regression statistics generated with Excel's Data Analysis Tools

The large *F* value of 1934.5 indicates that the regression is significant. The R^2 value of 0.9985 measures the fraction of the variation explained by the regression. The adjusted R^2 value of 0.9979 indicates the price to pay for adding an additional parameter.

(d) $pCa_{Unk} = 2.608$; SD in pCa = 0.079; RSD = 0.030 (CV = 3.0%)

(e) For 2 replicate measurements:

 $pCa_{Unk} = 2.608$; SD in pCa = 0.061; RSD = 0.023 (CV = 2.3%)

For 8 replicate measurements:

 $pCa_{Unk} = 2.608$; SD in pCa = 0.042: RSD = 0.016 (CV = 1.6%)

1	A	В	С	D	E	F	G	Н		J
1	Pb8-16			35				6		
2	Conc. MVK	Rel. Area								
3	0.500	3.76		30 -					/	
4	1.50	9.16					_			
5	2.50	15.03	1	25 -		x + 0.901	/			
6	3.50	20.42	0	20 -	R-=	0.9988				
7	4.50	25.33	Are	20						
8	5.50	31.97	Rel. Area	15 -		و				
9	unknown1	12.9	~			/				
10	unknown2	21.3		10 -	*					
11	Part (a)									
12	Slope	5.57		5 - 🔸						
13	Intercept	0.901667		0						
14	Std. Error	0.40303								
15	N	6		0.000	1.000	2.000	3.000	4.000	5.000	6.000
16	Sxx	17.5				Con	. MVK, mm	DIL-1		
	ybar	17.61167								
	Parts (d)-(f)									-
19		1		M	4					
	c unk 1	2.154099		c unk 1	2.154099					
	SD unk 1	0.079513		SD unk 1	0.048945		-			
22	RSD unk 1	0.036912		RSD unk 1	0.022722		1			
	c unk 2	3.662178		c unk 2	3.662178			1		1
24	SD unk 2	0.07899		SD unk 2	0.04809					
25	RSD unk 2	0.021569		RSD unk 2	0.013132					
26	Spreadshee	t Documen	tation							
	B12=SLOPE									
	B13=INTERC						1	1		
	B14=STEYX				1					
	B15=COUNT		1							
31	B16=DEVSC	(A3:A8)								1
	B17=AVERA									
33	B20=(B9-B13	3)/B12								
34	B21=(B14/B1	12)*SQRT(1/	/B19+1/B1	15+((B9-B17)	^2)/((B12^2)	*B16))				
	B22=B21/B2									
36	E20=(B9-B13	3)/B12		100000000000	1			1		
	E21=(B14/B1		/E19+1/B1	15+((B9-B17)	^2)/((B12^2)	*B16))		-		
	E22=E21/E2									

8-16.

(a) m = 5.57 and b = 0.90

Fundamentals of Analytical Chemistry: 9th ed.

	A	B	С	D	E	F	G	Н	1
1	SUMMARY OUTPU	JT							
2									
3	Regression S	Statistics							
4	Multiple R	0.999402185							
5	R Square	0.998804726							
6	Adjusted R Square	0.998505908							
7	Standard Error	0.403030189							
8	Observations	6							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F	1		
12	Regression	1	542.93575	542.9358	3342.514	5.35968E-07			
	Residual	4	0.649733333	0.162433					
14	Total	5	543.5854833						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	0.901666667	0.332579863	2.711128	0.053475	-0.021723065			1.825056399
	X Variable 1	5.57	0.096342642	57.81448	5.36E-07	5.302509942	5.83749	5.302509942	5.837490058
19									

(**b**) Regression statistics

(c) See spreadsheet

- (d) $c \text{ of MVK in unknown } 1 = 2.15 \text{ mmol } \text{L}^{-1}$
- (e) For 1 measurement, $SD = 0.080 \text{ mmol } L^{-1}$; RSD = 0.037

For 4 replicates, $SD = 0.049 \text{ mmol } L^{-1}$; RSD = 0.023

(f) c of MVK in unknown 2 = 3.66 mmol L⁻¹

SD for 1 measurement = 0.079; RSD = 0.022

SD for 4 replicates = 0.048; RSD = 0.013

8-	1	7	•

	A	B	С	D	E	F	G	Н	1	J
1	Pb 8-17			0.000						
2	Glucose conc.	Absorbance		0.800						
3	0.00	0.002		0.700 -					*	
4	2.00	0.150		0.600 -		v = 0.0701	x + 0.0083	/		
5	4.00	0.294	A	- ALARA			.9996	*		
6	6.00	0.434	Absorbance	0.500 -		K = 0	.9990	/		
7	8.00	0.570	Le	0.400 -			*			
8	10.00	0.704		0.400			/			
9	unknown	0.413	oso	0.300 -		*				
10	Part (a)		A	0.200 -		/				
11	Slope	0.070143		0.200	*					
	Intercept	0.008286		0.100 -						
	Std. Error	0.005581		0.000 🗳						
14	N	6				1.00	c 00		10.00	10.00
15	Sxx	70		0.0	0 2.00	4.00	6.00	8.00	10.00	12.00
16	ybar	0.359				Glu	icose cond	mM		
	Parts (b) & (c)							-		
18	SD m	0.000667	1							1
19	SD b	0.004039		LINEST R	esults					
20	t(0.05,4)	2.776445		m	0.070143	0.008286	b			
21	95% CI for m	0.001852		SD m	0.000667	0.004039	SD b			
22	95% Cl for b	0.011214		R ²	0.999638	0.005581	SE			
23	Part (d)			F	11058.76	4	df			
24	М	1		SSR	0.344401	0.000125	SSE			
25	Cunk	5.769857								
	SD in c _{unk}	0.086246								
27	95% Cl for Cunk	0.239458								
28	Spreadsheet D	ocumentatio	n							
	B11=SLOPE(B3			E20:F24=	LINEST(B3:	38,A3:A8,,	TRUE)			
	B12=INTERCEP		(8)	B20=TINV						
	B13=STEYX(B3			B21=B20*						
	B14=COUNT(A3			B22=B20*	B19					
	B15=DEVSQ(A:			B25=(B9-B12)/B11						
	B16=AVERAGE				/B11)*SQRT	(1/B24+1/	B14+((B9-B	16)^2)/((B1	1^2)*B15))	
	B18=E21	CONTRACT -		B27=B20*						
36	B19=F21									

(a) m = 0.07014 and b = 0.008286

(b) $s_{\rm m} = 0.00067; s_{\rm b} = 0.004039; \text{ SE} = 0.00558$

(c) 95% $CI_m = m \pm t \times s_m = 0.07014 \pm 0.0019$

95% $CI_b = b \pm t \times s_b = 0.0083 \pm 0.0112$

(d) $c_{\text{unk}} = 5.77 \text{ mM}; \ s_{\text{unk}} = 0.09; \ 95\% \text{ CI}_{\text{unk}} = c_{\text{unk}} \pm t \times s_{\text{Unk}} = 5.77 \pm 0.24 \text{ mM}$

	A	В	С	D		E	F	G	Н		J	K	L
1	Pb 8-18			Г									
2	Part (a)			1	250	-							
3	с, М	-log c	E, mV										
4	0.20000	0.69897	106									**	
5	0.07940	1.10018	115		200	-	7.6		50.000		-		
6	0.06310	1.19997	121				y=	= 55.372x +			-		
7	0.03160	1.50031	139	·				$R^2 = 0.9$	99	-			
8	0.02000	1.69897	153		150	-			-	•			
9	0.01260	1.89963	158		È				-				
10	0.00794	2.10018	174		ц,								
11	0.00631	2.19997	182		100	84	•						
12	0.00398	2.40012	187										
13	0.00200	2.69897	211										
14	0.00126	2.89963	220		50	-							
15	0.00100	3.00000	226										
16	Part (b)												
17	Slope	55.37223			0	-	1		T	1	1	Г	
18	Intercept	58.03846		1		0.00	0.50	1.00	1.50	2.00 c	2.50	3.00	3.50
	Part (c)								-lo	ogc			
	LINEST Values												
	m	55.37223	58.03846										
	SD m	1.755512	3.639897										
	R ²	0.990049	4.289517	SE									
24		994.8936	10	df									
	SSR	18306	183.9996	SSE									
26													
27	t(0.05,10)	2.228139											
28	95% CI for m	3.911523											
	95% CI for b	8.110195											
30	Spreadsheet D	ocumentat	tion										
31	B4=-LOG(A4)												
	B17=SLOPE(C4												
	B18=INTERCEP												
34	B21:C25=LINES	T(C4:C15,E	84:B15,,TR	RUE)									
35	B27=TINV(0.05,	10)											
	B28=B27*B22												
	B29=B27*C22												

8-18.

(a). See spreadsheet

(b).
$$m = 55.37; b = 58.04; y = 55.37 x + 58.04$$

(c). 95% $CI_m = 55.37 \pm 3.91$ and 95% $CI_b = 58.04 \pm 8.11$

(d). From the LINEST values, F = 994.9. This large value indicates that the

regression is significant.

Fundamentals of Analytical Chemistry: 9th ed.

	A	В	С	D	E	F	G	Н	1
1	SUMMARY OUTPUT	ŕ							
2									
3	Regression S	tatistics							
4	Multiple R	0.995011908							
5	R Square	0.990048698							
6	Adjusted R Square	0.989053568							
7	Standard Error	4.289517151							
8	Observations	12							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	1	18306.00043	18306	994.8936	2.41162E-11			
13	Residual	10	183.9995739	18.39996					
14	Total	11	18490						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	58.03845931	3.639896675	15.94508	1.94E-08	49.92826415		49.9282641	66.14865447
18	X Variable 1	55.37223056	1.755511558	31.54193	2.41E-11	51.46070707	59.28375	51.4607071	59.28375405
19									

(e). Regression statistics via Excel's Data Analysis Tools:

From either LINEST or the regression statistics, the standard error = 4.29. The

correlation coefficient $R = \sqrt{R^2} = \sqrt{0.990048698} = 0.995$, and the multiple *R* is also

0.995.

8-19.

	A	В	С	D	E	F	G	Н	1	J	K	L
1	Pb 8-19											
2	Part (a)					0						
3	T. K	k, s ⁻¹	1000/T	log k	-0.	-						
4	599	0.00054	1.669449		-0.	2	y = -8	8.4563x +	10.831			
5	629	0.0025	1.589825	-2.60206	-	1 -		$R^2 = 0.99$	7			
6	647	0.0052	1.545595	-2.284			•					
7	666	0.014	1.501502	-1.85387	× -1.	5 -						
8	683	0.025	1.464129	-1.60206	60	2 -						
9	700	0.064	1.428571	-1.19382		2 -			1			
10	Part (b)				-2.	5 -			-	-		
11	Slope	-8.45629								-		
12	Intercept	10.8311			-	3 -						
13	Std. Error	0.045927			-3.	_					-	
14	N	6			-5.		1	1				
15	Sxx	0.038647				1.4	1.45	1.5	1.55	1.6	1.65	1.7
16	ybar	-2.1339							1000/T			
	Part (c)								1000/1			
18	LINEST values											
19	m	-8.45629	10.8311	b								
20	SD in m	0.23362	0.358671	SD in b								
21	R ²	0.996956	0.045927	SE								
22	F	1310.21	4	df								
23	SSR	2.763575	0.008437	SSE								
24	EA	38696.51										
25	SD in EA	1069.058										
26	Spreadsheet D	ocumenta	tion	1								
	C4=1000/A4											
28	D4=LOG(B4)											
	B11=SLOPE(D4	1:D9,C4:C9)									
	B12=INTERCEF											
31	B13=STEYX(D4	:D9,C4:C9)										
	B14=COUNT(C4											
33	B15=DEVSQ(C4	4:C9)										
34	B16=AVERAGE	E(D4:D9)										
35	B19:C23=LINES	ST(D4:D9,C	4:C9,,TRUE	Ξ)								
36	B24=-B11*2.303	3*1.987*100	0									
37	B25=B20*2.303	* <mark>1.987</mark> *100	0									

(a) See Spreadsheet

(b)
$$m = -8.456; b = 10.83 \text{ and } SE = 0.0459$$

(c)
$$E_A = -m \times 2.303 \times R \times 1000$$
 (Note: m has units of mK) =

 $-(-8.456 \text{ mK}) \times (2.303) \times (1.987 \text{ cal mol}^{-1} \text{ K}^{-1}) \times (1000 \text{ K/mK})$

= 38697 cal/mol

 $s_{\rm EA} = s_{\rm m} \times 2.303 \times {\rm R} \times 1000$

= 1069 cal/mol

Thus, $E_{\rm A} = 38,697 \pm 1069$ cal/mol or 38.7 ± 1.1 kcal/mol

(d)
$$H_0: E_A = 41.00 \text{ kcal/mol}; H_A: E_A \neq 41.00 \text{ kcal/mol}.$$

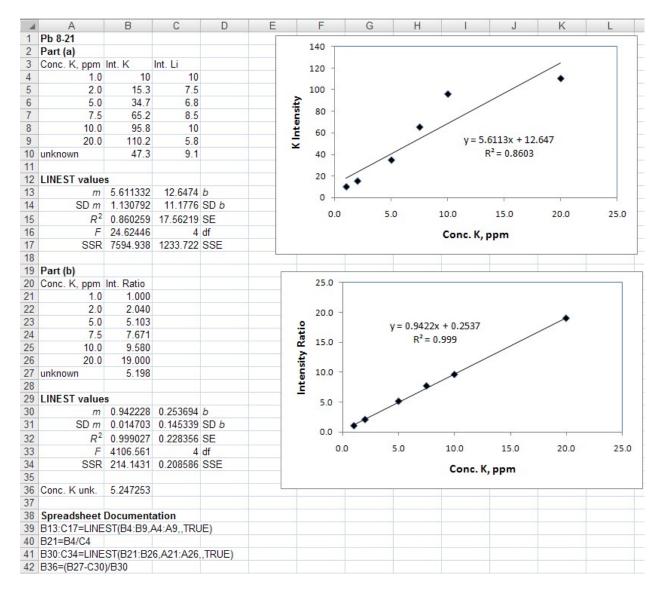
$$t = (38.697 - 41.00)/1.069 = -2.15$$

$$t(0.025, 4) = 2.776$$

Since $t > -t_{crit}$ we retain H_0 . There is no reason to doubt that E_A is not 41.00 kcal/mol at the 95% confidence level.

C D F G H I J K B E A 1 Pb 8-20 0.60 2 Part (a) ٠ 3 % Water A sample Astd 0.50 y = 0.0225x + 0.0444 4.0 0.15 0.75 $R^2 = 0.6312$ 5 8.0 0.23 0.60 0.40 6 12.0 0.19 0.31 7 16.0 0.57 0.70 0.30 0.43 đ 8 20.0 0.45 9 unknown 0.37 0.47 0.20 10 11 LINEST values 0.10 0.044 b 12 0.0225 m 13 SD m 0.009929 0.131722 SD b 0.00 14 R² 0.631234 0.125592 SE 5.0 10.0 0.0 15.0 20.0 25.0 15 F 5.135249 3 df % Water 16 SSR 0.081 0.04732 SSE 17 18 Part (b) 19 % Water A ratio 1.2000 20 4.0 0.2000 21 0.3833 8.0 1.0000 Absorbance Ratio y = 0.0486x + 0.010622 12.0 0.6129 $R^2 = 0.9946$ 23 16.0 0.8143 0.8000 24 20.0 0.9556 0.6000 25 unknown 0.7872 26 0.4000 27 LINEST values m 0.048552 0.010597 b 28 0.2000 29 SD m 0.002071 0.027469 SD b 30 R² 0.994573 0.026191 SE 0.0000 31 F 549.8363 3 df 0.0 5.0 10.0 15.0 20.0 25.0 32 SSR 0.377161 0.002058 SSE 33 % Water 34 Part (c) 35 % Water, unk. 15.99613 36 37 Spreadsheet Documentation 38 B12:C16=LINEST(B4:B8,A4:A8,,TRUE) 39 B20=B4/C4 40 B28:C32=LINEST(B20:B24,A20:A24,,TRUE) 41 B35=(B25-C28)/B28

8-20.


- (a) See Spreadsheet
- (b) The linearity is much better when using internal standards (compare R^2 and F values).

Taking the ratio compensates for systematic errors that affect both the sample and the

internal standard.

(c) 15.996% rounded to 16.0%

8-21.

(a) See Spreadsheet

- (b) The linearity is much better when using internal standards (compare R^2 and F values). Taking the ratio compensates for systematic errors that affect both the sample and the internal standard.
- (c) 5.247 ppm rounded to 5.2 ppm

8-22. (a)
$$\frac{c_{\text{Unk}}}{(V_{\text{Std}}c_{\text{Std}} + V_{\text{Unk}}c_{\text{Unk}})/V_{\text{Tot}}} = \frac{A(\text{sample - blank})}{A(\text{sample + addition - blank})}$$

 $\frac{c_{\text{Unk}}}{\frac{(0.1000 \text{ mL} \times 1000 \text{ } \mu\text{g/mL} + 100.0 \text{ mL} \times c_{\text{Unk}})}{(100.1 \text{ mL})}} = \frac{(0.520 - 0.020)}{1.020}$

 $\frac{c_{\rm Unk}}{0.99900 + 0.99900 c_{\rm Unk}} = 0.490196$

 $c_{\text{Unk}} = 0.490196(0.99900 + 0.99900 c_{\text{Unk}})$

 $0.510294 c_{\text{Unk}} = 0.489706$

 $c_{\text{Unk}} = 0.96 \,\mu\text{g/mL}$

(b)
$$\frac{c_{\text{Unk}}}{(0.1000 \text{ mL} \times 1000 \text{ } \mu\text{g/mL} + 100.0 \text{ mL} \times c_{\text{Unk}})}{(100.1 \text{ mL})} = \frac{(0.520 - 0.100)}{(1.020 - 0.080)}$$

Proceeding as in (a) we obtain $c_{\text{Unk}} = 0.81 \, \mu\text{g/mL}$

% error = $(0.96 - 0.81)/(0.81 \times 100\% = 19\%)$

8-23. See Example 8-8

$$c_{\rm u} = \frac{(0.300)(1.00 \times 10^{-3})(1.00)}{(0.530)(51.00) - (0.300)(50.00)} = 2.4938 \times 10^{-5} \,\mathrm{M}$$

To obtain the concentration of the original sample, we need to multiply by 25.00/1.00.

 $c_{\rm u} = (2.4938 \times 10^{-5} \text{ M})(25.00)/(1.00) = 6.23 \times 10^{-4} \text{ M}$

	A	В	С	D	E	F	G	Н		J
1	Pb 8-22									
2	Part (a)									
3	c _{Zn} , ng/mL	A	A	A	Mean	SD				
4	0.0				0.0000	0.0047				
5	5.0	0.0519	0.0463	0.0485	0.04890	0.002821				
6	10.0	0.0980	0.1033	0.0925	0.09793	0.005400				
7	Sample	0.0672	0.0614	0.0661	0.06490	0.003081				
8	Part (b)									
9	Slope	0.009793333		0.1200						
10	Intercept	-2.22222E-05								
11	Std. Error	5.44331E-05		0.1000 -					*	
12	N	3				8x - 2E-05		/		
13	Sxx	50		0.0800 -	R ²	= 1		/		
14	ybar	0.0489	A C	0.92220			/			
	Calibration sensit.	0.009793333	Mean	0.0600 -			/			
	Anal. sensit.	3.471154967		1000		*				
	Dart (a)			0.0400 -						
17	Part (c)									
	$DL = k s_{bk}/m$	1.439754935			/	/				
18	$DL = k s_{bk}/m$	1.439754935	_	0.0200 -	/					
18 19	DL = ks _{bk} /m Part (d)	1.439754935 6.629226231			/					
18 19	DL = k s _{bk} /m Part (d) c _{unk}			0.0000 🖌	_					
18 19 20 21	DL = ks _{bk} /m Part (d) c _{unk} M	6.629226231 3			2.0	4.0	6.0	8.0	10.0	12.0
18 19 20 21 22	DL = k s _{bk} /m Part (d) c _{unk} M SD in c _{unk}	6.629226231 3 0.004715467		0.0000 🖌	2.0				10.0	12.0
18 19 20 21 22 23	DL = k s _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo	6.629226231 3 0.004715467 cumentation		0.0000 🖌	2.0		6.0 in , ng/m		10.0	12.0
18 19 20 21 22 23 24	DL = k s _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5	6.629226231 3 0.004715467 cumentation 5:D5)		0.0000 🖌	2.0				10.0	12.0
18 19 20 21 22 23 24 25	DL = ks _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5 F5=STDEV(B5:D5	6.629226231 3 0.004715467 cumentation 5:D5))		0.0000 🖌	2.0				10.0	12.0
18 19 20 21 22 23 24 25 26	DL = ks _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5 F5=STDEV(B5:D5 B9=SLOPE(E4:E6)	6.629226231 3 0.004715467 cumentation 5:D5)) 5,A4:A6)		0.0000 🖌	2.0				10.0	12.0
 18 19 20 21 22 23 24 25 26 27 	DL = ks _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5 F5=STDEV(B5:D5 B9=SLOPE(E4:E6 B10=INTERCEPT(6.629226231 3 0.004715467 cumentation 5:D5)) 5,A4:A6) E4:E6,A4:A6)		0.0000 🖌	2.0				10.0	12.0
18 19 20 21 22 23 24 25 26 27 28	DL = k s _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5 F5=STDEV(B5:D5 B9=SLOPE(E4:E6 B10=INTERCEPT(B11=STEYX(E4:E	6.629226231 3 0.004715467 cumentation 5:D5)) 5,A4:A6) E4:E6,A4:A6) 6,A4:A6)		0.0000 🖌	2.0				10.0	12.0
18 19 20 21 22 23 24 25 26 27 28 29	DL = k s _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5 F5=STDEV(B5:D5 B9=SLOPE(E4:E6 B10=INTERCEPT(B11=STEYX(E4:E B12=COUNT(A4:A	6.629226231 3 0.004715467 cumentation 5:D5)) 5,A4:A6) E4:E6,A4:A6) 6,A4:A6) 6,A4:A6)		0.0000 🖌	2.0				10.0	12.0
18 19 20 21 22 23 24 25 26 27 28 29 30	DL = k s _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5 E5=STDEV(B5:D5 B9=SLOPE(E4:E6 B10=INTERCEPT(B11=STEYX(E4:E B12=COUNT(A4:A B13=DEVSQ(A4:A	6.629226231 3 0.004715467 cumentation 5:D5)) 5,A4:A6) E4:E6,A4:A6) 6,A4:A6) 6,A4:A6) \6)		0.0000 🖌	2.0				10.0	12.0
18 19 20 21 22 23 24 25 26 27 28 29 30 31	DL = k s _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5 F5=STDEV(B5:D5 B9=SLOPE(E4:E6 B10=INTERCEPT(B11=STEYX(E4:E B12=COUNT(A4:A	6.629226231 3 0.004715467 cumentation 5:D5)) 5,A4:A6) E4:E6,A4:A6) 6,A4:A6) 6,A4:A6) \6)		0.0000 🖌	2.0				10.0	12.0
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	DL = k s _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5:D5 B9=SLOPE(E4:E6 B10=INTERCEPT(B11=STEYX(E4:E B12=COUNT(A4:A B13=DEVSQ(A4:A B14=AVERAGE(E	6.629226231 3 0.004715467 cumentation 5:D5)) 5,A4:A6) E4:E6,A4:A6) 6,A4:A6) 6,A4:A6) \6)		0.0000 🖌	2.0				10.0	12.0
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	DL = k s _{bk} /m Part (d) c _{unk} M SD in c _{unk} Spreadsheet Doo E5=AVERAGE(B5: F5=STDEV(B5:D5 B9=SLOPE(E4:E6 B10=INTERCEPT(B11=STEYX(E4:E B12=COUNT(A4:A B13=DEVSQ(A4:A B13=DEVSQ(A4:A B14=AVERAGE(E) B15=B9	6.629226231 3 0.004715467 cumentation 5:D5)) 5,A4:A6) E4:E6,A4:A6) 6,A4:A6) 6,A4:A6) \6)		0.0000 🖌	2.0				10.0	12.0

8-24.

(a) See Spreadsheet

- (b) calibration sensitivity = 0.0098; analytical sensitivity = 3.47
- (c) For k = 3, DL = 1.44 ng/mL. This is a confidence level of 98.3%.
- (d) $c_{\rm Zn} = 6.629 \pm 0.005 \text{ ng/mL}$

-	A	В	С	D	E	F	G	Н	I	J
1	Pb 8-25									
2	Part (a)									
3	c _{Na} , ng/mL		Emission I	ntensity	Mean	SD				
4	0.0				0.00000	0.0071				
5	5.0	0.51	0.49	0.48	0.49333	0.015275				
6	10.0	1.02	1.00	0.99	1.00333	0.015275				
7	Sample	0.71	0.77	0.78	0.75333	0.037859				
8	Part (b)		·	1.20000 -						
9	Slope	0.100333								
	Intercept	-0.00278		1.00000 -					٠	
	Std. Error	0.006804	>		V	= 0.1003x -	0.0028			
12	N	3	nsit	0.80000 -	,	$R^2 = 0.99$		/		
13	Sxx	50	Emission Intensity							
14	ybar	0.4989		0.60000 -	6		/			
	Calibration sensit.	0.100333	.e				*			
16	Anal. sensit.	6.568358	2 <u>2</u>	0.40000 -	·	/				
17	Part (c)		ш	C		/				
18		2		0.20000 -	/					
19	$DL = k s_{bk}/m$	0.141528		0.00000		20			101	
20	k	3					4	1		
21	$DL = k s_{bk}/m$	0.212292		0.	.0 2.0) <u>4.0</u>	6.0	8.0	10.0	12.0
	Part (d)						c _{Na} , ng/m	L		
23	Cunk	7.535991					Ivar G.	S		
24	М	3								
25	SD in c _{unk}	0.060477								
	Spreadsheet Doo	umentatio	on							
	E5=AVERAGE(B5									
	F5=STDEV(B5:D5				-					
	B9=SLOPE(E4:E6				•					
	B10=INTERCEPT		A6)		1					
	B11=INTERCEPT									
	B12=COUNT(A4:A		1000							
	B13=DEVSQ(A4:A									
	B14=AVERAGE(E									
	B15=B9									
	B16=B9/F5									
37	B19=B18*F4/B9									
	B21=B20*F4/B9									
39	B23=(E7-B10)/B9									
	B25=(B11/B9)*SQ	DT/4/DO4 -	1/D10+//E7	D14\02\///	D0421*D121					

8-25.

- (a) See Spreadsheet
- (b) calibration sensitivity = 0.100; analytical sensitivity = 6.57
- (c) For k = 2, DL = 0.14 ng/mL (92.1% confidence level)
 - for k = 3, DL = 0.21 ng/mL (98.3% confidence level)
- (d) $c_{\rm Na} = 7.54 \pm 0.06 \text{ ng/mL}$

	A	В	С	D	E	F	G	Н	I	J	K	L
1	Pb 8-26											
2	Day	Value	UCL	LCL								
3	1		56.9	43.7	1							
4	2	48.4	56.9	43.7	60							
5	3	49.8	56.9	43.7	58	3 - U(21			*		
6	4	50.8	56.9	43.7	56		UL .					
7	5	49.6	56.9	43.7						/ \		
8	6	50.2	56.9	43.7	54					* / \	Ā	
9	7	51.7	56.9	43.7	o 52	2 -				NI	7 \	•
10	8	50.5	56.9	43.7) - •	1	\mathbf{X}		/ ¥		
11	9			43.7	> 48	3 - 1	·	V · ·			•	4 T E
12	10	50.3	56.9	43.7				•				
13	11	49.5	56.9	43.7								
14	12			43.7	44							
15	13			43.7		2 -						
16	14	49.7		43.7) +	LCL		1		1	
17	15	48.9		43.7		0	5	10	15	20	25	30
18	16	48.8		43.7								
19	17	48.6	56.9	43.7					Day			
20	18	48.1	56.9	43.7								
21	19	53.8	56.9	43.7								
22	20	49.6	56.9	43.7								
23	21	58.8	56.9	43.7								
24	22	51.3	56.9	43.7								
25	23	50.6	56.9	43.7								
26	24	48.8		43.7								
27	25			43.7								
28	26	54.2	56.9	43.7								
29	27	49.3		43.7								
30	28			43.7								
31	29	51.3		43.7								
32	30			43.7								
33	Mean	50.31	1		Spreadshe	et Doo	umentation	1				
34	Sigma	2.207163			B33=AVER			C3=\$B\$35				
	UCL	56.93149			B34=STDE			D3=\$B\$36				
	LCL	43.68851			B35=B33+3							
37			0		B36=B33-3							

The process went out of control on Day 21.

8-27.

	A	В	С	D	E	F	G	Н	1	J	K	L	M	N
1	Pb 8-27													
2	Day	Mean	SD	$\Sigma(x_i-x_{ave})^2$	UCL	LCL								
3	1	96.50	0.80	3.20	98.08	94.97		99.00						
4	2	97.38	0.88	3.87	98.08	94.97		98.50 -	UCL					
5	3	96.85	1.43	10.22	98.08	94.97	-	98.00					A	
6	4	96.64	1.59	12.64	98.08	94.97	8	97.50 -		1012			/ \	
7	5	96.87	1.52	11.55	98.08	94.97	ž	,	•	۰			1	
8	6	95.52	1.27	8.06	98.08	94.97	Mean Values	97.00 - /		- /			7 \	
9	7	96.08	1.16	6.73	98.08	94.97	E	96.50 - 🍝	• \		• \			
10	8	96.48	0.79	3.12	98.08	94.97	Je	96.00 -			1		1	
11	9	96.63	1.48	10.95	98.08	94.97	~		∇	V		V \vee	V	
12	10	95.47	1.30	8.45	98.08	94.97		95.50 -	CL	•		•	•	
13	11	97.38	0.88	3.87	98.08	94.97		95.00						_
14	12	96.85	1.43	10.22	98.08	94.97		94.50				-	E.	
15	13	96.64	1.59	12.64	98.08	94.97		0	5	10		15	20	25
16	14	96.87	1.52	11.55	98.08	94.97		0		10	-		20	23
17	15	95.52	1.27	8.06	98.08	94.97					Day			
18	16	96.08	1.16	6.73	98.08	94.97								
19	17	96.48	0.79	3.12	98.08	94.97	-							
20	18	96.63	1.48	10.95	98.08	94.97								
21	19	95.47	1.30	8.45	98.08	94.97								
22	20	96.43	0.75	2.81	98.08	94.97								
23	21	97.06	1.34	8.98	98.08	94.97								
24	22	98.34	1.60	12.80	98.08	94.97								
25	23	96.42	1.22	7.44	98.08	94.97								
26	24	95.99	1.18	6.96	98.08	94.97		1						
27	-													
	Mean	96.52		Spreadshe				-						
29	N	24		B28=AVER	AGE(B3:B2	26)		D3=C3^2*	5					
30	S pooled	1.269523		B29=COUN	T(A3:A26)			E3=\$B\$31						
	UCL	98.07901		B30=SQRT	(SUM(D3:D	26)/(B29*6	-B29))	F3=\$B\$32						
32	LCL	94.96933		B31=B28+3				1	1					
33				B32=B28-3*	B30/SQRT	(6)								

The process went out of control on Day 22.

Chapter 9

Chapter 9

9-1. (a) A *weak electrolyte* only partially ionizes when dissolved in water. H_2CO_3 is an example of a weak electrolyte.

(**b**) A *Brønsted-Lowry acid* is a molecule that donates a proton when it encounters a base (proton acceptor). By this definition, NH_4^+ can be a Brønsted-Lowry acid.

(c) The *conjugate acid of a Brønsted-Lowry base* is the potential proton donator formed when a Brønsted-Lowry base accepts a proton. For example, the NH_4^+ is a conjugate acid in the reaction, $NH_3 + \text{proton} \rightleftharpoons NH_4^+$.

(d) *Neutralization*, according to the Brønsted-Lowry concept, occurs when a reaction involving an acid and its conjugate base is combined with a second reaction involving a base and its conjugate acid. Thus,

 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

In the example above, NH_3 acts as a base with NH_4^+ as its conjugate acid. H_2O acts as an acid with OH^- as its conjugate base.

(e) An *amphiprotic solvent* can act either as an acid or a base depending on the solute.Water is an example of an amphiprotic chemical species.

(**f**) A *zwitterion* is a chemical species that bears both positive and negative charges. Free amino acids, such as glycine, can exist as zwitterions in solution.

 $NH_2CH_2COOH \rightleftharpoons NH_3^+CH_2COO^-$

(g) *Autoprotolysis* is the act of self-ionization to produce both a conjugate acid and a conjugate base.

(h) A *strong acid* dissociates completely such that no undissociated molecules are left in aqueous solution. Hydrochloric acid, HCl, is an example of a strong acid.

(i) The *Le Châtelier principle* states that the position of an equilibrium always shifts in such a direction that it relieves the stress. A common ion like sulfate added to a solution containing sparingly soluble $BaSO_4$ is an example

(j) *The common-ion effect* is responsible for the reduced solubility of an ionic precipitate when one of the soluble components reacting to form the precipitate is added to the solution in equilibrium with the precipitate. Chloride ion added to a AgCl solution decreases the solubility of Ag^+ because of the common ion effect.

9-2. (a) An *amphiprotic solute* is a chemical species that possesses both acidic and basic properties. The dihydrogen phosphate ion, $H_2PO_4^-$, is an example of an amphiprotic solute.

(**b**) *A differentiating solvent* reveals different strengths of acids. By this definition, anhydrous acetic acid is a differentiating solvent because perchloric acid dissociates 5000 times more than hydrochloric acid.

(c) A *leveling solvent* shows no difference between strong acids. Perchloric acid and hydrochloric acid ionize completely in water; thus, water is a leveling solvent.

(d) *A mass-action effect* arises when a shift in the chemical equilibrium occurs due to the introduction of one of the participating chemical species (i.e., addition of one of the reactants or products.

9-3. For dilute aqueous solutions, the concentration of water remains constant and is assumed to be independent of the equilibrium. Thus, its concentration is included within the equilibrium constant. For a pure solid, the concentration of the chemical species in the solid phase is constant. As long as some solid exists as a second phase, its effect on the equilibrium is constant and is included within the equilibrium constant.

2

9-4.

	Acid	Conjugate Base
(a)	HOCl	OCI-
(b)	H_2O	OH⁻
(c)	${ m NH_4}^+$	NH_3
(d)	HCO_3^-	CO_{3}^{2-}
(e)	$H_2PO_4^-$	$\mathrm{HPO_4}^-$
	Base	Conjugate Acid
(a)	H_2O	H_3O^+
(b)	$HONH_2$	$\mathrm{HONH_3}^+$
(c)	H_2O	H_3O^+
(d)	HCO_3^-	H_2CO_3
(e)	PO_4^{3-}	HPO_4^{2-}

9-6. (a) $2H_2O \rightleftharpoons H_3O^+ + OH^-$

- **(b)** $2CH_3COOH \rightleftharpoons CH_3COOH_2^+ + CH_3COO^-$
- (c) $2CH_3NH_2 \rightleftharpoons CH_3NH_3^+ + CH_3NH^-$
- (**d**) $2CH_3OH \rightleftharpoons CH_3OH_2^+ + CH_3O^-$

9-7. (a)
$$C_{2}H_{5}NH_{2}+H_{2}O \rightleftharpoons C_{2}H_{5}NH_{2}^{+}+OH^{-}$$

 $K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.00 \times 10^{-14}}{2.3 \times 10^{-11}} = \frac{[C_{2}H_{5}NH_{2}^{+}][OH^{-}]}{[C_{2}H_{5}NH_{2}]} = 4.3 \times 10^{-4}$
(b) $HOCl + H_{2}O \rightleftharpoons OCl^{-}+H_{3}O^{+}$
 $K_{a} = \frac{[OCl^{-}][H_{3}O^{+}]}{[HOCl]} = 3.0 \times 10^{-8}$
(c)
 $CH_{3}NH_{3}^{+} + H_{2}O \rightleftharpoons CH_{3}NH_{2} + H_{3}O^{+}$
 $K_{a} = \frac{K_{w}}{K_{b}} = \frac{[CH_{3}NH_{2}][H_{3}O^{+}]}{[CH_{3}NH_{3}^{+}]} = 2.3 \times 10^{-11}$
(d) $NO_{2}^{-} + H_{2}O \rightleftharpoons HNO_{2} + OH^{-}$

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.00 \times 10^{-14}}{7.1 \times 10^{-4}} = \frac{[\text{HNO}_{2}[\text{OH}^{-}]}{[\text{NO}_{2}^{-}]} = 1.4 \times 10^{-11}$$
(e) H₃AsO₄ + H₂O \rightleftharpoons H₃O⁺ + H₂AsO₄⁻
H₂AsO₄⁻ + H₂O \rightleftharpoons H₃O⁺ + HAsO₄²⁻
HAsO₄²⁻ + H₂O \rightleftharpoons H₃O⁺ + AsO₄³⁻
H₃AsO₄ + 3H₂O \rightleftharpoons 3H₃O⁺ + AsO₄³⁻
K_{a1} = $\frac{[\text{H}_{3}\text{O}^{+}][\text{H}_{2}\text{AsO}_{4}^{-}]}{[\text{H}_{3}\text{AsO}_{4}]}$ $K_{a2} = \frac{[\text{H}_{3}\text{O}^{+}][\text{HAsO}_{4}^{2-}]}{[\text{H}_{2}\text{AsO}_{4}^{-}]}$ $K_{a3} = \frac{[\text{H}_{3}\text{O}^{+}][\text{AsO}_{4}^{3-}]}{[\text{HAsO}_{4}^{2-}]}$
 $K_{\text{overall}} = \frac{[\text{H}_{3}^{-}\text{O}^{+}]^{3}[\text{AsO}_{4}^{3-}]}{[\text{H}_{3}\text{AsO}_{4}]} = K_{a1}K_{a2}K_{a3} = 5.8 \times 10^{-3} \times 1.1 \times 10^{-7} \times 3.2 \times 10^{-12} = 2.0 \times 10^{-21}$

(f)
$$C_2O_4^{2-} + 2 H_2O \rightleftharpoons H_2C_2O_4 + 2OH^-$$

This can be broken into $C_2O_4^{2-} + H_2O \rightleftharpoons HC_2O_4^{-} + OH^{-}$ with a constant K_{b1}

and $HC_2O_4^- + H_2O \rightleftharpoons H_2C_2O_4 + OH^-$ with a constant K_{b2}

$$K_{b1} = \frac{[\text{HC}_2\text{O}_4^-][\text{OH}^-]}{[\text{C}_2\text{O}_4^{2-}]} = \frac{K_w}{K_{a2}} \qquad K_{b2} = \frac{[\text{H}_2\text{C}_2\text{O}_4][\text{OH}^-]}{[\text{HC}_2\text{O}_4^-]} = \frac{K_w}{K_{a1}}$$
$$K_{overall} = K_{b1}K_{b2} = \frac{K_w}{K_{a2}} \times \frac{K_w}{K_{a1}} = \frac{K_w^2}{K_{a2}K_{a1}} = \frac{1.00 \times 10^{-14}}{5.42 \times 10^{-5} \times 5.60 \times 10^{-2}} = 3.3 \times 10^{-9}$$

9-8. (a)
$$\operatorname{CuBr}(s) \rightleftharpoons \operatorname{Cu}^{+} + \operatorname{Br}^{-} K_{sp} = [\operatorname{Cu}^{+}][\operatorname{Br}^{-}]$$

(b) $\operatorname{HgClI}(s) \rightleftharpoons \operatorname{Hg}^{2+} + \operatorname{Cl}^{-} + \operatorname{I}^{-} K_{sp} = [\operatorname{Hg}^{2+}][\operatorname{Cl}^{-}][\operatorname{I}^{-}]$
(c) $\operatorname{PbCl}_{2}(s) \rightleftharpoons \operatorname{Pb}^{2+} + 2\operatorname{Cl}^{-} K_{sp} = [\operatorname{Pb}^{2+}][\operatorname{Cl}^{-}]^{2}$

(d)
$$\text{La}(\text{IO}_3)_3(s) \rightleftharpoons \text{La}^{3+} + 3\text{IO}_3^{--} K_{\text{sp}} = [\text{La}^{3+}][\text{IO}_3^{--}]^3$$

(e) $\text{Ag}_3\text{AsO}_4(s) \rightleftharpoons 3\text{Ag}^+ + \text{AsO}_4^{3--} K_{\text{sp}} = [\text{Ag}^+][\text{AsO}_4^{3--}]$
9-9. (a) $S = [\text{Cu}^+] = [\text{Br}^-] K_{\text{sp}} = [\text{Cu}^+][\text{Br}^-] = S^2$
(b) $S = [\text{Hg}^{2+}] = [\text{Cl}^-] = [\text{I}^-] K_{\text{sp}} = [\text{Hg}^{2+}][\text{Cl}^-][\text{I}^-] = S^3$
(c) $S = [\text{Pb}^{2+}] = \frac{1}{2}[\text{Cl}^-] K_{\text{sp}} = [\text{Pb}^{2+}][\text{Cl}^-]^2 = (S)(2S)^2 = 4S^3$
(d) $S = [\text{La}^{3+}] = \frac{1}{3}[\text{IO}_3^{--}] K_{\text{sp}} = [\text{La}^{3+}][\text{IO}_3^{--}]^3 = (S)(3S)^3 = 27S^4$
(e) $S = [\text{AsO}_4^{3-}] = \frac{1}{3}[\text{Ag}^+] K_{\text{sp}} = [\text{Ag}^+][\text{AsO}_4^{3--}] = 3S \times S = 3S^2$

9-10. (a) AgSeCN
$$\rightleftharpoons$$
 Ag⁺ + SeCN⁻

$$[Ag^{+}] = [SeCN^{-}] = 2.0 \times 10^{-8} M$$

$$K_{sp} = [Ag^{+}][SeCN^{-}] = 2.0 \times 10^{-8} \times 2.0 \times 10^{-8} = 4.0 \times 10^{-16}$$
(b) RaSO₄ \rightleftharpoons Ra²⁺ + SO₄²⁻

$$[Ra^{2+}] = [SO_{4}^{2-}] = 6.6 \times 10^{-6} M$$

$$K_{sp} = [Ra^{2+}][SO_{4}^{2-}] = (6.6 \times 10^{-6} M)^{2} = 4.4 \times 10^{-11}$$
(c) Pb(BrO₃)₂ \rightleftharpoons Pb²⁺ + 2BrO₃⁻

$$[Pb^{2+}] = 1.7 \times 10^{-1} M \quad [BrO_{3}^{-}] = 2 \times 1.7 \times 10^{-1} M = 3.4 \times 10^{-1} M$$

$$K_{sp} = [Pb^{2+}] BrO_{3}^{-}]^{2} = 1.7 \times 10^{-1} \times (3.4 \times 10^{-1})^{2} = 2.0 \times 10^{-3}$$
(d) Ce(IO₃)₃ \rightleftharpoons Ce³⁺ + 3IO₃⁻

$$[Ce^{3+}] = 1.9 \times 10^{-3} M \quad [IO_{3}^{-}] = 3 \times 1.9 \times 10^{-3} M = 5.7 \times 10^{-3} M$$

$$K_{\rm sp} = [{\rm Ce}^{3+}][{\rm IO}_3^{-}]^3 = 1.9 \times 10^{-3} \times (5.7 \times 10^{-3})^3 = 3.5 \times 10^{-10}$$

9-11. (a)
$$K_{sp} = [Ag^+][SeCN^-] = 4.0 \times 10^{-16}$$

 $K_{sp} = (0.030)[SeCN^-] = 4.0 \times 10^{-16}$
 $S = [SeCN^-] = 4.0 \times 10^{-16}/0.030 = 1.3 \times 10^{-14} M$
(b) $K_{sp} = [Ra^{2+}][SO4^{2-}] = 4.4 \times 10^{-11}$
 $S = [SO4^{2-}] = 4.4 \times 10^{-11}/0.030 = 1.5 \times 10^{-9} M$
(c) $K_{sp} = [Pb^{2+}][BrO3^-]^2 = 2.0 \times 10^{-3}$
 $[BrO3^-] = \sqrt{\frac{2.0 \times 10^{-3}}{0.030}} = 0.258 M$
 $S = \frac{1}{2} [BrO3^-] = 0.13 M$
(d) $K_{sp} = [Ce^{3+}][IO3^-]^3 = 3.5 \times 10^{-10}$
 $[IO3^-] = \sqrt[3]{\frac{3.5 \times 10^{-10}}{0.030}} = 7.047 \times 10^{-4} M$
 $S = \frac{1}{3} [IO3^-] = 2.3 \times 10^{-4} M$
9-12. (a) $K_{sp} = [Ag^+][SeCN^-] = 4.0 \times 10^{-16}$
 $S = [Ag^+] = 4.0 \times 10^{-16}/0.030 = 1.3 \times 10^{-14} M$
(b) $K_{sp} = [Ra^{2+}][SO4^{2-}] = 4.4 \times 10^{-11}$
 $S = [Ra^{2+}] = 4.4 \times 10^{-11}/0.030 = 1.5 \times 10^{-9} M$
(c) $K_{sp} = [Pb^{2+}][BrO3^-]^2 = 2.0 \times 10^{-3}$
 $S = [Pb^{2+}] = 2.0 \times 10^{-3}/(0.030)^2 = 2.2 M$
(d) $K_{sp} = [Ce^{3+}][IO3^-]^3 = 3.5 \times 10^{-10}$

$$S = [Ce^{3+}] = 3.5 \times 10^{-10} / (0.030)^3 = 1.3 \times 10^{-5} M$$

9-13. Ag₂CrO₄(s) \rightleftharpoons 2Ag⁺ + CrO₄²⁻

(a)
$$[\text{CrO}_4^{2-}] = \frac{1.2 \times 10^{-12}}{(4.13 \times 10^{-3})^2} = 7.04 \times 10^{-8} \text{ M}$$

(b)
$$[\text{CrO}_4^{2^-}] = \frac{1.2 \times 10^{-12}}{(9.00 \times 10^{-7})^2} = 1.48 \text{ M}$$

9-14. Al(OH)₃(s) \rightleftharpoons Al³⁺ + OH⁻ $K_{sp} = 3.0 \times 10^{-34} = [Al^{3+}][OH^-]^3$

(a) Because K_{sp} is very small, we can assume that $[Al^{3+}] = 4.60 \times 10^{-2}$ M with essentially no contribution from the dissolution of Al(OH)₃.

$$[OH^{-}]^{3} \times 4.60 \times 10^{-2} = 3.0 \times 10^{-34}$$

$$[OH^{-}] = \sqrt[3]{\frac{3.0 \times 10^{-34}}{4.60 \times 10^{-2}}} = 1.9 \times 10^{-11} \text{ M}$$

(b) As in part (a),

$$[OH^{-}] = \sqrt[3]{\frac{3.0 \times 10^{-34}}{3.50 \times 10^{-7}}} = 9.5 \times 10^{-10} \text{ M}$$

9-15.
$$\operatorname{Ce}^{3+} + 3\operatorname{IO}_3^- \rightleftharpoons \operatorname{Ce}(\operatorname{IO}_3)_3(s)$$

 $K_{\operatorname{sp}} = [\operatorname{Ce}^{3+}][\operatorname{IO}_3^-]^3 = 3.2 \times 10^{-10}$

(a) $50.00 \text{ mL} \times 0.0450 \text{ mmol/ml} = 2.25 \text{ mmol Ce}^{3+}$

$$[\mathrm{Ce}^{3+}] = \frac{2.25 \text{ mmol}}{(50.00 + 50.00) \text{ mL}} = 0.0225 \text{ M}$$

(b) We mix 2.25 mmol Ce³⁺ with 50.00 mL \times 0.045 mmol/mL = 2.25 mmol IO₃⁻.

Each mole of IO_3^- reacts with 1/3 mole of Ce^{3+} so 2.25 mmol would consume $1/3 \times 2.25$ mmol Ce^{3+} or the amount of unreacted $Ce^{3+} = 2.25 - 2.25/3 = 1.5$ mmol

2.25 mmol =

$$c_{Ce^{3+}} = \frac{1.50 \text{ mmol}}{100 \text{ mL}} = 0.0150 \text{ M}$$

$$[Ce^{3+}] = 0.0150 + S \qquad \text{(where S is the solubility)}.$$

$$[IO_3^-] = 3S$$

$$K_{sp} = [Ce^{3+}][IO_3^-]^3 = 0.0150 \times 3S^3 = 3.2 \times 10^{-10}$$

$$S = \left(\frac{3.2 \times 10^{-10}}{27 \times 1.50 \times 10^{-2}}\right)^{1/3} = 9.2 \times 10^{-4}$$

$$[Ce^{3+}] = 1.50 \times 10^{-2} + 9.2 \times 10^{-4} = 1.6 \times 10^{-2} \text{ M}$$

(c) Now we have 0.250 mmol IO₃⁻ × 50.00 mL = 12.5 mmol. Since 3 × 10^{-10}

6.75 mmol would be required to completely react with the Ce^{3+} , we have excess IO_3^{-} .

$$[\mathrm{IO}_{3}^{-}] = \frac{12.5 \text{ mmol} - 6.75 \text{ mmol}}{100 \text{ mL}} + 3S = 0.0575 + 3S$$

 $[Ce^{3+}] = S$

$$K_{\rm sp} = S(0.0575 + 3S)^3 = 3.2 \times 10^{-10}$$

Lets assume 3*S* << 0.0575

$$S = [Ce^{3+}] = 3.2 \times 10^{-10} / (0.0575)^3 = 1.7 \times 10^{-6} M$$

Checking the assumption $3 \times 1.7 \times 10^{-6}$ M = 5.1×10^{-6} which is much smaller than

(d) Now we are mixing 2.25 mmol Ce³⁺ with 50.00 mL \times 0.050 mmol/mL = 2.50 mmol

 IO_3^{-} . The Ce³⁺ is now in excess so that

amount of $Ce^{3+} = 2.25 \text{ mmol} - 2.5/3 \text{ mmol} = 1.42 \text{ mmol}$

$$c_{\text{Ce}^{3+}} = \frac{1.42 \text{ mmol}}{100 \text{ mL}} = 0.0142 \text{ M}$$

 $[\text{Ce}^{3+}] = 1.42 \times 10^{-2} + S$
 $K_{\text{sp}} = [\text{Ce}^{3+}][\text{IO}_{3}^{-}]^{3} = 0.0142 \times 3S^{3} = 3.2 \times 10^{-10}$

$$S = \left(\frac{3.2 \times 10^{-10}}{27 \times 1.42 \times 10^{-2}}\right)^{1/3} = 9.42 \times 10^{-4}$$

[Ce³⁺] = 1.42 × 10⁻² + 9.42 × 10⁻⁴ = 1.5 × 10⁻² M
9-16. Ksp = [K⁺]²[PdCl₆²⁻] = (2S)²(S) = 6.0 × 10⁻⁶
amount K⁺ = 50.0 mL × 0.200 mmol/ml = 10 mmol
(a) amount PdCl₆⁻ = 50.0 mL × 0.0800 mmol/mL = 4 mmol
amount excess K⁺ = 10 mmol - 2 × 4 mmol = 2 mmol
[K⁺] = $\frac{2 \text{ mmol}}{100 \text{ mL}}$ + 2S = 0.020 + 2S
[K⁺] = 0.020 + 2 $\left(\frac{6 \times 10^{-6}}{4 \times 0.020}\right)^{1/3}$ = 0.02 M
(b) amount PdCl₆⁻ = 50.0 mL × 0.160 mmol/mL = 8 mmol
amount excess PdCl₆⁻ = 8 mmol - 10 mmol/2 = 3 mmol
[PdCl₆⁻] = 3 mmol/100 mL + S = 0.030 M + S
[K⁺] = 2S
K_{sp} = (2S)²(0.030 + S) = 6.0 × 10⁻⁶

Assuming *S* << 0.030, we have $S^2 = 6.0 \times 10^{-6} / (4 \times 0.030)$

- $S = 7.1 \times 10^{-3} \mathrm{M}$
- $[K^+] = 2S = 0.014M$
- (c) amount $PdCl_6^- = 0.240 \text{ mmol/mL} \times 50.0 \text{ mL} = 12 \text{ mmol}$

Excess $PdCl_6^- = 12 \text{ mmol} - 5 \text{ mmol} = 7 \text{ mmol}$

$$[PdCl_6^-] = 7 \text{ mmol}/100 \text{ mL} + S = 0.07 \text{ M} + S \approx 0.07 \text{ M}$$

$$K_{\rm sp} = (2S)^2 \times 0.07 = 6.0 \times 10^{-6}$$

 $S = 4.6 \times 10^{-3} \text{ M}$

$$[K^+] = 2S = 9.3 \times 10^{-3} \text{ M}$$

9-17.
$$\operatorname{CuI}(s) \rightleftharpoons \operatorname{Cu}^+ + \operatorname{I}^- \quad K_{\operatorname{sp}} = [\operatorname{Cu}^+][\operatorname{I}^-] = 1 \times 10^{-12}$$

$$\operatorname{AgI}(s) \rightleftharpoons \operatorname{Ag}^+ + \operatorname{I}^- \quad K_{\operatorname{sp}} = [\operatorname{Ag}^+][\operatorname{I}^-] = 8.3 \times 10^{-17}$$

$$PbI_2(s) \Longrightarrow Pb^{2+} + 2I^ K_{sp} = [Pb^{2+}][I^-]^2 = 7.1 \times 10^{-9} = S(2S)^2 = 4S^3$$

BiI₃(s) ⇒ Bi³⁺ + 3I⁻
$$K_{\rm sp} = [Bi^{3+}][I^-]^3 = 8.1 \times 10^{-19} = S(3S)^3 = 27S^4$$

(a) For CuI,
$$S = [Cu^+] = [\Gamma] = \sqrt{1 \times 10^{-12}} = 1 \times 10^{-6} \text{ M}$$

For AgI,
$$S = [Ag^+] = [I^-] = \sqrt{8.3 \times 10^{-17}} = 9.1 \times 10^{-9} \text{ M}$$

For PbI₂,
$$S = \sqrt[3]{\frac{7.1 \times 10^{-9}}{4}} = 1.2 \times 10^{-3} \text{ M}$$

For BiI₃
$$S = \sqrt[4]{\frac{8.1 \times 10^{-19}}{27}} = 1.3 \times 10^{-5} \text{ M}$$

So, solubilities are in the order $PbI_2 > BiI_3 > CuI > AgI$ (b) For CuI, $S = 1 \times 10^{-12}/0.20 = 5 \times 10^{-12} M$ For AgI, $S = 8.3 \times 10^{-17}/0.20 = 4.2 \times 10^{-16} M$

For PbI₂, $S = 7.1 \times 10^{-9} / (0.20)^2 = 1.8 \times 10^{-7} \text{ M}$

For BiI₃,
$$S = 8.1 \times 10^{-19} / (0.20)^3 = 1.0 \times 10^{-16} \text{ M}$$

So, solubilities are in the order $PbI_2 > CuI > AgI > BiI_3$

(c) For CuI,
$$S = 1 \times 10^{-12} / 0.020 = 5 \times 10^{-11} \text{ M}$$

For AgI,
$$S = 8.3 \times 10^{-17} / 0.020 = 4.2 \times 10^{-15} \text{ M}$$

For PbI₂,
$$S = \frac{1}{2} \sqrt{\frac{7.1 \times 10^{-9}}{0.020}} = 3.0 \times 10^{-4} \text{ M}$$

For BiI₃,
$$S = \frac{1}{3} \sqrt[3]{\frac{8.1 \times 10^{-19}}{0.020}} = 1.1 \times 10^{-6} \text{ M}$$

So solubilities are in the order, $PbI_2 > BiI_3 > CuI > AgI$

9-18. BiOOH(s)
$$\rightleftharpoons$$
 BiO⁺ + OH⁻ $K_{sp} = [BiO^+][OH^-] = 4.0 \times 10^{-10}$

$$Be(OH)_2(s) \rightleftharpoons Be^{2+} + 2OH^- \quad K_{sp} = [Be^{2+}][OH^-]^2 = 7.0 \times 10^{-22} = S(2S)^2 = 4S^3$$

$$Tm(OH)_3(s) \rightleftharpoons Tm^{3+} + 3OH^- \quad K_{sp} = [Tm^{3+}][OH^-]^3 = 3.0 \times 10^{-24} = S(3S)^3 = 27S^4$$

$$Hf(OH)_4 \rightleftharpoons Hf^{4+} + 4OH^ K_{sp} = [Hf^{4+}][OH^-]^4 = 4.0 \times 10^{-26} = S(4S)^4 = 256S^5$$

(a) For BiOOH,
$$S = [BiO^+] = [OH^-] = \sqrt{4.0 \times 10^{-10}} = 2.0 \times 10^{-5} \text{ M}$$

For Be(OH)₂,
$$S = [Be^{2^+}] = \frac{1}{2}[OH^-] = \sqrt[3]{\frac{7.0 \times 10^{-22}}{4}} = 5.6 \times 10^{-8} \text{ M}$$

For Tm(OH)₃
$$S = [Tm^{3+}] = \frac{1}{3}[OH^{-}] = \left(\frac{3.0 \times 10^{-24}}{27}\right)^{1/4} = 5.8 \times 10^{-7} \text{ M}$$

For Hf(OH)₄
$$S = [Hf^{4+}] = \frac{1}{4}[OH^{-}] = \left(\frac{4.0 \times 10^{-26}}{256}\right)^{1/5} = 2.7 \times 10^{-6} \text{ M}$$

Be(OH)₂ has the lowest molar solubility.

(b) For BiOOH,
$$S = \frac{4.0 \times 10^{-10}}{0.30} = 1.3 \times 10^{-9} \text{ M}$$

For Be(OH)₂,
$$S = \frac{7.0 \times 10^{-22}}{(0.30)^2} = 7.8 \times 10^{-21} \text{ M}$$

For Tm(OH)₃, $S = \frac{3.0 \times 10^{-24}}{(0.30)^3} = 1.1 \times 10^{-22} \text{ M}$

For Hf(OH)₄,
$$S = \frac{4.0 \times 10^{-26}}{(0.30)^4} = 4.9 \times 10^{-24} \text{ M}$$

Hf(OH)₄ has the lowest molar solubility in 0.30 M NaOH.

9-19. At 25°C,
$$pK_w = 13.99$$
, $K_w = 1.023 \times 10^{-14}$. At 75°C, $pK_w = 12.70$, $K_w = 1.995 \times 10^{-13}$
 $[H_3O^+] = [OH^-]$ in pure water. Thus $[H_3O^+] = \sqrt{K_w}$
At 25°C, $[H_3O^+] = \sqrt{1.023 \times 10^{-14}} = 1.011 \times 10^{-7}$ M, $pH = -\log[H_3O^+] = 6.99_5 \approx 7.00$
At 75°C, $[H_3O^+] = \sqrt{1.995 \times 10^{-13}} = 4.467 \times 10^{-7}$ M, $pH = 6.35$

9-20. (a) For benzoic acid, $K_a = 6.28 \times 10^{-5}$. Call benzoic acid HBz and the benzoate anion Bz⁻

 $HBz + H_2O \rightleftharpoons Bz^- + H_3O^+$

$$K_{a} = \frac{[Bz^{-}][H_{3}O^{+}]}{[HBz]} = 6.28 \times 10^{-5}$$
 Mass balance $c_{HBz} = [HBz] + [Bz^{-}] = 0.0300$
$$[Bz^{-}] = [H_{3}O^{+}]$$
 Thus, $[HBz] = 0.0300 - [Bz^{-}] = 0.0300 - [H_{3}O^{+}]$
$$\frac{[H_{3}O^{+}]^{2}}{0.0300 - [H_{3}O^{+}]} = 6.28 \times 10^{-5}$$

Solving the quadratic or solving by iterations gives,

 $[H_3O^+] = 1.34 \times 10^{-3} \text{ M so } [OH^-] = 1.00 \times 10^{-14} / 1.34 \times 10^{-3} = 7.5 \times 10^{-12} \text{ M}$ (b) $HN_3 + H_2O \rightleftharpoons N_3^- + H_3O^+$ $K_a = 2.2 \times 10^{-5}$

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}}{0.0600 - [\mathrm{H}_{3}\mathrm{O}^{+}]} = 2.2 \times 10^{-5}$$
$$[\mathrm{H}_{3}\mathrm{O}^{+}] = 1.14 \times 10^{-3} \quad \text{so } [\mathrm{OH}^{-}] = 1.00 \times 10^{-14} / 1.14 \times 10^{-3} = 8.8 \times 10^{-12}$$
(c)

$$\begin{split} & C_{2}H_{5}NH_{2}+H_{2}O \rightleftharpoons C_{2}H_{5}NH_{3}^{+}+OH^{-} \\ & K_{b} = \frac{[C_{2}H_{5}NH_{3}^{+}][OH^{-}]}{[C_{2}H_{5}NH_{2}]} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{2.31 \times 10^{-11}} = 4.33 \times 10^{-4} \\ & [OH^{-}]=[C_{2}H_{5}NH_{3}^{+}] \qquad [C_{2}H_{5}NH_{2}] = 0.100 - [OH^{-}] \\ & \frac{[OH^{-}]^{2}}{(0.100 - [OH^{-}])} = 4.33 \times 10^{-4} \qquad [OH^{-}]^{2} = 4.33 \times 10^{-4} (0.100 - [OH^{-}]) \\ & [OH^{-}]^{2} + 4.33 \times 10^{-4} [OH^{-}] - 4.33 \times 10^{-5} = 0 \\ & [OH^{-}] = -\frac{4.33 \times 10^{-4} + \sqrt{(4.33 \times 10^{-4})^{2} + 4(4.33 \times 10^{-5})}}{2} = 6.37 \times 10^{-3} M \\ & [H_{3}O^{+}] = \frac{1.0 \times 10^{-14}}{6.37 \times 10^{-3}} = 1.57 \times 10^{-12} M \end{split}$$

(**d**)

$$(CH_{3})_{3}N+H_{2}O \rightleftharpoons (CH_{3})_{3}NH^{+}+OH^{-}$$

$$K_{b} = \frac{[(CH_{3})_{3}NH^{+}][OH^{-}]}{[(CH_{3})_{3}N]} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{1.58 \times 10^{-10}} = 6.33 \times 10^{-5}$$

$$[OH^{-}] = [(CH_{3})_{3}NH^{+}] \qquad [(CH_{3})_{3}N] = 0.200 \text{ M} - [OH^{-}]$$

$$\frac{[OH^{-}]^{2}}{(0.200 - [OH^{-}])} = 6.33 \times 10^{-5} \quad [OH^{-}]^{2} = 6.33 \times 10^{-5} (0.200 - [OH^{-}])$$

$$[OH^{-}]^{2} + 6.33 \times 10^{-5} [OH^{-}] - 1.27 \times 10^{-5} = 0$$

$$[OH^{-}] = -\frac{6.33 \times 10^{-5} + \sqrt{(6.33 \times 10^{-5})^{2} + 4(1.27 \times 10^{-5})}}{2} = 3.53 \times 10^{-3} \text{ M}$$

$$[H_{3}O^{+}] = \frac{1.0 \times 10^{-14}}{3.53 \times 10^{-3}} = 2.83 \times 10^{-12} \text{ M}$$
(e)
$$Bz^{-} + H_{2}O \rightleftharpoons HBz + OH^{-} \qquad K_{b} = K_{w}/K_{a} = 1.00 \times 10^{-14}/6.28 \times 10^{-5} = 1.60 \times 10^{-10}$$

$$[OH^{-}] = [HBz] \qquad [Bz^{-}] = 0.200 - [OH^{-}]$$

- $[OH^{-}] = 5.66 \times 10^{-6} \text{ M} \qquad [H_3O^{+}] = 1.00 \times 10^{-14} / 5.66 \times 10^{-6} = 1.77 \times 10^{-9} \text{ M}$
- (f) Let HPr be propanoic acid and Pr^{-} be the anion.

$$Pr^{-} + H_2O \Longrightarrow HPr + OH^{-}$$
 $K_b = K_w/K_a = 1.00 \times 10^{-14}/1.34 \times 10^{-5} = 7.46 \times 10^{-10}$

Proceeding as in part (e) $[OH^-] = 8.01 \times 10^{-6} \text{ M}$ $[H_3O^+] = 1.25 \times 10^{-9} \text{ M}$

(g)
$$\text{HONH}_3^+ + \text{H}_2\text{O} \rightleftharpoons \text{HONH}_2 + \text{H}_3\text{O}^+$$
 $K_a = 1.1 \times 10^{-6}$

As in part (b) $\frac{[H_3O^+]^2}{0.250 - [H_3O^+]} = 1.1 \times 10^{-6}$ $[H_3O^+] = 5.24 \times 10^{-4} \text{ M}$ $[OH^-] = 1.91 \times 10^{-11} \text{ M}$ (h) $\text{EtNH}_3^+ + H_2O \rightleftharpoons \text{EtNH}_2 + H_3O^+$ $K_a = 2.31 \times 10^{-11}$

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}}{0.0250 - [\mathrm{H}_{3}\mathrm{O}^{+}]} = 2.31 \times 10^{-11}$$
$$[\mathrm{H}_{3}\mathrm{O}^{+}] = 7.60 \times 10^{-7} \mathrm{M} \qquad [\mathrm{OH}^{-}] = 1.32 \times 10^{-8} \mathrm{M}$$

Note that these values are close to the concentrations of H_3O^+ and OH^- from the dissociation of water. Correction for water dissociation changes the values only slightly.

$$\begin{aligned} \text{ClCH}_{2}\text{COOH} + \text{H}_{2}\text{O} \rightleftharpoons \text{ClCH}_{2}\text{COO}^{-} + \text{H}_{3}\text{O}^{+} \quad K_{a} &= \frac{[\text{ClCH}_{2}\text{COO}^{-}][\text{H}_{3}\text{O}^{+}]}{[\text{ClCH}_{2}\text{COOH}]} = 1.36 \times 10^{-3} \\ [\text{H}_{3}\text{O}^{+}] &= [\text{ClCH}_{2}\text{COO}^{-}] \quad [\text{ClCH}_{2}\text{COOH}] = 0.200 - [\text{H}_{3}\text{O}^{+}] \\ \frac{[\text{H}_{3}\text{O}^{+}]^{2}}{(0.200 - [\text{H}_{3}\text{O}^{+}])} &= 1.36 \times 10^{-3} \quad [\text{H}_{3}\text{O}^{+}]^{2} = 1.36 \times 10^{-3} (0.200 - [\text{H}_{3}\text{O}^{+}]) \\ [\text{H}_{3}\text{O}^{+}]^{2} + 1.36 \times 10^{-3} [\text{H}_{3}\text{O}^{+}] - 2.72 \times 10^{-4} = 0 \\ [\text{H}_{3}\text{O}^{+}] &= -\frac{1.36 \times 10^{-3} + \sqrt{(1.36 \times 10^{-3})^{2} + 4(2.72 \times 10^{-4})}}{2} = 1.58 \times 10^{-2} \text{ M} \end{aligned}$$

(b)

$$\begin{aligned} \text{CICH}_{2}\text{COO}^{-} + \text{H}_{2}\text{O} &\rightleftharpoons \text{CICH}_{2}\text{COOH} + \text{OH}^{-} \\ K_{b} &= \frac{[\text{CICH}_{2}\text{COOH}][\text{OH}^{-}]}{[\text{CICH}_{2}\text{COO}^{-}]} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{1.36 \times 10^{-3}} = 7.35 \times 10^{-12} \\ [\text{OH}^{-}] &= [\text{CICH}_{2}\text{COOH}] & [\text{CICH}_{2}\text{COO}^{-}] = 0.200 \, M - [\text{OH}^{-}] \\ \frac{[\text{OH}^{-}]^{2}}{(0.200 - [\text{OH}^{-}])} &= 7.35 \times 10^{-12} \quad [\text{OH}^{-}]^{2} = 7.35 \times 10^{-12} (0.200 - [\text{OH}^{-}]) \\ [\text{OH}^{-}]^{2} + 7.35 \times 10^{-12} [\text{OH}^{-}] - 1.47 \times 10^{-12} = 0 \\ [\text{OH}^{-}] &= 1.21 \times 10^{-6} \text{ M} \\ [\text{H}_{3}\text{O}^{+}] &= \frac{1.0 \times 10^{-14}}{1.21 \times 10^{-6}} = 8.26 \times 10^{-9} \text{ M} \end{aligned}$$

(c)

$$CH_{3}NH_{2}+H_{2}O \rightleftharpoons CH_{3}NH_{3}^{+}+OH^{-}$$

$$K_{b} = \frac{[CH_{3}NH_{3}^{+}][OH^{-}]}{[CH_{3}NH_{2}]} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{2.3 \times 10^{-11}} = 4.35 \times 10^{-4}$$

$$[OH^{-}] = [CH_{3}NH_{3}^{+}] \qquad [CH_{3}NH_{2}] = 0.0200 \text{ M} - [OH^{-}]$$

Proceeding as in part (b), we find

$$[OH^{-}] = 2.74 \times 10^{-3} \text{ M}$$
 $[H_3O^{+}] = 1.0 \times 10^{-14}/2.74 \times 10^{-3} = 3.65 \times 10^{-12} \text{ M}$
(d)

$$CH_{3}NH_{3}^{+}+H_{2}O \rightleftharpoons CH_{3}NH_{2}+H_{3}O^{+} \quad K_{a} = \frac{[CH_{3}NH_{2}][H_{3}O^{+}]}{[CH_{3}NH_{3}^{+}]} = 2.3 \times 10^{-11}$$
$$[H_{3}O^{+}] = [CH_{3}NH_{2}] \qquad [CH_{3}NH_{3}^{+}] = 0.0200 \text{ M} - [H_{3}O^{+}]$$

Proceeding as in part (a), we find

$$[H_3O^+] = 6.78 \times 10^{-7}$$

(e)

$$C_{6}H_{5}NH_{3}^{+} + H_{2}O \rightleftharpoons C_{6}H_{5}NH_{2} + H_{3}O^{+} \quad K_{a} = \frac{[C_{6}H_{5}NH_{2}][H_{3}O^{+}]}{[C_{6}H_{5}NH_{3}^{+}]} = 2.51 \times 10^{-5}$$

$$[H_{3}O^{+}] = [C_{6}H_{5}NH_{2}] \qquad [C_{6}H_{5}NH_{3}^{+}] = 0.0020 \text{ M} - [H_{3}O^{+}]$$

$$\frac{[H_{3}O^{+}]^{2}}{(0.0020 - [H_{3}O^{+}])} = 2.51 \times 10^{-5}$$

Proceeding as in part (d), we find $[H_3O^+] = 2.11 \times 10^{-4} \text{ M}$

$$HIO_{3} + H_{2}O \iff IO_{3}^{-} + H_{3}O^{+} \quad K_{a} = \frac{[IO_{3}^{-}][H_{3}O^{+}]}{[HIO_{3}]} = 1.7 \times 10^{-1}$$
$$[H_{3}O^{+}] = [IO_{3}^{-}] \qquad [HIO_{3}] = 0.300 \text{ M} - [H_{3}O^{+}]$$

Proceeding as in part (e), we find $[H_3O^+] = 0.16 \text{ M}$

- **9-22.** A *buffer solution* resists changes in pH with dilution or with addition of acids or bases. A buffer is composed of a mixture of a weak acid and its conjugate base.
- **9-23.** *Buffer capacity* of a solution is defined as the number of moles of a strong acid (or a strong base) that causes 1.00 L of a buffer to undergo a 1.00-unit change in pH.

9-24.

(a)
$$pH = pK_a + \log \frac{[NH_3]}{[NH_4^+]} = -\log(5.7 \times 10^{-10}) + \log \frac{(0.100M)}{(0.200M)} = 8.943$$

(b) $pH = pK_a + \log \frac{[NH_3]}{[NH_4^+]} = -\log(5.7 \times 10^{-10}) + \log \frac{(0.050M)}{(0.100M)} = 8.943$

Although the two solutions have identical pH values, the solution in (a) has the greatest buffer capacity, because it has the higher concentration of weak acid and its conjugate base.

9-25.
$$HOAc + H_2O \rightleftharpoons OAc^- + H_3O^+$$
 $OAc^- + H_2O \rightleftharpoons HOAc + OH^-$

(a)

$$[OAc^{-}] = \frac{8.00 \text{ mmol}}{200 \text{ mL}} = 4 \times 10^{-2} \text{ M}$$

[HOAc] = 0.100 M
pH = $-\log(1.75 \times 10^{-5}) + \log \frac{4 \times 10^{-2}}{0.100} = 4.359$

(b)

$$0.175 \text{ M HOAc} = \frac{0.175 \text{ mmol}}{\text{mL}} \times 100 \text{ mL} = 17.5 \text{ mmol}$$

$$0.0500 \text{ M NaOH} = \frac{0.0500 \text{ mmol}}{\text{mL}} \times 100 \text{ mL} = 5.00 \text{ mmol}$$

$$[\text{HOAc}] = \frac{(17.5 - 5.00) \text{ mmol}}{200 \text{ mL}} = 6.25 \times 10^{-2} \text{ M}$$

$$[\text{OAc}^{-}] = \frac{5 \text{ mmol}}{200 \text{ mL}} = 2.50 \times 10^{-2} \text{ M}$$

$$p\text{H} = -\log(1.75 \times 10^{-5}) + \log\frac{2.50 \times 10^{-2}}{6.25 \times 10^{-2}} = 4.359$$

(c)

$$0.0420 \text{ M OAc}^{-} = \frac{0.042 \text{ mmol}}{\text{mL}} \times 160 \text{ mL} = 6.72 \text{ mmol}$$

$$0.1200 \text{ M HCl} = \frac{0.1200 \text{ mmol}}{\text{mL}} \times 40.0 \text{ mL} = 4.80 \text{ mmol}$$

$$[\text{OAc}^{-}] = \frac{(6.72 - 4.80) \text{ mmol}}{200 \text{ mL}} = 9.6 \times 10^{-3} \text{ M}$$

$$[\text{HOAc}] = \frac{4.8 \text{ mmol}}{200 \text{ mL}} = 2.4 \times 10^{-2} \text{ M}$$

$$p\text{H} = -\log(1.75 \times 10^{-5}) + \log \frac{9.6 \times 10^{-3}}{2.4 \times 10^{-2}} = 4.359$$

The solutions all are buffers with the same pH, but they differ in buffer capacity with (**a**) having the greatest and (**c**) the least.

9-26. (a) $C_6H_5NH_3^+/C_6H_5NH_2$ (pK_a = 4.60)

(b) The closest is $H_2NNH_3^+/H_2NNH_2$ (p $K_a = 7.98$)

(c) The closest are $C_2H_5NH_3^+/C_2H_5NH_2$ (p $K_a = 10.64$) and $CH_3NH_3^+/CH_3NH_2$ p $K_a =$

10.64)

(d) The closest is HONH₃⁺/HONH₂ (p $K_a = 5.96$), but H₂CO₃/HCO₃⁻ is close (p $K_a = 6.35$)

9-27.

$$pH = 3.50 = pK_a + \log \frac{[HCOO^-]}{[HCOOH]} = -\log(1.8 \times 10^{-4}) + \log \frac{[HCOO^-]}{[HCOOH]}$$

$$3.50 = 3.74 + \log \frac{[\text{HCOO}^-]}{[\text{HCOOH}]} \qquad \qquad \frac{[\text{HCOO}^-]}{[\text{HCOOH}]} = 10^{-0.24} = 0.575$$

$$500 \text{ mL} \times 1.00 \frac{\text{mmol HCOOH}}{\text{mL}} = 500 \text{ mmol}$$

So amount of HCOO⁻ needed = $0.575 \times 500 \text{ mmol} = 287.5 \text{ mmol}$

 $287.5 \text{ mmol} \times 10^{-3} \text{ mol/mmol} = 0.2875 \text{ mol} \text{ HCOO}^{-1}$

Mass HCOONa = $0.2875 \text{ mol} \times 67.997 \text{ g/mol} = 19.6 \text{ g}$

9-28. Let HGl = glycolic acid

$$pH = 4.00 = pK_{a} + \log \frac{[Gl^{-}]}{[HGl]} = 3.83 + \log \frac{[Gl^{-}]}{[HGl]}$$
$$\log \frac{[Gl^{-}]}{[HGl]} = 4.00 - 3.83 = 0.17$$
$$\frac{[Gl^{-}]}{[HGl]} = 1.479$$

amount of HGl = $400.0 \text{ mL} \times 1.00 \text{ M} = 400 \text{ mmol or } 0.400 \text{ mol}$

Need $0.400 \times 1.479 = 0.592$ mol NaGl

mass of NaGl needed is $0.592 \text{ mol} \times 98.01 \text{ g/mol} = 58.0 \text{ g}$

9-29. Let HMn = mandelic acid, $Mn^- = mandelate anion$.

500 mL \times 0.300 M NaMn = 150 mmol Mn⁻.

For a pH of 3.37 need the ratio of Mn⁻ to HMn to be

$$pH = 3.37 = pK_{a} + \log \frac{[Mn^{-}]}{[HMn]} = 3.398 + \log \frac{[Mn^{-}]}{[HMn]} \qquad \log \frac{[Mn^{-}]}{[HMn]} = 3.37 - 3.398 = -0.028$$

$$\frac{[Mn^{-}]}{[HMn]} = 0.938$$

$$\frac{mmol Mn^{-} - x mmol HCl}{x mmol HCl} = 0.938$$

$$0.938 \times x mmol HCl = mmol Mn^{-} - x mmol HCl$$

$$x = mmol Mn^{-}/1.938 = 150 Mn^{-}/1.938 = 77.399 mmol HCl$$
Volume HCl = 77.399 mmol/(0.200 mmol/mL) = 387 mL
9-30. 200.0 mL × 1.00 mmol/mL = 200.0 mmol HGl
$$pH = 4.00 = pK_{a} + \log[Gl^{-}]/[HGl] = 3.83 + \log[Gl^{-}]/[HGl]$$

$$\log[Gl^{-}]/[HGl] = 4.00 - 3.83 = 0.17 \qquad [Gl^{-}]/[HGl] = 1.479$$

$$\frac{mole Gl^{-}}{mole HGl} = 1.479$$

$$\frac{x mole NaOH}{(mole HGl - x mole NaOH)} = 1.479$$
x mole NaOH = 1.479 × (mole HGl - x mole NaOH)
x mole NaOH = $\frac{1.479 \times (HGl)}{2.479} = \frac{1.479 \times (0.200 mole)}{2.479} = 0.119$
volume NaOH = 0.119 mole $\times \frac{L}{2.00 mole} \times \frac{1000 mL}{L} = 59.66 mL$

9-31. The statement "A buffer maintains the pH of a solution constant" is partially true and partially false. The change in pH of a buffered solution is relatively small with the addition of a small volume of acid or base as can be seen in Example 9-13, where the pH only increases from 9.07 to 9.11 on adding NaOH and drops from 9.07 to 9.02 on adding HCl. Compared to no buffer, this is essentially constant, but not absolutely constant. Hence, the statement has some truth to it, but is not totally true.

Chapter 10

10-1. (a) *Activity*, a_A , is the effective concentration of a chemical species A in solution. The *activity coefficient*, γ_A , is the numerical factor necessary to convert the molar concentration of the chemical species A to activity as shown below:

 $a_{\rm A} = \gamma_{\rm A}[{\rm A}]$

(b) The *thermodynamic equilibrium constant* refers to an ideal system within which each chemical species is unaffected by any others. A *concentration equilibrium constant* takes into account the influence exerted by solute species upon one another. The thermodynamic equilibrium constant is numerically constant and independent of ionic strength; the concentration equilibrium constant depends on molar concentrations of reactants and products as well as other chemical species that may not participate in the equilibrium.

10-2. Activity coefficients have the following properties:

1. The activity coefficient depends on the solution ionic strength.

2. In very dilute solutions, the activity coefficient approaches unity.

3. For a given ionic strength, the activity coefficient becomes smaller as the charge of the chemical species increases.

4. At any ionic strength, the activity coefficients are approximately equal for chemical species having the same charge state.

10-3. (a) $MgCl_2 + 2NaOH \implies Mg(OH)_2(s) + 2NaCl$

Replacing divalent Mg²⁺ with Na⁺ causes the ionic strength to decrease.

(b) HCl + NaOH \rightleftharpoons H₂O + NaCl

There is no change in the charge states of the ions present in the solution equilibria. The ionic strength is unchanged.

(c)
$$HOAc + NaOH \rightleftharpoons H_2O + NaOAc$$

The ionic strength will increase because NaOH and NaOAc are totally ionized wheras acetic acid is only partially ionized.

10-4. (a) The ionic strength will increase when $FeCl_3$ is added to HCl.

(b) $3NaOH + FeCl_3 \rightleftharpoons Fe(OH)_3(s) + 3NaCl$

Addition of FeCl_3 to NaOH replaces a univalent OH⁻ with univalent Cl⁻; thus, the ionic strength is unchanged.

(c)
$$3AgNO_3 + FeCl_3 \rightleftharpoons Fe(NO_3)_3 + 3AgCl(s)$$

Addition of FeCl_3 replaces the univalent Ag^+ with the trivalent Fe^{3+} ; thus, the ionic strength increases.

- **10-5.** Water is a neutral molecule and its activity equals its concentration at all low to moderate ionic strengths. That is, its activity coefficient is unity. In solutions of low to moderate ionic strength, activity coefficients of ions decrease with increasing ionic strength because the ionic atmosphere surrounding the ion causes it to lose some of its chemical effectiveness and its activity is less than its concentration.
- 10-6. There is no ionic atmosphere surrounding a neutral molecule and so its activity is does not change with increasing ionic strength. Hence, its activity coefficient is essentially unity and its activity is equal to its concentration.

- 10-7. Multiply charged ions deviate from ideality more than singly charged ions because of the effect of the surrounding ionic atmosphere. The initial slope of the activity coefficient vs square root of ionic strength for Ca^{2+} is steeper than that for K⁺ the activity coefficient of Ca^{2+} is more influenced by ionic strength than that for K⁺.
- **10-8.** Ammonia (NH₃) is an uncharged molecule and thus its activity coefficient is unity.

10-9. (a)
$$\mu = \frac{1}{2}[0.030 \times 2^2 + 0.030 \times 2^2] = 0.12$$

(b) $\mu = \frac{1}{2}[0.60 \times 1^2 + 0.30 \times 2^2] = 0.90$
(c) $\mu = \frac{1}{2}[0.30 \times 3^2 + 0.90 \times 1^2 + 0.20 \times 2^2 + 0.40 \times 1^2] = 2.4$
(d) $\mu = \frac{1}{2}[0.03 \times 3^2 + 0.09 \times 1^2 + 0.06 \times 2^2 + 0.12 \times 1^2] = 0.36$

10-10. $-\log \gamma_{\rm X} = \frac{0.51 Z_{\rm X}^2 \sqrt{\mu}}{1 + 3.3 \alpha_{\rm X} \sqrt{\mu}}$ This problem is easiest to work with a spreadsheet.

	А	В	С	D	E	F		
1	Problem	n 10-10						
2	lon X	Fe ³⁺	Pb ²⁺	Ce4+	Sn4+			
3	Ζ	3	2	4	4			
4	μ	0.062	0.042	0.07	0.045			
5	αx	0.9	0.45	1.1	1.1			
6	$\log \gamma_{\rm X}$	0.657	0.3205	1.1013	0.9779			
7	γx	0.2203	0.478	0.0792	0.1052			
8								
9	Docume	entation						
10	Cell B6=0.51*B3^2*SQRT(B4)/(1+3.3*B5*SQRT(B4))							
11	Cell B7=	10^-B6						

Rounding these results, gives

	(a) 0.22	(b) 0.48	(c) 0.08	(d)	0.11
--	-----------------	-----------------	----------	--------------	------

Chapter 10

10-11. (a)

$$\mu = 0.05 \quad \gamma_{Fe^{3+}} = 0.24 \quad \mu = 0.10 \quad \gamma_{Fe^{3+}} = 0.18$$
$$\gamma_{Fe^{3+}} (\mu = 0.062) = 0.18 + \frac{0.038}{0.05} (0.24 - 0.18) = 0.23$$

(b)

$$\mu = 0.01 \quad \gamma_{Pb^{2+}} = 0.665 \quad \mu = 0.05 \quad \gamma_{Pb^{2+}} = 0.45$$
$$\gamma_{Pb^{2+}} (\mu = 0.042) = 0.45 + \frac{0.008}{0.05} (0.665 - 0.45) = 0.48$$

(c)

$$\mu = 0.05 \quad \gamma_{Ce^{4+}} = 0.10 \quad \mu = 0.10 \quad \gamma_{Ce^{4+}} = 0.063$$
$$\gamma_{Ce^{4+}} (\mu = 0.070) = 0.063 + \frac{0.03}{0.05} (0.10 - 0.063) = 0.085 \approx 0.08$$

(d)

$$\mu = 0.01 \quad \gamma_{sn^{4+}} = 0.252 \quad \mu = 0.05 \quad \gamma_{sn^{4+}} = 0.10$$

$$\gamma_{sn^{4+}} (\mu = 0.045) = 0.10 + \frac{0.005}{0.04} (0.252 - 0.10) = 0.12$$

10-12. We must use $-\log \gamma_{\rm X} = \frac{0.51 Z_{\rm X}^2 \sqrt{\mu}}{1 + 3.3 \alpha_{\rm X} \sqrt{\mu}}$

(a) For Ag⁺, $\alpha_{Ag^+} = 0.25$. At $\mu = 0.08$, $\gamma_{Ag^+} = 0.7639$; For SCN⁻, $\alpha_{SCN^-} = 0.35$ and $\gamma_{SCN^-} = 0.7785$ retaining insignificant figures for later calculations.

$$K'_{\rm sp} = \frac{K_{\rm sp}}{\gamma_{\rm Ag^+} \gamma_{\rm SCN^-}} = \frac{1.1 \times 10^{-12}}{(0.7639)(0.7785)} = 1.8 \times 10^{-12}$$

(b) For $Pb^{2+} \gamma_{Pb2+} = 0.4042$ For I⁻. $\gamma_{I-} = 0.7714$

$$K'_{sp} = \frac{K_{sp}}{\gamma_{pb^{2^{+}}} \gamma_{\Gamma}} = \frac{7.9 \times 10^{-9}}{(0.4042)(0.7714)^{2}} = 3.3 \times 10^{-8}$$

(c) For La³⁺, γ_{La} 3+ = 0.197. For IO₃⁻, $\gamma_{IO3^{-}}$ = 0.7785
 $K'_{sp} = \frac{K_{sp}}{\gamma_{La^{3^{+}}} \gamma_{IO_{3^{-}}}} = \frac{1.0 \times 10^{-11}}{(0.197)(0.7785)^{3}} = 1.1 \times 10^{-10}$
(d) For Mg²⁺, $\gamma = 0.4674$; for NH₄⁺, $\gamma = 0.7639$; for PO₄³⁻, $\gamma = 0.1134$
 $K'_{sp} = \frac{K_{sp}}{\gamma_{Mg^{2^{+}}} \gamma_{NH_{4}^{+}} \gamma_{PO_{4}^{3^{-}}}} = \frac{3.0 \times 10^{-13}}{(0.4674)(0.7639)(0.1134)} = 7.4 \times 10^{-12}$
10-13. Zn(OH)₂(s) \rightleftharpoons Zn²⁺ + 2OH⁻ $K_{sp} = 3.0 \times 10^{-16}$

(a)
$$\mu = \frac{1}{2}[0.02 \times 1^2 + 0.02 \times 1^2] = 0.02$$

Using Equation 10-5,

$$\gamma_{\text{Zn}^{2+}} = 0.5951 \quad \gamma_{\text{OH}^{-}} = 0.867$$

$$K'_{\text{sp}} = a_{\text{Zn}^{2+}} a_{\text{OH}^{-}}^{2} = \gamma_{\text{Zn}^{2+}} [\text{Zn}^{2+}] \times \gamma_{\text{OH}^{-}}^{2} [\text{OH}^{-}]^{2}$$

$$[\text{Zn}^{2+}][\text{OH}^{-}]^{2} = \frac{3.0 \times 10^{-16}}{\gamma_{\text{Zn}^{2+}} \gamma_{\text{OH}^{-}}^{2}} = \frac{3.0 \times 10^{-16}}{(0.5951)(0.867)^{2}} = 6.706 \times 10^{-16}$$

Solubility =
$$S = [Zn^{2+}] = \frac{1}{2}[OH^{-}]$$

$$S(2S)^2 = 6.706 \times 10^{-16}$$

$$S = \left(\frac{6.706 \times 10^{-16}}{4}\right)^{1/3} = 5.5 \times 10^{-6} \,\mathrm{M}$$

(b)
$$\mu = \frac{1}{2} [2 \times 0.03 \times 1^2 + 0.03 \times 2^2] = 0.18$$

From Equation 10-5,

$$\gamma_{\rm Zn^{2+}} = 0.3386 \qquad \gamma_{\rm OH^-} = 0.7158$$

$$K'_{sp} = a_{Zn^{2+}}a_{OH^{-}}^{2} = \gamma_{Zn^{2+}}[Zn^{2+}] \times \gamma_{OH^{-}}^{2}[OH^{-}]^{2}$$
$$[Zn^{2+}][OH^{-}]^{2} = \frac{3.0 \times 10^{-16}}{(0.3386)(0.7158)^{2}} = 1.729 \times 10^{-15}$$
Solubility = S = [Zn^{2+}] = 1/2[OH^{-}]
$$S(2S)^{2} = 1.729 \times 10^{-15}$$
$$S = \left(\frac{1.729 \times 10^{-15}}{4}\right)^{\frac{1}{3}} = 7.6 \times 10^{-6} \text{ M}$$
(c)

amount of KOH =
$$\frac{0.250 \text{ mmol}}{\text{mL}} \times 40.0 \text{ mL} = 10.0 \text{ mmol}$$

amount of ZnCl₂ = $\frac{0.0250 \text{ mmol}}{\text{mL}} \times 60.0 \text{ mL} = 1.5 \text{ mmol}$

$$[K^{+}] = \frac{10 \text{ mmol}}{100.0 \text{ mL}} = 0.10 \text{ M}$$
$$[OH^{-}] = \frac{(10 \text{ mmol} - (2 \times 1.5 \text{ mmol}))}{100.0 \text{ mL}} \times = 0.07 \text{ M}$$
$$[Cl^{-}] = \frac{2 \times 1.5 \text{ mmol}}{100.0 \text{ mL}} = 0.03 \text{ M}$$
$$[Zn^{2+}] = 0$$

$$\mu = \frac{1}{2}[0.10 \times 1^2 + 0.07 \times 1^2 + 2 \times 0.03 \times 1^2] = 0.115$$

From Equation 10-5,

$$\gamma_{Zn^{2+}} = 0.3856 \qquad \gamma_{OH^{-}} = 0.7511 \qquad K_{sp}' = a_{Zn^{2+}} a_{OH^{-}}^2 = \gamma_{Zn^{2+}} [Zn^{2+}] \times \gamma_{OH^{-}}^2 [OH^{-}]^2$$
$$[Zn^{2+}][OH^{-}]^2 = \frac{3.0 \times 10^{-16}}{\gamma_{Zn^{2+}} \gamma_{OH^{-}}^2} = \frac{3.0 \times 10^{-16}}{(0.3856)(0.7511)^2} = 1.379 \times 10^{-15}$$
Solubility = S = [Zn^{2+}]
$$S(0.07)^2 = 1.379 \times 10^{-15}$$
$$S = \left(\frac{1.379 \times 10^{-15}}{(0.07)^2}\right) = 2.8 \times 10^{-13} \text{ M}$$

(**d**)

amount KOH =
$$\frac{0.100 \text{ mmol}}{\text{mL}} \times 20.0 \text{ mL} = 2.0 \text{ mmol}$$

amount ZnCl₂ = $\frac{0.0250 \text{ mmol}}{\text{mL}} \times 80.0 \text{ mL} = 2.0 \text{ mmol}$
 $[K^+] = \frac{2 \text{ mmol}}{100.0 \text{ mL}} = 0.02 \text{ M}$
 $[OH^-] = 0$
 $[Cl^-] = \frac{2 \times 2.0 \text{ mmol}}{100.0 \text{ mL}} = 0.04 \text{ M}$

$$[Zn^{2+}] = \frac{2 \text{ mmol} - \frac{1}{2}(2 \text{ mmol})}{100.0 \text{ mL}} = 0.01 \text{ M}$$

$$\mu = \frac{1}{2} \left(0.02 \times 1^{2} + 0.040 \times 1^{2} + 0.01 \times 2^{2} \right) = 0.05$$

From Table 10-2,

$$\gamma_{Zn^{2+}} = 0.48 \quad \gamma_{OH^{-}} = 0.81$$

$$K'_{sp} = a_{Zn^{2+}} a_{OH^{-}}^{2} = \gamma_{Zn^{2+}} [Zn^{2+}] \times \gamma_{OH^{-}}^{2} [OH^{-}]^{2}$$

$$[Zn^{2+}][OH^{-}]^{2} = \frac{3.0 \times 10^{-16}}{\gamma_{Zn^{2+}} \gamma_{OH^{-}}^{2}} = \frac{3.0 \times 10^{-16}}{(0.48)(0.81)^{2}} = 9.53 \times 10^{-16}$$

Solubility = $S = [OH^{-}]/2$

$$(0.01)[OH^{-}]^{2} = 9.53 \times 10^{-16}$$

$$[OH^{-}] = \left(\frac{9.53 \times 10^{-16}}{0.01}\right)^{\frac{1}{2}} = 3.09 \times 10^{-7} \text{ M}$$

 $S = (3.09 \times 10^{-7} \text{ M})/2 = 1.5 \times 10^{-7} \text{ M}$

10-14. $\mu = \frac{1}{2}[0.0333 \times 2^2 + 2 \times 0.0333 \times 1^2] = 0.100$ Can use data in Table 10-2.

(a)
$$\operatorname{AgSCN}(s) \rightleftharpoons \operatorname{Ag}^+ + \operatorname{SCN}^-$$

(1) For Ag⁺, $\gamma_{Ag^+} = 0.75$; for SCN⁻, $\gamma_{SCN^-} = 0.76$

Chapter 10

$$K'_{sp} = \gamma_{Ag^{+}} [Ag^{+}] \gamma_{SCN^{-}} [SCN^{-}] = 1.1 \times 10^{-12}$$

$$[Ag^{+}] [SCN^{-}] = \frac{1.1 \times 10^{-12}}{0.75 \times 0.76} = 1.9298 \times 10^{-12}$$

$$S = [Ag^{+}] = [SCN^{-}]$$

$$S = \sqrt{1.928 \times 10^{-12}} = 1.4 \times 10^{-6} \text{ M}$$
(2) $S = \sqrt{1.1 \times 10^{-12}} = 1.0 \times 10^{-6} \text{ M}$
(b)
PbI_2(s) $\Rightarrow Pb^{2+} + 2I^{-}$
(1) $\gamma_{Pb^{2+}} = 0.36 \quad \gamma_{\Gamma} = 0.75 \quad K'_{sp} = a_{Pb^{2+}}a_{\Gamma}^{2} = \gamma_{Pb^{2-}} [Pb^{2+}] \times (\gamma_{\Gamma} [I^{-}])^{2}$

$$[Pb^{2+}] [I^{-}]^{2} = \frac{7.9 \times 10^{-9}}{\gamma_{Pb^{2+}}\gamma_{\Gamma}^{-2}} = \frac{7.9 \times 10^{-9}}{(0.36)(0.75)^{2}} = 3.90 \times 10^{-8}$$
Solubility $= S = [Pb^{2+}] = \frac{1}{2} [I^{-}]$
 $S(2S)^{2} = 3.90 \times 10^{-8}$
 $S = \left(\frac{3.90 \times 10^{-8}}{4}\right)^{\frac{1}{3}} = 2.1 \times 10^{-3} \text{ M}$
(2) $S = \left(\frac{7.9 \times 10^{-9}}{4}\right)^{\frac{1}{3}} = 1.3 \times 10^{-3} \text{ M}$

(c)
$$BaSO_4(s) \rightleftharpoons Ba^{2+} + SO_4^{2-}$$

$$\gamma_{Ba^{2+}} = 0.38; \quad \gamma_{SO_4^{2-}} = 0.35$$

$$[Ba^{2+}][SO_4^{2-}] = \frac{1.1 \times 10^{-10}}{\gamma_{Ba^{2+}} \gamma_{SO_4^{2-}}} = \frac{1.1 \times 10^{-10}}{(0.38)(0.35)} = 8.3 \times 10^{-10}$$
Solubility = S = [Ba^{2+}] = [SO_4^{2-}]
$$S^2 = 8.3 \times 10^{-10}$$

$$S = \sqrt{8.3 \times 10^{-10}} = 2.9 \times 10^{-5} \text{ M}$$
(2)
$$S = \sqrt{1.1 \times 10^{-10}} = 1.0 \times 10^{-5} \text{ M}$$

(d)
$$\operatorname{Cd}_2\operatorname{Fe}(\operatorname{CN})_6(s) \rightleftharpoons 2 \operatorname{Cd}^{2+} + \operatorname{Fe}(\operatorname{CN})_6^{4-}$$

(1)
$$\gamma_{Cd^{2+}} = 0.38 \quad \gamma_{Fe(CN)_6^{4-}} = 0.020$$

 $[Cd^{2+}]^2 [Fe(CN)_6^{4-}] = \frac{3.2 \times 10^{-17}}{\gamma_{Cd^{2+}}^2 \gamma_{Fe(CN)_6^{4-}}} = \frac{3.2 \times 10^{-17}}{(0.38)^2 (0.020)} = 1.108 \times 10^{-14}$
Solubility $= S = \frac{1}{2} [Cd^{2+}] = [Fe(CN)_6^{4-}]$
 $(2S)^2 S = 1.108 \times 10^{-14}$
 $S = \left(\frac{1.108 \times 10^{-14}}{4}\right)^{\frac{1}{3}} = 1.4 \times 10^{-5} M$
(2) $S = \left(\frac{3.2 \times 10^{-17}}{4}\right)^{\frac{1}{3}} = 2.0 \times 10^{-6} M$

10-15. $\mu = \frac{1}{2}[0.0167 \times 2^2 + 2 \times 0.0167 \times 1^2] = 0.050$

(a)
$$\operatorname{AgIO}_3(s) \rightleftharpoons \operatorname{Ag}^+ + \operatorname{IO}_3^-$$

(1)
$$\gamma_{Ag^{+}} = 0.80$$
 $\gamma_{IO_{3}^{-}} = 0.82$
 $[Ag^{+}][IO_{3}^{-}] = \frac{3.1 \times 10^{-8}}{\gamma_{Ag^{+}}\gamma_{IO_{3}^{-}}} = \frac{3.1 \times 10^{-8}}{(0.80)(0.82)} = 4.7 \times 10^{-8}$
Solubility = $S = [Ag^{+}] = [IO_{3}^{-}]$
 $S^{2} = 4.7 \times 10^{-8}$
 $S = \sqrt{4.7 \times 10^{-8}} = 2.2 \times 10^{-4} \text{ M}$
(2) $S = \sqrt{3.1 \times 10^{-8}} = 1.8 \times 10^{-4} \text{ M}$

(b)
$$Mg(OH)_2(s) \rightleftharpoons Mg^{2+} + 2OH$$

(1)
$$\gamma_{\rm Mg^{2+}} = 0.52 \quad \gamma_{\rm OH^-} = 0.8$$

$$[Mg^{2+}][OH^{-}]^{2} = \frac{7.1 \times 10^{-12}}{\gamma_{Mg^{2+}}\gamma_{OH^{-}}^{2}} = \frac{7.1 \times 10^{-12}}{(0.52)(0.81)^{2}} = 2.081 \times 10^{-11}$$

Solubility = $S = [Mg^{2+}] = \frac{1}{2}[OH^{-}]$
 $S(2S)^{2} = 2.081 \times 10^{-11}$
 $S = \left(\frac{2.081 \times 10^{-11}}{4}\right)^{\frac{1}{3}} = 1.7 \times 10^{-4} M$
(2) $S = \left(\frac{7.1 \times 10^{-12}}{4}\right)^{\frac{1}{3}} = 1.2 \times 10^{-4} M$

(c)
$$BaSO_4(s) \rightleftharpoons Ba^{2+} + SO_4^{2-}$$

(1)
$$\gamma_{Ba^{2+}} = 0.46 \quad \gamma_{SO_4^{2-}} = 0.44$$

$$[Ba^{2+}][SO_4^{2-}] = \frac{1.1 \times 10^{-10}}{\gamma_{Ba^{2+}}\gamma_{SO_4^{2-}}} = \frac{1.1 \times 10^{-10}}{(0.46)(0.44)} = 5.435 \times 10^{-10}$$

Solubility =
$$S = [SO_4^{2^-}]$$

(0.0167) × $S = 5.435 \times 10^{-10}$
 $S = \left(\frac{5.435 \times 10^{-10}}{0.0167}\right) = 3.3 \times 10^{-8} \text{ M}$
(2) $S = \left(\frac{1.1 \times 10^{-10}}{0.0167}\right) = 6.6 \times 10^{-9} \text{ M}$

(d)
$$La(IO_3)_3(s) \rightleftharpoons La^{3+} + 3IO_3$$

(1)
$$\gamma_{\text{La}^{3+}} = 0.24$$
 $\gamma_{\text{IO}_3^-} = 0.82$ $K_{\text{sp}} = a_{\text{La}^{3+}}a_{\text{IO}_3^-}^3 = \gamma_{\text{La}^{3+}}[\text{La}^{3+}] \times (\gamma_{\text{IO}_3^-}[\text{IO}_3^-])^3$
 $[\text{La}^{3+}][\text{IO}_3^-]^3 = \frac{1.0 \times 10^{-11}}{\gamma_{\text{La}^{3+}}\gamma_{\text{IO}_3^-}^3} = \frac{1.0 \times 10^{-11}}{(0.24)(0.82)^3} = 7.557 \times 10^{-11}$
Solubility = $S = [\text{La}^{3+}] = \frac{1}{3}[\text{IO}_3^-]$

$$S(3S)^{3} = 7.557 \times 10^{-11}$$
$$S = \left(\frac{7.557 \times 10^{-11}}{27}\right)^{\frac{1}{4}} = 1.3 \times 10^{-3} \text{ M}$$
$$(2) \quad S = \left(\frac{1.0 \times 10^{-11}}{27}\right)^{\frac{1}{4}} = 7.8 \times 10^{-4} \text{ M}$$

10-16. (a) $\operatorname{CuCl}(s) \rightleftharpoons \operatorname{Cu}^+ + \operatorname{Cl}^-$

If we assume that Cu^+ has an effective diameter of 0.3 like similarly charged cations, then

(1)
$$\gamma_{Cu^{+}} = 0.80$$
 $\gamma_{CI^{-}} = 0.80$ $K'_{sp} = a_{Cu^{+}}a_{CI^{-}} = \gamma_{Cu^{+}}[Cu^{+}] \times \gamma_{CI^{-}}[CI^{-}]$
 $[Cu^{+}][CI^{-}] = \frac{1.9 \times 10^{-7}}{\gamma_{Cu^{+}}\gamma_{CI^{-}}} = \frac{1.9 \times 10^{-7}}{(0.80)(0.80)} = 2.969 \times 10^{-7}$
Solubility = $S = [Cu^{+}] = [CI^{-}]$
 $S^{2} = 2.969 \times 10^{-7}$
 $S = \sqrt{2.969 \times 10^{-7}} = 5.4 \times 10^{-4} M$
(2) $S = \sqrt{1.9 \times 10^{-7}} = 4.4 \times 10^{-4} M$
relative error $= \frac{(4.4 \times 10^{-4} - 5.4 \times 10^{-4})}{5.4 \times 10^{-4}} \times 100\% = -19\%$

(b)
$$\operatorname{Fe}(OH)_2(s) \rightleftharpoons \operatorname{Fe}^{2+} + 2OH^-$$

(1)
$$\gamma_{\text{Fe}^{2+}} = 0.48 \quad \gamma_{\text{OH}^{-}} = 0.81 \quad K'_{\text{sp}} = a_{\text{Fe}^{2+}} a_{\text{OH}^{-}}^2 = \gamma_{\text{Fe}^{2+}} [\text{Fe}^{2+}] \times (\gamma_{\text{OH}^{-}} [\text{OH}^{-}])^2$$

 $[\text{Fe}^{2+}][\text{OH}^{-}]^2 = \frac{4.1 \times 10^{-15}}{\gamma_{\text{Fe}^{2+}} \gamma_{\text{OH}^{-}}^2} = \frac{4.1 \times 10^{-15}}{(0.48)(0.81)^2} = 1.302 \times 10^{-14}$
Solubility = S = [Fe²⁺] = $\frac{1}{2}$ [OH⁻]
 $S(2S)^2 = 1.302 \times 10^{-14}$

Chapter 10

$$S = \left(\frac{1.302 \times 10^{-14}}{4}\right)^{\frac{1}{3}} = 1.5 \times 10^{-5} \text{ M}$$
(2) $S = \left(\frac{4.1 \times 10^{-15}}{4}\right)^{\frac{1}{3}} = 1.0 \times 10^{-5} \text{ M}$
relative error $= \frac{1.0 \times 10^{-5} - 1.5 \times 10^{-5}}{1.5 \times 10^{-5}} \times 100\% = -33\%$
(c) $Fe(OH)_3 \rightleftharpoons Fe^{3+} + 3OH^-$
(l) $\gamma_{Fe^{3+}} = 0.24$ $\gamma_{OH^-} = 0.81$ $K'_{sp} = a_{Fe^{3+}}a^3_{OH^-} = \gamma_{Fe^{3+}}[Fe^{3+}] \times (\gamma_{OH^-}[OH^-])^3$
 $[Fe^{3+}][OH^-]^3 = \frac{2 \times 10^{-39}}{\gamma_{Fe^{3+}}\gamma^3_{OH^-}} = \frac{2 \times 10^{-39}}{(0.24)(0.81)^3} = 1.568 \times 10^{-38}$ retaining figures until the end
Solubility $= S = [Fe^{3+}] = \frac{1}{3}[OH^-]$
 $S(3S)^3 = 1.568 \times 10^{-38}$
 $S = \left(\frac{1.568 \times 10^{-38}}{27}\right)^{\frac{1}{4}} = 1.55 \times 10^{-10} \text{ M}$
(2) $S = \left(\frac{2 \times 10^{-39}}{27}\right)^{\frac{1}{4}} = 9.3 \times 10^{-11} M$
relative error $= \frac{9.3 \times 10^{-11} - 1.55 \times 10^{-10}}{1.55 \times 10^{-10}} \times 100\% = -40\%$

(d)
$$La(IO_3)_3(s) \rightleftharpoons La^{3+} + 3IO_3$$

(1)
$$\gamma_{La^{3+}} = 0.24$$
 $\gamma_{IO_3^-} = 0.82$ $K'_{sp} = a_{La^{3+}} a^3_{IO_3^-} = \gamma_{La^{3+}} [La^{3+}] \times (\gamma_{IO_3^-} [IO_3^-])^3$
 $[La^{3+}][IO_3^-]^3 = \frac{1.0 \times 10^{-11}}{\gamma_{La^{3+}} \gamma^3_{IO_3^-}} = \frac{1.0 \times 10^{-11}}{(0.24)(0.82)^3} = 7.557 \times 10^{-11}$
Solubility = $S = [La^{3+}] = \frac{1}{3}[IO_3^-]$

12

$$S(3S)^{3} = 7.557 \times 10^{-11}$$

$$S = \left(\frac{7.557 \times 10^{-11}}{27}\right)^{\frac{1}{4}} = 1.3 \times 10^{-3} \text{ M}$$
(2)
$$S = \left(\frac{1.1 \times 10^{-11}}{27}\right)^{\frac{1}{4}} = 8.0 \times 10^{-4} \text{ M}$$
relative error
$$= \frac{8.0 \times 10^{-4} - 1.3 \times 10^{-3}}{1.3 \times 10^{-3}} \times 100\% = -38\%$$

(e)
$$Ag_3(AsO_4)(s) \rightleftharpoons 3Ag^+ + AsO_4^{3-}$$

Since the α_X of AsO₄³⁻ was given as 0.4, the γ value will be like PO₄³⁻. So,

(1)
$$\gamma_{Ag^{+}} = 0.80 \quad \gamma_{AsO_{4}^{3-}} = 0.16 \quad K'_{sp} = a^{3}_{Ag^{+}}a_{AsO_{4}^{3-}} = (\gamma_{Ag^{+}}[Ag^{+}])^{3} \times \gamma_{AsO_{4}^{3-}}[AsO_{4}^{3-}]$$

$$[Ag^{+}]^{3}[AsO_{4}^{3-}] = \frac{6 \times 10^{-23}}{\gamma^{3}_{Ag^{+}}\gamma_{AsO_{4}^{3-}}} = \frac{6 \times 10^{-23}}{(0.80)^{3}(0.16)} = 7.324 \times 10^{-22}$$

Solubility = $S = [AsO_3^{4-}] = \frac{1}{3}[Ag^+]$

$$(3S)^{3}S = 7.324 \times 10^{-22}$$

$$S = \left(\frac{7.324 \times 10^{-22}}{27}\right)^{\frac{1}{4}} = 2.3 \times 10^{-6} \text{ M}$$
(2) $S = \left(\frac{6 \times 10^{-23}}{27}\right)^{\frac{1}{4}} = 1.2 \times 10^{-6} \text{ M}$
relative error $= \frac{1.2 \times 10^{-6} - 2.3 \times 10^{-6}}{2.3 \times 10^{-6}} \times 100\% = -48\%$

10-17. (a)

In this buffer solution, we assume [HOAc] = c_{HOAc} and [OAC⁻] = c_{NaOAc} . We also assume that the ionic strength is contributed solely by NaOAc, neglecting H₃O⁺ and OH⁻. $\mu = \frac{1}{2}[0.250 \times 1^2 + 0.250 \times 1^2] = 0.250$

$$-\log \gamma_{H_{3}O^{+}} = \frac{(0.51)(1)^{2}\sqrt{0.250}}{1+(3.3)(0.9)\sqrt{0.250}} = 0.1026 \quad \gamma_{H_{3}O^{+}} = 0.790$$

$$-\log \gamma_{OAC^{-}} = \frac{(0.51)(1)^{2}\sqrt{0.250}}{1+(3.3)(0.425)\sqrt{0.520}} = 0.1499 \quad \gamma_{OAC^{-}} = 0.708$$

$$K_{a} = \frac{\gamma_{H_{3}O^{+}}[H_{3}O^{+}]\gamma_{OAC^{-}}[OAC^{-}]}{[HOAC]}$$

$$K'_{a} = \frac{[H_{3}O^{+}][OAC^{-}]}{[HOAC]} = \frac{K_{a}}{\gamma_{H_{3}O^{+}}\gamma_{OAC^{-}}} = \frac{1.75 \times 10^{-5}}{0.790 \times 0.708} = 3.129 \times 10^{-5}$$

$$[H_{3}O^{+}] = \frac{K'_{a}[HOAC]}{[OAC^{-}]} = \frac{3.129 \times 10^{-5} \times 0.150}{0.250} = 1.9 \times 10^{-5} \text{ M}$$

$$pH = 4.73$$
With no activity corrections
$$[H_{3}O^{+}] = \frac{1.75 \times 10^{-5} \times 0.150}{0.250} = 1.05 \times 10^{-5} \text{ M}$$

$$pH = 4.98$$
relative error in
$$[H_{3}O^{+}] = \frac{1.05 \times 10^{-5} - 1.9 \times 10^{-5}}{1.9 \times 10^{-5}} \times 100\% = -45\%$$

(b) In this buffer, we assume that the ionic strength is contributed by only NH_4Cl and that $c_{NH_3} = [NH_3]$ and $c_{NH_4+=}[NH_4^+]$.

 $NH_3 + H_2O \Longrightarrow NH_4^+ + OH^ K_b = K_w/K_a = 1.00 \times 10^{-14}/5.70 \times 10^{-10} = 1.75 \times 10^{-5}$

$$\mu = \frac{1}{2}[0.100 \times 1^2 + 0.100 \times 1^2] = 0.100$$

From Table 10-2,
$$\gamma_{NH_4^+} = 0.75$$
, $\gamma_{OH^-} = 0.76$
 $K_b = \frac{a_{NH_4^+}a_{OH^-}}{a_{NH_3}} = \frac{[NH_4^+][OH^-]\gamma_{NH_4^+}\gamma_{OH^-}}{[NH_3]} = K_b'\gamma_{NH_4^+}\gamma_{OH^-}$
 $K_b' = \frac{[NH_4^+][OH^-]}{[NH_3]} = \frac{K_b}{\gamma_{NH_4^+}\gamma_{OH^-}} = \frac{1.75 \times 10^{-5}}{0.75 \times 0.76} = 3.07 \times 10^{-5}$
 $[OH^-] = \frac{K_b'[NH_3]}{[NH_4^+]} = \frac{3.07 \times 10^{-5} \times 0.040}{0.100} = 1.2 \times 10^{-5} \text{ M}$
 $[H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1.00 \times 10^{-14}}{1.2 \times 10^{-5}} = 8.1 \times 10^{-10} \text{ M}$
Assuming activity coefficients are unity,
 $[OH^-] = \frac{K_b[NH_3]}{[NH_4^+]} = \frac{1.75 \times 10^{-5} \times 0.040}{0.100} = 7.0 \times 10^{-6} \text{ M}$
 $[H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1.00 \times 10^{-14}}{7.0 \times 10^{-6}} = 1.4 \times 10^{-9} \text{ M}$
relative error $= \frac{1.4 \times 10^{-9} - 8.1 \times 10^{-10}}{8.1 \times 10^{-10}} = 73\%$
(c)

$$ClHOAc + H_2O \rightleftharpoons H_3O^+ + ClOAc^ K_a = 1.36 \times 10^{-3}$$

We assume that the ionic strength is created by NaClHOAc = 0.050, [ClHOAc] = 0.020

M, and $[ClOAc^{-}] = 0.050 \text{ M}$

Hence, $\gamma_{\rm H_3O^+} = 0.85$, $\gamma_{\rm CIOAc^-} = 0.81$

$$K'_{a} = \frac{[H_{3}O^{+}][ClOAc^{-}]}{[ClHOAc]} = \frac{K_{a}}{\gamma_{H_{3}O^{+}}\gamma_{ClOAc^{-}}} = \frac{1.36 \times 10^{-3}}{0.85 \times 0.81} = 1.975 \times 10^{-3}$$
$$[H_{3}O^{+}] = \frac{1.975 \times 10^{-3} \times [ClHOAc]}{[ClOAc^{-}]} = \frac{1.975 \times 10^{-3} \times 0.020}{0.050} = 7.9 \times 10^{-4} M_{1}$$

With no activity corrections,

$$[H_{3}O^{+}] = \frac{1.36 \times 10^{-3} \times 0.020}{0.050} = 5.4 \times 10^{-4} \text{ M}$$

relative error = $\frac{5.4 \times 10^{-4} - 7.9 \times 10^{-4}}{7.9 \times 10^{-4}} \times 100\% = 31.6\%$

10-18.

	Α	В	С	D	E	F	G
1	Problem 10-18						
2	αχ	Z	0.001	0.005	0.01	0.05	0.1
3	0.9	1	0.967	0.934	0.913	0.854	0.826
4	0.6	1	0.966	0.930	0.907	0.834	0.796
5	0.425	1	0.965	0.927	0.902	0.819	0.773
6	0.35	1	0.965	0.926	0.900	0.812	0.762
7	0.3	1	0.965	0.925	0.899	0.807	0.754
8	0.25	1	0.964	0.925	0.897	0.801	0.745
9	0.8	2	0.872	0.756	0.690	0.517	0.445
10	0.6	2	0.870	0.747	0.676	0.483	0.401
11	0.5	2	0.868	0.743	0.668	0.464	0.377
12	0.45	2	0.868	0.740	0.664	0.455	0.364
13	0.4	2	0.867	0.738	0.660	0.444	0.351
14	0.9	3	0.737	0.539	0.443	0.242	0.178
15	0.4	3	0.726	0.505	0.393	0.161	0.095
16	1.1	4	0.587	0.347	0.252	0.098	0.063
17	0.5	4	0.569	0.304	0.199	0.046	0.020
18							
19	Document	tation					
20	Cell C3=10	^-(0.51*\$B	3^2*SQRT	(C\$2)/(1+3.	3*\$A3*SQ	RT(C\$2)))	

Chapter 10

Chapter 11

11-1. The overall dissociation constant for H_2S is

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}[\mathrm{S}^{2^{-}}]}{[\mathrm{H}_{2}\mathrm{S}]} = K_{1}K_{2}$$

In a solution saturated with the gas, $[H_2S]$ is constant, therefore

$$[\mathbf{S}^{2^{-}}] = \frac{[\mathbf{H}_{2}\mathbf{S}]}{[\mathbf{H}_{3}\mathbf{O}^{+}]^{2}}K_{1}K_{2} \qquad \text{or } [\mathbf{S}^{2^{-}}] = \frac{K}{[\mathbf{H}_{3}\mathbf{O}^{+}]^{2}}$$

- **11-2.** To simplify equilibrium calculations, we sometimes assume that the concentrations of one or more species are negligible and can be approximated as 0.00 M. In a sum or difference assuming a concentration is 0.00 M leads to an appropriate result. In contrast, if we were to simplify and equilibrium constant expression by assuming on or more concentrations are zero, we would be multiplying or dividing by 0.00, which would render the expression meaningless.
- **11-3.** Let us take the case of 0.100 M acetic acid (HOAc). We usually write the mass balance as a concentration balance. That is

 $c_{\rm HOAc} = 0.100 = [\rm HOAc] + [\rm OAc^{-}]$

Since the concentrations are moles/L, we can write

Initial moles HOAc/L = equilibrium moles HOAc/L + equilibrium moles OAc^{-}/L

Since everything is in the same volume of solution, this becomes

Initial no. moles HOAc = equilibrium no. moles of HOAc + equilibrium no. moles OAc^{-}

If we divide these quantities by the molecular mass, we obtain, after rearranging:

Initial mass HOAC = equil. mass HOAC + mass OAc⁻ × $\mathcal{M}_{HOAc}/\mathcal{M}_{OAc-}$

11-4. A charge-balance equation is derived by relating the concentration of cations and anions no. mol/L positive charge = no. mol/L negative charge

For a doubly charged ion, such as Ba^{2+} , the concentration of charge for each mole is twice the molar *concentration* of the Ba^{2+} . That is,

mol/L positive charge = $2[Ba^{2+}]$

Thus, the molar concentration of all multiply charged species is always multiplied by the charge in a charge-balance equation.

 $0.20 = [HF] + [F^-]$ 11-5. (a)

(**b**) For $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$, we write

 $0.35 = [NH_3] + [NH_4]^+$

(c)
$$0.10 = [H_3PO_4] + [H_2PO_4^-] + [HPO_4^{2-}] + [PO_4^{3-}]$$

(d)
$$0.20 = [H_3PO_4] + [H_2PO_4^-] + [HPO_4^{2-}] + [PO_4^{3-}]$$

 $[Na^+] = 2c_{Na2HPO4} = 0.40 M$

(e)
$$0.0500 + 0.100 = [\text{HClO}_2] + [\text{ClO}_2^-]$$

 $[Na^+] = c_{NaClO2} = 0.100 M$

(f)
$$[F^{-}] + [HF] = 0.12 + 2[Ca^{2+}]$$

 $[Na^{+}] = 0.12 M$

(g)
$$0.100 = [Na^+] = [OH^-] + 2 [Zn(OH)_4^{2-}]$$

(**h**)
$$[Ag^+] = 2([C_2O_4^{2-}] + [HC_2O_4^{-}] + [H_2CO_4])$$

(**n**)
$$[Ag^{+}] = 2([C_{2}O_{4}^{-}] + [HC_{2}O_{4}] + [H_{2}CO_{4}^{-}]]$$

(i)
$$[Pb^{2+}] = \frac{1}{2}([Cl^{-}])$$

11-6. (a)
$$[H_3O^+] = [F^-] + [OH^-]$$

(b)
$$[H_3O^+] + [NH_4^+] = [OH^-]$$

(c)
$$[H_3O^+] = [OH^-] + [H_2PO_4^-] + 2[HPO_4^{2-}] + 3[PO_4^{3-}]$$

(d)
$$[Na^+] + [H_3O^+] = [OH^-] + [H_2PO_4^-] + 2[HPO_4^{2-}] + 3[PO_4^{3-}]$$

(e)
$$[Na^+] + [H_3O^+] = [OH^-] + [ClO_2^-]$$

(f)
$$[Na^+] + [H_3O^+] + 2[Ca^{2+}] = [OH^-] + [F^-]$$

(g)
$$2[Zn^{2+}] + [Na^+] + [H_3O^+] = = [Zn(OH)_4^{2-}] + [OH^-]$$

(**h**)
$$[Ag^+] + [H_3O^+] = 2[C_2O_4^{2-}] + [HC_2O_4^{--}] + [OH^-]$$

(i)
$$2[Pb^{2+}] + [H_3O^+] = [Cl^-] + [OH^-]$$

11-7. Following the systematic procedure, using part (a)

Step 1
$$\operatorname{SrC}_2O_4(s) \rightleftharpoons \operatorname{Sr}^{2+} + \operatorname{C}_2O_4^{2-}$$

$$H_2C_2O_4 + H_2O \rightleftharpoons H_3O^+ + HC_2O_4^-$$

$$\mathrm{HC}_{2}\mathrm{O}_{4}^{-} + \mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{C}_{2}\mathrm{O}_{4}^{2-}$$

Step 2
$$S = \text{solubility} = [\text{Sr}^{2+}] = [\text{C}_2\text{O}_4^{2-}] + [\text{HC}_2\text{O}_4^{-}] + [\text{H}_2\text{C}_2\text{O}_4]$$

Step 3 $[\text{Sr}^{2+}][\text{C}_2\text{O}_4^{2-}] = K_{\text{sp}} = 5 \times 10^{-8}$ (1)

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}\mathrm{C}_{2}\mathrm{O}_{4}^{-}]}{[\mathrm{H}_{2}\mathrm{C}_{2}\mathrm{O}_{4}]} = K_{1} = 5.6 \times 10^{-2}$$
(2)

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{C}_{2}\mathrm{O}_{4}^{-}]}{[\mathrm{H}\mathrm{C}_{2}\mathrm{O}_{4}^{-}]} = K_{2} = 5.42 \times 10^{-5}$$
(3)

Step 4
$$[Sr^{2+}] = [C_2O_4^{2-}] + [HC_2O_4^{-}] + [H_2C_2O_4]$$
 (4)
 $[H_3O^+] = 1.0 \times 10^{-6} M$

Step 5 No charge balance because an unknown buffer is maintaining the pH.

Step 6 Unknowns are $[Sr^{2+}]$, $[C_2O_4^{2-}]$, $[HC_2O_4^{--}]$, $[H_2C_2O_4]$

Step 7 No approximations needed, because we have 4 equations and 4 unkowns.

Step 8 Substituting $[H_3O^+] = 1.0 \times 10^{-6}$ M into equation (3) and rearranging gives

$$[\text{HC}_{2}\text{O}_{4}^{-}] = \frac{1 \times 10^{-6}[\text{C}_{2}\text{O}_{4}^{-}]}{5.42 \times 10^{-5}} = 1.845 \times 10^{-2}[\text{C}_{2}\text{O}_{4}^{-}]$$

Substituting this relationship and $[H_3O^+] = 1.0 \times 10^{-6}$ M into equation (2) and rearranging gives

$$[H_2C_2O_4] = \frac{1 \times 10^{-6} \times 1.845 \times 10^{-2} [C_2O_4^{-}]}{5.6 \times 10^{-2}} = 3.295 \times 10^{-7} [C_2O_4^{-}]$$

Substituting these last two relationships in to equation (4) gives

$$[Sr^{2+}] = [C_2O_4^{2-}] + 1.845 \times 10^{-2} [C_2O_4^{2-}] + 3.295 \times 10^{-7} [C_2O_4^{2-}] = 1.0185 [C_2O_4^{2-}]$$

Substituting this last relationship into equation (1) gives

$$K_{\rm sp} = \frac{[\mathrm{Sr}^{2+}][\mathrm{Sr}^{2+}]}{1.0185} = 5 \times 10^{-8}$$
$$[\mathrm{Sr}^{2+}] = (5 \times 10^{-8} \times 1.0185)^{1/2} = 2.26 \times 10^{-4}$$
$$S = [\mathrm{Sr}^{2+}] = 2.3 \times 10^{-4} \mathrm{M}$$

Substituting other values for $[H_3O^+]$ gives the following:

	$[H_3O^+]$	S, \mathbf{M}
(a)	$1.00 imes10^{-6}$	$2.3 imes10^{-4}$
(b)	$1.00 imes 10^{-7}$	$2.2 imes10^{-4}$
(c)	$1.00 imes10^{-9}$	$2.2 imes10^{-4}$
(d)	1.00×10^{-11}	$2.2 imes 10^{-4}$

11-8. Proceeding as in Problem 11-7, we write

$$BaSO_4 \rightleftharpoons Ba^{2+} + SO_4^{2-} \qquad K_{sp} = 1.1 \times 10^{-10}$$

$$HSO_{4}^{-} + H_{2}O \rightleftharpoons H_{3}O^{+} + SO_{4}^{2-} \qquad K_{2} = 1.02 \times 10^{-2}$$
$$S = [Ba^{2+}]$$
$$[Ba^{2+}][SO_{4}^{2-}] = 1.1 \times 10^{-10} \qquad (1)$$
$$[H O^{+}][SO^{2-}] \qquad (1)$$

$$\frac{[\text{H}_{3}\text{O}^{-}][\text{SO}_{4}^{-}]}{[\text{HSO}_{4}^{-}]} = 1.02 \times 10^{-2}$$
(2)

Mass balance requires that

$$[Ba^{2+}] = [SO_4^{2-}] + [HSO_4^{-}]$$
(3)

The unknowns are $[Ba^{2+}]$, $[SO_4^{2-}]$, and $[HSO_4^{-}]$

We have 3 equations and 3 unknowns so no approximations are needed.

Substituting equation (2) into (3) gives

$$[Ba^{2+}] = [SO_4^{2-}] + \frac{[H_3O^+][SO_4^{2-}]}{1.02 \times 10^{-2}} = [SO_4^{2-}] \left(1 + \frac{[H_3O^+]}{1.02 \times 10^{-2}}\right)$$

Substituting equation (1) to eliminate $[SO_4^{2-}]$, gives

$$[Ba^{2+}] = \frac{1.1 \times 10^{-10}}{[Ba^{2+}]} \times \left(1 + \frac{[H_3O^+]}{1.02 \times 10^{-2}}\right) = \frac{1.1 \times 10^{-10}}{[Ba^{2+}]} \times (1 + 98.0[H_3O^+])$$

$$S = [Ba^{2+}] = \sqrt{1.1 \times 10^{-10} (1 + 98.0[H_3O^+])} = \sqrt{1.1 \times 10^{-10} + 1.078 \times 10^{-8}[H_3O^+]}$$

Using the different values of $[H_3O^+]$

	$[H_3O^+]$	<i>S</i> , M
(a)	3.5	$1.9 imes 10^{-4}$
(b)	0.5	$7.4 imes10^{-5}$
(c)	0.08	$3.1 imes10^{-5}$
(d)	0.100	$3.4 imes10^{-5}$

Chapter 11

11-9. The derivation that follows applies to problems 9-11.

$$MS(s) \rightleftharpoons M^{2+} + S^{2-} \qquad K_{sp}$$

$$H_2S + H_2O \rightleftharpoons H_3O^+ + HS^- \qquad K_1 = 9.6 \times 10^{-8}$$

$$HS^- + H_2O \rightleftharpoons H_3O^+ + S^{2-} \qquad K_2 = 1.3 \times 10^{-14}$$

$$Overall H_2S + 2H_2O \rightleftharpoons 2H_3O^+ + S^{2-} \qquad K_1K_2 = 1.25 \times 10^{-21}$$

$$S = solubility = [M^{2+}]$$

 $[M^{2+}][S^{2-}] = K_{sp}$ (1)

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}\mathrm{S}^{-}]}{[\mathrm{H}_{2}\mathrm{S}]} = K_{2} = 1.3 \times 10^{-14}$$
⁽²⁾

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}[\mathrm{S}^{2-}]}{[\mathrm{H}_{2}\mathrm{S}]} = K_{1}K_{2} = 1.25 \times 10^{-21}$$
(3)

Mass balance is:

$$[M^{2+}] = [S^{2-}] + [HS^{-}] + [H_2S]$$
(4)

Substituting equation (2) and (3) into (4), gives:

$$[\mathbf{M}^{2+}] = [\mathbf{S}^{2-}] + \frac{[\mathbf{H}_3\mathbf{O}^+][\mathbf{S}^{2-}]}{K_2} + \frac{[\mathbf{H}_3\mathbf{O}^+]^2[\mathbf{S}^{2-}]}{K_1K_2} = [\mathbf{S}^{2-}]\left(1 + \frac{[\mathbf{H}_3\mathbf{O}^+]}{K_2} + \frac{[\mathbf{H}_3\mathbf{O}^+]^2}{K_1K_2}\right)$$
(5)

Substituting equation (1) into (5), gives

$$[\mathbf{M}^{2+}] = \frac{K_{\rm sp}}{[\mathbf{M}^{2+}]} \left(1 + \frac{[\mathbf{H}_3\mathbf{O}^+]}{K_2} + \frac{[\mathbf{H}_3\mathbf{O}^+]^2}{K_1K_2} \right)$$
$$[\mathbf{M}^{2+}] = \sqrt{K_{\rm sp}} \left(1 + \frac{[\mathbf{H}_3\mathbf{O}^+]}{1.3 \times 10^{-14}} + \frac{[\mathbf{H}_3\mathbf{O}^+]^2}{1.25 \times 10^{-21}} \right)$$
(6)

(a) Substituting $K_{\rm sp} = 3 \times 10^{-28}$ and $[{\rm H}_3{\rm O}^+] = 3.0 \times 10^{-1}$ into equation (6), gives

$$[M^{2+}] = \text{ solubility} = \sqrt{3 \times 10^{-28} \left(1 + \frac{0.30}{1.3 \times 10^{-14}} + \frac{(0.30)^2}{1.25 \times 10^{-21}} \right)} = 1.5 \times 10^{-4} \text{ M}$$

(**b**) Using the same K_{sp} , but $[H_3O^+] = 3.0 \times 10^{-4}$, gives

$$[M^{2+}] =$$
solubility $= 1.5 \times 10^{-7} M$

11-10. For CuS, $K_{\rm sp} = 8 \times 10^{-37}$

(a) For $[H_3O^+] = 2.0 \times 10^{-1}$,

$$[M^{2+}] =$$
solubility $= 5.1 \times 10^{-9} M$

(b) For $[H_3O^+] = 2.0 \times 10^{-4}$

$$[M^{2+}] =$$
solubility $= 5.1 \times 10^{-12} M$

11-11. For MnS(pink), $K_{sp} = 3.0 \times 10^{-11}$

(a) For
$$[H_3O^+] = 3.00 \times 10^{-5}$$

 $[M^{2+}] = \text{solubility} = 4.7 \text{ M}$
(b) For $[H_3O^+] = 3.00 \times 10^{-7}$
 $[M^{2+}] = \text{solubility} = 5.3 \times 10^{-2} \text{ M}$

11-12. Proceeding as in Problem 11-9, we find

$$[Zn^{2+}] = \sqrt{K_{sp} \left(1 + \frac{[H_3O^+]}{K_2} + \frac{[H_3O^+]^2}{K_1K_2}\right)}$$

For ZnCO₃, $K_{\rm sp} = 1.0 \times 10^{-10}$. For H₂CO₃, $K_1 = 4.45 \times 10^{-7}$, and $K_2 = 4.69 \times 10^{-11}$

$$[Zn^{2+}] = \sqrt{1 \times 10^{-10} \left(1 + \frac{[H_3O^+]}{4.69 \times 10^{-11}} + \frac{[H_3O^+]^2}{4.45 \times 10^{-7} \times 4.69 \times 10^{-11}}\right)}$$

For pH = 7.00, $[H_3O^+] = 1.00 \times 10^{-7}$

$$[Zn^{2+}] = 5.1 \times 10^{-4} M$$

Chapter 11

11-13.
$$Ag_2CO_3 \rightleftharpoons 2Ag^+ + CO_3^{2-}$$
 $K_{sp} = [Ag^+]^2[CO_3^{2-}] = 8.1 \times 10^{-12}$ (1)

$$H_2CO_3 + H_2O \rightleftharpoons H_3O^+ + HCO_3^- \qquad K_1 = \frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]} = 4.45 \times 10^{-7}$$
 (2)

$$HCO_3^- + H_2O \rightleftharpoons H_3O^+ + CO_3^{2-} \qquad K_2 = \frac{[H_3O^+][CO_3^{2-}]}{[HCO_3^-]} = 4.69 \times 10^{-11}$$
(3)

$$H_2CO_3 + 2H_2O \rightleftharpoons 2H_3O^+ + CO_3^{2-} \quad K_1K_2 = \frac{[H_3O^+]^2[CO_3^{2-}]}{[H_2CO_3]} = 2.087 \times 10^{-17}$$
 (4)

Solubility = $[Ag^+]/2$

$$pH = 7.50, [H_3O^+] = 3.16 \times 10^{-8}$$

Mass balance:

$$\frac{[Ag^+]}{2} = [CO_3^{2-}] + [HCO_3^-] + [H_2CO_3]$$

$$[H_3O^+] = 3.16 \times 10^{-8}$$
(6)

Substituting equations (3), (4) and (6) into (5) gives,

$$\frac{[\mathrm{Ag}^+]}{2} = [\mathrm{CO}_3^{2-}] \left(1 + \frac{3.16 \times 10^{-8}}{4.69 \times 10^{-11}} + \frac{\left(3.16 \times 10^{-8}\right)^2}{2.087 \times 10^{-17}} \right)$$

Substituting equation (1) into this expression gives,

$$\frac{[\mathrm{Ag}^{+}]}{2} = \frac{K_{\mathrm{sp}}}{[\mathrm{Ag}^{+}]^{2}} \left(1 + \frac{3.16 \times 10^{-8}}{4.69 \times 10^{-11}} + \frac{\left(3.16 \times 10^{-8}\right)^{2}}{2.087 \times 10^{-17}} \right)$$
$$[\mathrm{Ag}^{+}]^{3} = 2 \times 8.1 \times 10^{-12} \left(1 + \frac{3.16 \times 10^{-8}}{4.69 \times 10^{-11}} + \frac{\left(3.16 \times 10^{-8}\right)^{2}}{2.087 \times 10^{-17}} \right)$$

$$[Ag^+] = 2.27 \times 10^{-3} M$$

 $S = [Ag^+]/2 = 1.1 \times 10^{-3} M$

11-14. $[Cu^{2+}][OH^{-}]^2 = 4.8 \times 10^{-20}$ $[Mn^{2+}][OH^{-}]^2 = 2 \times 10^{-13}$

- (a) Cu(OH)₂ precipitates first
- **(b)** Cu^{2+} begins to precipitate when

$$[OH^{-}] = \sqrt{\frac{4.8 \times 10^{-20}}{0.05}} = 9.8 \times 10^{-10} \text{ M}$$

(c)
$$Mn^{2+}$$
 begins to precipitate when

$$[OH^{-}] = \sqrt{\frac{2 \times 10^{-13}}{0.04}} = 2.24 \times 10^{-6} \text{ M}$$

$$[Cu^{2+}] = 4.8 \times 10^{-20} / (2.24 \times 10^{-6})^2 = 9.6 \times 10^{-9} \text{ M}$$

11-15. Ba(IO₃)₂ \rightleftharpoons Ba²⁺ + 2IO₃⁻ $K_{\rm sp} = 1.57 \times 10^{-9}$

$$BaSO_4 \rightleftharpoons Ba^{2+} + SO_4^{2-} \qquad K_{sp} = 1.3 \times 10^{-10}$$

To initiate precipitation of Ba(IO₃)₂

$$[Ba^{2+}] = 1.57 \times 10^{-9} / (0.050)^2 = 6.3 \times 10^{-7}$$

To initiate precipitation of BaSO₄

$$[Ba^{2+}] = 1.3 \times 10^{-10} / (0.040) = 3.2 \times 10^{-9} M$$

(a) BaSO₄ precipitates first

(b)
$$[Ba^{2+}] = 3.2 \times 10^{-9} M$$

(c) When
$$[Ba^{2+}] = 6.3 \times 10^{-7} \text{ M}$$

 $[SO_4^{2-}] = 1.1 \times 10^{-10} / (6.3 \times 10^{-7}) = 1.7 \times 10^{-4} \text{ M}$

11-16. (a)
$$[Ag^+] = K_{sp}/[\Gamma] = 8.3 \times 10^{-17}/(1.0 \times 10^{-6}) = 8.3 \times 10^{-11} \text{ M}$$

9

(b)
$$[Ag^+] = K_{sp}/[SCN-] = 1.1 \times 10^{-12}/(0.080) = 1.375 \times 10^{-11} \text{ M} \approx 1.4 \times 10^{-11} \text{ M}$$

(c)
$$[\Gamma]$$
 when $[Ag^+] = 1.375 \times 10^{-11} \text{ M}$

$$[\Gamma] = 8.3 \times 10^{-17} / (1.375 \times 10^{-11}) = 6.0 \times 10^{-6} \text{ M}$$

$$[SCN^{-}]/[I^{-}] = 0.080/(6.0 \times 10^{-6}) = 1.3 \times 10^{4}$$

(d)
$$[I^-] = 8.3 \times 10^{-17} / (1.0 \times 10^{-3}) = 8.3 \times 10^{-14} \text{ M}$$

$$[SCN^{-}] = 1.1 \times 10^{-12} / (1.0 \times 10^{-3}) = 1.1 \times 10^{-9} M$$
$$[SCN^{-}] / [\Gamma^{-}] = 1.1 \times 10^{-9} / (8.3 \times 10^{-14}) = 1.3 \times 10^{4}$$

Note that this ratio is independent of $[Ag^+]$ as long as some AgSCN_(s) is present.

11-17. (a)
$$[Ba^{2+}][SO_4^{2-}] = 1.1 \times 10^{-10} [Sr^{2+}][SO_4^{2-}] = 3.2 \times 10^{-7}$$

BaSO₄ precipitation is complete when

$$[SO_4^{2-}] = 1.1 \times 10^{-10} / (1.0 \times 10^{-6}) = 1.1 \times 10^{-4} \text{ M}$$

SrSO₄ begins to precipitate when

$$[SO_4^{2-}] = 3.2 \times 10^{-7} / (0.040) = 8.0 \times 10^{-6} \text{ M}$$

SrSO₄ begins to precipitate before the Ba^{2+} concentration is reduced to 1.0×10^{-6} M

(b) $[Ba^{2+}][SO_4^{2-}] = 1.1 \times 10^{-10}$ $[Ag^+]^2[SO_4^{2-}] = 1.6 \times 10^{-5}$

BaSO₄ precipitation is complete when $[SO_4^{2-}] = 1.1 \times 10^{-4} \text{ M}$

Ag₂SO₄ begins to precipitate when

$$[SO_4^{2-}] = 1.6 \times 10^{-5} / (0.030)^2 = 0.0177 \text{ M}$$

Ag₂SO₄ does not precipitate before the Ba²⁺ concentration is reduced to 1.0×10^{-6} M

(c) Be³⁺ precipitates when $[OH^-] = (7.0 \times 10^{-22}/0.030)^{1/2} = 1.5 \times 10^{-10} \text{ M}$

Hf⁴⁺ precipitates when $[OH^-] = (4.0 \times 10^{-26}/0.020)^{1/4} = 1.2 \times 10^{-6} \text{ M}$

Be precipitation complete when $[OH^-] = (7.0 \times 10^{-22}/1.0 \times 10^{-6})^{1/2} = 2.6 \times 10^{-8} \text{ M}$

Hf(OH)₄ does not precipitate before the Be³⁺ concentration is reduced to 1.0×10^{-6} M.

- (d) In³⁺ precipitates when $[IO_3^-] = (3.3 \times 10^{-11}/0.30)^{1/3} = 4.8 \times 10^{-4} \text{ M}$ Tl⁺ precipitates when $[IO_3^-] = 3.1 \times 10^{-6}/(0.10) = 3.1 \times 10^{-5} \text{ M}$
 - Tl^+ precipitation complete when $[IO_3^-] = 3.1 \times 10^{-6}/1.0 \times 10^{-6} = 3.1 M$

In(IO₃)₃ begins to precipitate before the Tl⁺ concentration is reduced to 1.0×10^{-6} M.

11-18. AgBr
$$\rightleftharpoons$$
 Ag⁺ + Br⁻ $K_{sp} = 5.0 \times 10^{-13} = [Ag^+][Br^-]$ (1)

$$Ag^{+} + 2CN^{-} \rightleftharpoons Ag(CN)_{2}^{-} \qquad \beta_{2} = 1.3 \times 10^{21} = \frac{[Ag(CN)_{2}^{-}]}{[Ag^{+}][CN^{-}]^{2}}$$
(2)

It is readily shown that $CN^- + H_2O \rightleftharpoons HCN + OH^-$ can be neglected in this problem so

that only the two equilibria shown above need to be considered.

Solubility = $[Br^-]$

Mass balance requires that

$$[Br^{-}] = [Ag^{+}] + [Ag(CN)_{2}^{-}]$$
(3)

 $0.200 = [CN^{-}] + 2[Ag(CN)_{2}^{-}]$ (4)

We now have 4 equations and 4 unknowns.

Because β_2 is very large, let us assume that

$$[CN^{-}] \ll 2[Ag(CN)_{2}^{-}]$$
 and $[Ag^{+}] \ll [Ag(CN)_{2}^{-}]$

(4) becomes $[Ag(CN)_2] = 0.200/2 = 0.100$

and (3) becomes $[Br^-] = [Ag(CN)_2^-] = 0.100$

To check the assumptions, we calculate $[Ag^+]$ by substituting into (1)

$$[Ag^{+}] = 5.0 \times 10^{-13} / 0.100 \cong 5 \times 10^{-12}$$
 (5 × 10⁻¹² <<

0.100)

To obtain [CN⁻] we substitute into (2) and rearrange

$$[CN^{-}] = \sqrt{\frac{0.100}{\left(1 \times 10^{-11}\right) \left(1.3 \times 10^{21}\right)}} = 2.8 \times 10^{-6}$$
(2.8 × 10⁻⁶ << 0.100)

Thus, the two assumptions are valid and

Solubility =
$$[Br^-] = 0.100 \text{ M}$$

mass AgBr/200 mL = 0.100 $\frac{\text{mmol}}{\text{mL}}$ × 200 mL × $\frac{0.1877 \text{ g}}{\text{mmol}}$

11-19.
$$\operatorname{CuCl}_{(s)} \rightleftharpoons \operatorname{Cu}^+ + \operatorname{Cl}^ K_{\operatorname{sp}} = [\operatorname{Cu}^+][\operatorname{Cl}^-] = 1.9 \times 10^{-7}$$
 (1)

$$Cu^{+} + 2Cl^{-} \rightleftharpoons CuCl_{2}^{-} \qquad \beta_{2} = \frac{[CuCl_{2}^{-}]}{[Cu^{+}][Cl^{-}]^{2}} = 7.9 \times 10^{4}$$

$$\tag{2}$$

It is convenient to multiply (1) by (2) to give

$$\frac{[\text{CuCl}_2^{-1}]}{[\text{Cl}^{-1}]} = 1.9 \times 10^{-7} \times 7.9 \times 10^4 = 1.50 \times 10^{-2}$$
(3)

From a charge balance consideration, we can write (if we assume $[H_3O^+] = [OH^-]$)

$$[Cu^{+}] + [Na^{+}] = [Cl^{-}] + [CuCl_{2}^{-}]$$
(4)

By rearranging (1) and (3) and substituting into (4) we obtain

$$[Cl^{-}] = [Na^{+}] + \frac{1.9 \times 10^{-7}}{[Cl^{-}]} - 1.50 \times 10^{-2} [Cl^{-}]$$

Chapter 11

which rearranges to the quadratic

$$0 = 1.015[Cl^{-}]^{2} - [Na^{+}][Cl^{-}] - 1.9 \times 10^{-7}$$
(5)

By using $[Na^+]$ = the NaCl analytical concentration, (5) can be solved to give the following $[Cl^-]$

(a) 4.93 M (b) 0.493 M (c) 0.0493 M(d) 0.00493 M (e) $7.44 \times 10^{-4} \text{ M}$

Note that the equilibrium $[CI^-]$ concentration is *larger* than the NaCl analytical concentration for part (e). The reason for this apparent anomaly is that the dissolution of CuCl to give Cu⁺ and Cl⁻ contributes significantly to the equilibrium $[CI^-]$ at the lower NaCl analytical concentrations

The solubility of CuCl can be obtained from the calculated [Cl⁻] and the expression

$$S = [Cu^+] + [CuCl_2^-] = \frac{1.9 \times 10^{-7}}{[Cl^-]} + 1.50 \times 10^{-2} [Cl^-]$$

Solution of this equation for each of the [Cl⁻] gives

(a)
$$7.4 \times 10^{-2}$$
 M (b) 7.4×10^{-3} M (c) 7.4×10^{-4} M (d) 1.1×10^{-4} M (e) 2.7×10^{-4} M

11-20.
$$\operatorname{CaSO}_{4(s)} \rightleftharpoons \operatorname{Ca}^{2^+} + \operatorname{SO}_4^{2^-} \quad K_{\operatorname{sp}} = [\operatorname{Ca}^{2^+}][\operatorname{SO}_4^{2^-}] = 2.6 \times 10^{-5}$$
 (1)

$$CaSO_{4(aq)} \rightleftharpoons Ca^{2+} + SO_4^{2-}$$
 $K_d = \frac{[Ca^{2+}][SO_4^{-}]}{[CaSO_4]_{aq}} = 5.2 \times 10^{-3}$ (2)

$$CaSO_{4(s)} \rightleftharpoons CaSO_{4(aq)} \tag{3}$$

The mass balance gives

$$[Ca^{2+}] = [SO_4^{2-}]$$
(4)

We have 3 equations and 3 unknowns ($[Ca^{2+}]$, $[SO_4^{2-}]$, and $[CaSO_4]_{aq}$

To solve we divide (1) by (2) to give

$$[CaSO_4]_{aq} = K_{sp}/K_d = (2.6 \times 10^{-5})/(5.2 \times 10^{-3}) = 5.0 \times 10^{-3}$$

Note that this is the equilibrium constant expression for (3) and indicates that the concentration of un-ionized $CaSO_4$ is always the same in a saturated solution of $CaSO_4$. Substituting (4) into (1) gives

$$[Ca^{2+}] = (2.6 \times 10^{-5})^{1/2} = 5.1 \times 10^{-3} M$$

and since $S = [CaSO_4]_{aq} + [Ca^{2+}]$, we obtain

$$S = 5.0 \times 10^{-3} + 5.1 \times 10^{-3} = 1.01 \times 10^{-2} \text{ M}$$

%CaSO_{4(aq)} = $(5.0 \times 10^{-3}/1.01 \times 10^{-2}) \times 100\% = 49\%$

(b) Here $[CaSO_4]_{aq}$ is again equal to 5.0×10^{-3} and the mass balance gives

$$[SO_4^{2-}] = 0.0100 + [Ca^{2+}]$$
(5)

Substituting (1) into (5) and rearranging gives

$$0 = [SO_4^{2-}]^2 - 0.0100[SO_4^{2-}] - K_{\rm sp}$$

which may be solved using the quadratic equation to give

$$[SO_4^{2^-}] = 0.0121 \text{ and } [Ca^{2^+}] = 2.14 \times 10^{-3}$$
$$S = 5.0 \times 10^{-3} + 2.14 \times 10^{-3} = 7.14 \times 10^{-3} \text{ M}$$
$$\% CaSO_{4(aq)} = (5.0 \times 10^{-3}/7.14 \times 10^{-3}) \times 100\% = 70\%$$

Chapter 11

11-21.
$$Tl_2S(s) \rightleftharpoons 2Tl^+ + S^{2-}$$
 $K_{sp} = 6.0 \times 10^{-22} = [Tl^+]^2 [S^{2-}]$
 $H_2S + H_2O \rightleftharpoons H_3O^+ + HS^ K_1 = 9.6 \times 10^{-8}$
 $HS^- + H_2O \rightleftharpoons H_3O^+ + S^{2-}$ $K_2 = 1.3 \times 10^{-14}$
 $S = [Tl^+]/2$

Mass balance

$$[Tl^+]/2 = [S^{2-}] + [HS^-] + [H_2S]$$

$$\frac{[\mathrm{TI}^+]}{2} = [\mathrm{S}^{2^-}] + \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{S}^{2^-}]}{K_2} + \frac{[\mathrm{H}_3\mathrm{O}^+]^2[\mathrm{S}^{2^-}]}{K_1K_2} = [\mathrm{S}^{2^-}] \left(1 + \frac{[\mathrm{H}_3\mathrm{O}^+]}{K_2} + \frac{[\mathrm{H}_3\mathrm{O}^+]^2}{K_1K_2}\right)$$

Substituting the K_{sp} into this equation gives:

$$\frac{[\mathrm{TI}^{+}]}{2} = \frac{K_{\mathrm{sp}}}{[\mathrm{TI}^{+}]^{2}} \left(1 + \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]}{K_{2}} + \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}}{K_{1}K_{2}} \right) = \frac{6.0 \times 10^{-22}}{[\mathrm{TI}^{+}]^{2}} \left(1 + \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]}{K_{2}} + \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}}{K_{1}K_{2}} \right)$$
$$[\mathrm{TI}^{+}]^{3} = 2 \times 6.0 \times 10^{-22} \left(1 + \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]}{K_{2}} + \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}}{K_{1}K_{2}} \right)$$
$$[\mathrm{TI}^{+}] = \left\{ 2 \times 6.0 \times 10^{-22} \left(1 + \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]}{K_{2}} + \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}}{K_{1}K_{2}} \right) \right\}^{1/3}$$
$$\mathrm{S} = [\mathrm{TI}^{+}]/2$$

The spreadsheet is shown on the next page. The upper chart is for all the data and the lower expands the region from pH 5.0 to 10.0.

Chapter 11

_											
4	Α	В	С	D	E	F	G	Н	L.	J	K
1	TI ₂ S Sc	olubility vs.	pH								
2									1		
3	Ksp	6.00E-22			0.12						
4	K ₁	9.60E-08			0.10 -	•					
5	K ₂	1.30E-14			6 0.08 -						
6	pH	[H ₃ O+]	[TI ⁺]	S	X olos X olos X olos X olos X olos X olos X olos						
7	10.0	1.0E-10	2.10E-06	1.05E-06	a 0.06 -						
8	9.5	3.2E-10	3.08E-06	1.54E-06	Solt	*					
9	9.0	1.0E-09	4.54E-06	2.27E-06	-* 0.04						
10	8.5	3.2E-09	6.71E-06	3.35E-06	0.02 -	+					
11	8.0	1.0E-08	1.01E-05	5.03E-06		+	• • •				
12	7.5	3.2E-08	1.57E-05	7.86E-06	0.00	-	* * *	• • • •	***	***	• •
13	7.0	1.0E-07	2.66E-05	1.33E-05	0.0	2.0	4.0	6. BH	D	8.0	10.0
14	6.5	3.2E-07	5.00E-05	2.50E-05				рН			
15	6.0	1.0E-06	1.02E-04	5.09E-05	255.04						1
16	5.5	3.2E-06	2.15E-04	1.07E-04	2.5E-04						
17	5.0	1.0E-05	4.60E-04	2.30E-04							
18	4.5	3.2E-05	9.88E-04	4.94E-04	2.0E-04 -						
19	4.0	1.0E-04	2.13E-03	1.06E-03	ŝ						
20	3.5	3.2E-04	4.58E-03	2.29E-03	1.5E-04 -						
21	3.0	1.0E-03	9.87E-03	4.94E-03	1.5E-04 -	•					
22	2.5	3.2E-03	0.0213	0.0106	1.0E-04 -	50					
23	2.0	1.0E-02	0.0458	0.0229		13					
24	1.5	3.2E-02	0.0987	0.0494	5.0E-05 -	+					
25	1.0	1.0E-01	0.2126	0.1063			•	• •			
26					0.0E+00 + 5.0	6.0	-	.0	8.0	9.0	10.0
27					5.0	6.0	· · · ·	.u pH	0.0	9.0	10.0
28	Docum	entation						рп			
29	Cell B7	=10^-A7									
30	Cell C7	=(2*\$B\$3*(1+B7/\$B\$5+	(B7^2/(\$B\$4*\$	B\$5))))^(1/3)						
31	Cell D7	=C7/2									

Chapter 12

12-1. (a) A *colloidal precipitate* consists of solid particles with dimensions that are less than 10^{-4} cm. A *crystalline precipitate* consists of solid particles with dimensions that at least 10^{-4} cm or greater. As a result, crystalline precipitates settle rapidly, whereas colloidal precipitates remain suspended in solution unless caused to agglomerate.

(b) In *gravimetric precipitation*, the analyte is converted to a sparing soluble precipitate, which is then filtered, washed free of impurities, and then converted into a product of known composition by suitable heat treatment. In *gravimetric volatilization*, the analyte is separated from other sample constituents by converting it to a gas of known composition.

(c) *Precipitation* is the process by which a solid phase forms and is carried out of solution when the solubility product of a chemical species is exceeded. *Coprecipitation* is a process in which normally soluble compounds are carried out of solution during precipitate formation.

(d) *Coagulation*, or agglomeration, is the process by which colloidal particles coalesce to form larger aggregates. *Peptization* refers to the process by which a coagulated colloid reverts to its original dispersed state. Heating, stirring and adding an electrolyte can coagulate colloidal suspensions. Washing the coagulated colloid with water often removes sufficient electrolyte to permit the re-establishment of repulsive forces that favor return to the colloidal state.

Chapter 12

(e) *Occlusion* is a type of coprecipitation in which a compound is trapped within a pocket formed during rapid crystal formation. *Mixed-crystal formation* is also a type of coprecipitation in which a contaminant ion replaces an ion in the crystal lattice.

(f) *Nucleation* is a process in which a minimum number of atoms, ions or molecules associate to give a stable solid. *Particle growth* is a process by which growth continues on existing nuclei. Precipitation by nucleation results in a large number of small particles. Precipitation by particle growth results in a smaller number of large particles.

12-2. (a) *Digestion* is a process in which a precipitate is heated in the presence of the solution from which it was formed (the *mother liquor*). Digestion improves the purity and filterability of the precipitate.

(b) Adsorption is the process by which ions are retained on the surface of a solid.

(c) In *reprecipitation*, the filtered solid precipitate is redissolved and reprecipitated. Because the concentration of the impurity in the new solution is lower, the second precipitate contains less coprecipitated impurity.

(d) *Precipitation from homogeneous solution* is a technique by which a precipitating agent is generated in a solution of the analyte by a slow chemical reaction. Local reagent excess does not occur and the resultant solid product is better suited for analysis than precipitate formed by direct addition of precipitating reagent.

(e) The *counter-ion layer* describes a layer of solution containing sufficient excess negative ions that surrounds a charged particle. This counter-ion layer balances the surface charge on the particle.

(f) Mother liquor is the solution from which a precipitate is formed.

2

(g) *Supersaturation* describes an unstable state in which a solution contains higher solute concentration than a saturated solution. Supersaturation is relieved by precipitation of excess solute.

- **12-3.** A *chelating agent* is an organic compound that contains two or more electron-donor groups located in such a configuration that five- or six-membered rings are formed when the donor groups complex a cation.
- **12-4.** *Relative supersaturation* can be regulated through control of reagent concentration, temperature and the rate at which reagents are combined.
- **12-5.** (a) There is positive charge on the surface of the coagulated colloidal particles.

(**b**) The positive charge arises from adsorbed Ag^+ ions.

(c) NO_3^- ions make up the counter-ion layer.

12-6. $CH_3CSNH_4+H_2O \rightleftharpoons CH_3CONH_2+H_2S$

The slow hydrolysis of thioacetamide can be used to generate a source of hydrogen sulfide gas. Hydrogen sulfide gas is then involved in the equilibria below:

 $\begin{array}{l} H_2S + H_2O \rightleftharpoons H_3O^+ + HS^- \\ HS^- + H_2O \rightleftharpoons H_3O^+ + S^{2-} \end{array}$

- 12-7. In *peptization*, a coagulated colloid returns to its original dispersed state because of a decrease in the electrolyte concentration of the solution contacting the precipitate.Peptization can be avoided by washing the coagulated colloid with an electrolyte solution instead of pure water.
- **12-8.** Chloroplatinic acid, H₂PtCl₆, forms the precipitate K_2 PtCl₆ when mixed with K⁺ but does not form analogous precipitates with Li⁺ and Na⁺. Thus, chloroplatinic acid can be used to separate K⁺ from a mixture containing Li⁺ and Na⁺.

12-9. (a) mass SO₂ = mass BaSO₄ ×
$$\frac{\mathcal{M}_{SO_2}}{\mathcal{M}_{BaSO_4}}$$

(b) mass Mg = mass Mg₂P₂O₇ × $\frac{2 \mathcal{M}_{Mg}}{\mathcal{M}_{Mg_2P_2O_7}}$
(c) mass In = mass In₂O₃ × $\frac{2\mathcal{M}_{In}}{\mathcal{M}_{In_2O_3}}$
(d) mass K = mass K₂PtCl₆ × $\frac{2\mathcal{M}_{K}}{\mathcal{M}_{K_2PtCl_6}}$
(e) mass CuO = mass Cu₂(SCN)₂ × $\frac{2\mathcal{M}_{Cu_2}}{\mathcal{M}_{Cu_2}(SCN)_2}$

(**f**) mass MnCl₂ = mass Mn₃O₄ ×
$$\frac{3\mathcal{M}_{MnCl_2}}{\mathcal{M}_{Mn_3O_4}}$$

(g) mass Pb₃O₄ = mass PbO₂ ×
$$\frac{\mathcal{M}_{Pb_3O_4}}{3\mathcal{M}_{PbO_2}}$$

(**h**) mass U₂P₂O₁₁ = mass P₂O₅ ×
$$\frac{\mathcal{M}_{U_2P_2O_{11}}}{\mathcal{M}_{P_2O_5}}$$

(i) masss Na₂B₄O₇•10H₂O = mass B₂O₃ ×
$$\frac{\mathcal{M}_{Na_2B_4O_7} \cdot 10H_2O}{2\mathcal{M}_{B_2O_3}}$$

(j) mass Na₂O = mass NaZn(UO₂)₃(C₂H₃O₂)₉•6H₂O ×
$$\frac{\mathcal{M}_{Na_2O}}{2\mathcal{M}_{NaZn(UO_2)_3(C_2H_3O_2)_9}\cdot6H_2O}$$

12-10.
$$\mathcal{M}_{AgCl} = 143.32 \text{ g/mol} \qquad \mathcal{M}_{KCl} = 74.55 \text{ g/mol}$$
$$\frac{0.2912 \text{ g } AgCl \times \left(\frac{1 \text{ mol } AgCl}{143.32 \text{ g}}\right) \times \left(\frac{1 \text{ mol } KCl}{1 \text{ mol } AgCl}\right) \times \left(\frac{74.55 \text{ g } KCl}{\text{ mol}}\right)}{0.2500 \text{ g impure sample}} \times 100\% = 60.59\%$$

12-11.
$$\mathcal{M}_{A12O3} = 101.96 \text{ g/mol}$$
 $\mathcal{M}_{NH4Al(SO4)2} = 237.03 \text{ g/mol}$

(a)

$$\begin{array}{l} 0.2001\,\mathrm{g}\,\mathrm{Al_2O_3}\times\frac{1\,\mathrm{mol}\,\mathrm{Al_2O_3}}{101.96\,\mathrm{g}\,\mathrm{Al_2O_3}}\times\frac{2\,\mathrm{mol}\,\mathrm{NH_4Al(SO_4)_2}}{\mathrm{mol}\,\mathrm{Al_2O_3}}=3.925\times10^{-3}\,\mathrm{mol}\,\mathrm{NH_4Al(SO_4)_2}\\ \\ \\ \frac{3.925\times10^{-3}\,\mathrm{mol}\,\mathrm{NH_4Al(SO_4)_2}\times\frac{237.03\,\mathrm{g}\,\mathrm{NH_4Al(SO_4)_2}}{\mathrm{mol}\,\mathrm{NH_4Al(SO_4)_2}}}{1.200\,\,\mathrm{g}}\times100\%=77.5\% \end{array}$$

(b)

$$\frac{0.2001 \text{ g Al}_2\text{O}_3}{1.200 \text{ g impure sample}} \times 100\% = 16.7\%$$

(c)

no. mol Al = no. mol NH₄Al(SO₄)₂ =
$$3.925 \times 10^{-3}$$
 mol

$$\frac{3.925 \times 10^{-3} \text{ mol Al} \times \frac{26.982 \text{ g Al}}{\text{mol}}}{1.200 \text{ g impure sample}} \times 100\% = 8.83\% \text{ Al}$$

12-12.

$$0.650 \text{ g } \text{CuSO}_{4} \bullet 5\text{H}_{2}\text{O} \times \frac{1 \text{ mol } \text{CuSO}_{4} \bullet 5\text{H}_{2}\text{O}}{249.67 \text{ g } \text{CuSO}_{4} \bullet 5\text{H}_{2}\text{O}} \times \frac{1 \text{ mol } \text{Cu(IO}_{3})_{2}}{1 \text{ mol } \text{CuSO}_{4} \bullet 5\text{H}_{2}\text{O}} \\ \times \frac{413.35 \text{ g } \text{Cu(IO}_{3})_{2}}{1 \text{ mol } \text{Cu(IO}_{3})_{2}} = 1.076 \text{ g } \text{Cu(IO}_{3})_{2}$$

12-13.

$$\begin{array}{l} 0.2750 \ \mathrm{g} \ \mathrm{CuSO_4} \bullet 5\mathrm{H_2O} \times \frac{1 \ \mathrm{mol} \ \mathrm{CuSO_4} \bullet 5\mathrm{H_2O}}{249.67 \ \mathrm{g} \ \mathrm{CuSO_4} \bullet 5\mathrm{H_2O}} \times \frac{1 \ \mathrm{mol} \ \mathrm{Cu(IO_3)_2}}{1 \ \mathrm{mol} \ \mathrm{CuSO_4} \bullet 5\mathrm{H_2O}} \\ \times \frac{2 \ \mathrm{mol} \ \mathrm{KIO_3}}{1 \ \mathrm{mol} \ \mathrm{Cu(IO_3)_2}} \times \frac{214 \ \mathrm{g} \ \mathrm{KIO_3}}{1 \ \mathrm{mol} \ \mathrm{KIO_3}} = 0.471 \ \mathrm{g} \ \mathrm{KIO_3} \end{array}$$

12-14.

mass AgI = 0.512 g ×
$$\frac{20.1 \text{ g}}{100 \text{ g}}$$
 × $\frac{1 \text{ mol AlI}_3}{407.69 \text{ g}}$ × $\frac{3 \text{ mol AgI}}{\text{mol AlI}_3}$ × $\frac{234.77 \text{ g AgI}}{\text{mol AgI}}$ = 0.178 g

Chapter 12

12-15. 1 g U is produces

$$1 \text{ g U} \times \frac{1 \text{ mol U}}{238.03 \text{ g}} \times \frac{634.0 \text{ g Na}_2 \text{U}_2 \text{O}_7}{\text{mol}} \times \frac{1 \text{ mol Na}_2 \text{U}_2 \text{O}_7}{2 \text{ mol U}} = 1.33 \text{ g Na}_2 \text{U}_2 \text{O}_7$$

$$1 \text{ g U} \times \frac{1 \text{ mol U}}{238.03 \text{ g}} \times \frac{714.0 \text{ g } (\text{UO}_2)_2 \text{P}_2 \text{O}_7}{\text{mol}} \times \frac{1}{2} = 1.50 \text{ g } (\text{UO}_2)_2 \text{P}_2 \text{O}_7$$

$$1 \times \frac{1}{238.03} \times 753.9 \times \frac{1}{2} = 1.58 \text{ g V}_2 \text{O}_5 \bullet 2 \text{UO}_2$$

Thus, $V_2O_5 \cdot 2UO_2$ produces the greatest mass.

12-16. $Al_2(CO_3)_3 + 6HCl \implies 3CO_2 + 3H_2O + 2AlCl_3$

$$0.0515 \text{ g } \text{CO}_2 \times \frac{1 \text{ mol } \text{CO}_2}{60.0 \text{ g } \text{CO}_2} \times \frac{1 \text{ mol } \text{Al}_2(\text{CO}_3)_3}{3 \text{ mol } \text{CO}_2} \times \frac{2 \text{ mol } \text{Al}}{1 \text{ mol } \text{Al}_2(\text{CO}_3)_3} \times \frac{26.98 \text{ g } \text{Al}}{\text{ mol } \text{Al}}$$

= 0.01543 g Al
$$\frac{0.01543 \text{ g } \text{Al}}{0.8102 \text{ g impure sample}} \times 100\% = 1.90\% \text{ Al}$$

12-17. $CdS + 2O_2 \rightleftharpoons CdSO_4$

no. mol CdS = no. mol CdSO₄ = 0.125 g CdSO₄ × $\frac{1 \text{ mol CdSO}_4}{208.47 \text{ g}}$ × $\frac{1 \text{ mol CdS}}{1 \text{ mol CdSO}_4}$ = 5.996 × 10⁻⁴ mol

The number moles H₂S is equal to number moles CdS

 $\begin{aligned} & \text{mass } \text{H}_2\text{S} = 5.996 \times 10^{-4} \text{ mol} \times \frac{34.08 \text{ g } \text{H}_2\text{S}}{1 \text{ mole } \text{H}_2\text{S}} = 2.04 \times 10^{-2} \text{ g} \\ & \frac{2.04 \times 10^{-2} \text{ g } \text{H}_2\text{S}}{80.0 \text{ g impure sample}} \times 100\% = 0.026\% \text{ H}_2\text{S} \end{aligned}$

12-18.
$$\frac{0.6006 \text{ g BaCO}_3 \times \frac{1 \text{ mol BaCO}_3}{197.34 \text{ g}} \times \frac{1 \text{ mol C}}{1 \text{ mol BaCO}_3} \times \frac{12.011 \text{ g C}}{1 \text{ mol C}}}{0.2121 \text{ g sample}} \times 100\% = 17.23\% \text{ C}$$

Chapter 12

12-19.

$$\frac{0.2513 \text{ g AgCl} \times \frac{1 \text{ mol AgCl}}{143.37 \text{ g}} \times \frac{1 \text{ mol } \text{C}_{14}\text{H}_{9}\text{Cl}_{5}}{5 \text{ mol AgCl}} \times \frac{354.72 \text{ g } \text{C}_{14}\text{H}_{9}\text{Cl}_{5}}{1 \text{ mol } \text{C}_{14}\text{H}_{9}\text{Cl}_{5}} \times 100\%}{7.000 \text{ g sample}} = 1.776\% \text{ C}_{14}\text{H}_{9}\text{Cl}_{5}$$

12-20.

$$\begin{pmatrix} 0.5718 \text{ g } \text{Hg}_{5}(\text{IO}_{6})_{2} \times \frac{1 \text{ mol } \text{Hg}_{5}(\text{IO}_{6})_{2}}{1448.75 \text{ g } \text{Hg}_{5}(\text{IO}_{6})_{2}} \times \frac{5 \text{ mol } \text{Hg}^{2+}}{1 \text{ mol } \text{Hg}_{5}(\text{IO}_{6})_{2}} \\ \times \frac{1 \text{ mol } \text{Hg}_{2}\text{Cl}_{2}}{2 \text{ mol } \text{Hg}^{2+}} \times \frac{472.18 \text{ g } \text{Hg}_{2}\text{Cl}_{2}}{1 \text{ mol } \text{Hg}_{2}\text{Cl}_{2}} \end{pmatrix} \\ \times 100\% = 44.58\% \text{ Hg}_{2}\text{Cl}_{2}$$

12-21. $\mathcal{M}_{Ba(IO3)2} = 487.13 \text{ g/mol}$ $\mathcal{M}_{KI} = 166.00 \text{g/mol}$

$$\frac{0.0538 \text{ g Ba}(\text{IO}_3)_2 \times \left(\frac{1 \text{ mol Ba}(\text{IO}_3)_2}{487.13 \text{ g}}\right) \times \left(\frac{2 \text{ mol KI}}{1 \text{ mol Ba}(\text{IO}_3)_2}\right) \times \left(\frac{166.00 \text{ g KI}}{\text{mol}}\right)}{1.59 \text{ g impure sample}} \times 100\% = 2.31\% \text{ KI}$$

12-22. $M_{NH3} = 17.0306 \text{ g/mol}$ $M_{Pt} = 195.08 \text{ g/mol}$

$$\frac{0.4693 \text{ g Pt} \times \left(\frac{1 \text{ mol Pt}}{195.08 \text{ g}}\right) \times \left(\frac{2 \text{ mol NH}_3}{1 \text{ mol Pt}}\right) \times \left(\frac{17.0306 \text{ g NH}_3}{\text{mol}}\right)}{0.2115 \text{ g impure sample}} \times 100\% = 38.74\% \text{ NH}_3$$

12-23. $M_{MnO2} = 86.94 \text{ g/mol}$ $M_{AlCl3} = 133.34 \text{ g/mol}$

$$\begin{pmatrix} (0.6447 \text{ g} - 0.3521 \text{ g} \text{ MnO}_2) \times \left(\frac{1 \text{ mol MnO}_2}{86.94 \text{ g}}\right) \times \left(\frac{2 \text{ mol Cl}}{1 \text{ mol MnO}_2}\right) \\ \times \left(\frac{1 \text{ mol AlCl}_3}{3 \text{ mol Cl}}\right) \times \left(\frac{133.34 \text{ g} \text{ AlCl}_3}{\text{ mol}}\right) \\ \hline 1.1402 \text{ g impure sample} \times 100\% = 26.24\% \text{ AlCl}_3$$

12-24. $\mathcal{M}_{BaSO4} = 233.39 \text{ g/mol}$ $\mathcal{M}_{SO42-} = 96.064 \text{ g/mol}$

Let S_w = mass of sample in grams

$$0.200 \text{ g } \text{BaSO}_{4} \times \frac{1 \text{ mol } \text{BaSO}_{4}}{233.39 \text{ g}} \times \frac{1 \text{ mol } \text{SO}_{4}^{2^{-}}}{1 \text{ mol } \text{BaSO}_{4}} = 8.57 \times 10^{-4} \text{ mol } \text{SO}_{4}^{2^{-}}$$
$$\frac{8.57 \times 10^{-4} \text{ mol } \text{SO}_{4}^{2^{-}} \times \frac{96.064 \text{ g } \text{SO}_{4}^{2^{-}}}{\text{mol}}}{S_{w} \text{ g sample}} = 100\% = 20\% \text{ SO}_{4}^{2^{-}}$$
$$S_{w} = \frac{8.57 \times 10^{-4} \text{ mol } \text{SO}_{4}^{2^{-}} \times \frac{96.064 \text{ g } \text{SO}_{4}^{2^{-}}}{\text{mol}} \times 100\%}{20\%} = 0.412 \text{ g sample}$$

The maximum precipitate mass expected given this sample mass is

$$0.412 \text{ g sample} \times \frac{55 \text{ g } \text{SO}_{4}^{2^{-}}}{100 \text{ g sample}} \times \frac{1 \text{ mol } \text{SO}_{4}^{2^{-}}}{96.064 \text{ g}} \times \frac{1 \text{ mol } \text{BaSO}_{4}}{1 \text{ g } \text{SO}_{4}^{2^{-}}} \times \frac{233.39 \text{ g } \text{BaSO}_{4}}{1 \text{ mol}}$$

=0.550 g BaSO₄

12-25. Let S_w = mass of sample in grams.

The higher percentage of Ni in the alloy sample is selected because this corresponds to maximum amount expected precipitate

 $\mathcal{M}_{\text{NiDMG}} = 288.92 \text{ g/mol}$ $\mathcal{M}_{\text{Ni}} = 58.693 \text{ g/mol}$

$$0.175 \text{ g Ni}(\text{HC}_{4}\text{H}_{6}\text{O}_{2}\text{N}_{2})_{2} \times \frac{1 \text{ mol Ni}(\text{HC}_{4}\text{H}_{6}\text{O}_{2}\text{N}_{2})_{2}}{288.92 \text{ g}} \times \frac{1 \text{ mol Ni}}{1 \text{ mol Ni}(\text{HC}_{4}\text{H}_{6}\text{O}_{2}\text{N}_{2})_{2}}$$

= 6.06 × 10⁻⁴ mol Ni

$$\frac{6.06 \times 10^{-4} \text{ mol Ni} \times \frac{58.693 \text{ g Ni}}{\text{mol}}}{S_w \text{ g sample}} = 100\% = 35\% \text{ Ni}$$

$$S_w = \frac{6.06 \times 10^{-4} \text{ mol Ni} \times \frac{58.693 \text{ g Ni}}{\text{mol}} \times 100\%}{35\%} = 0.102 \text{ g sample}$$

12-26. Let S_w = mass of sample in grams.

(a)
$$\mathcal{M}_{AgCl} = 143.32 \text{ g/mol}$$
 $\mathcal{M}_{ZrCl4} = 233.03 \text{ g/mol}$

Chapter 12

$$\frac{0.400 \text{ g } \text{ AgCl} \times \frac{1 \text{ mol } \text{ AgCl}}{143.32 \text{ g}} \times \frac{1 \text{ mol } \text{ZrCl}_4}{4 \text{ mol } \text{ AgCl}} \times \frac{233.03 \text{ g } \text{ZrCl}_4}{1 \text{ mol}}}{1 \text{ mol}} \times 100\% = 68\% \text{ ZrCl}_4}$$

$$S_w = \frac{1.62 \times 10^{-1} \text{g } \text{ZrCl}_4 \times 100\%}{68\%} = 0.239 \text{ g sample}$$
(b)
$$0.239 \text{ g sample} \times \frac{84 \text{ g } \text{ZrCl}_4}{100 \text{ g sample}} \times \frac{1 \text{ mole } \text{ZrCl}_4}{233.03 \text{ g}} \times \frac{4 \text{ mole } \text{ AgCl}}{1 \text{ mole } \text{ ZrCl}_4} \times \frac{143.32 \text{ g } \text{ AgCl}}{1 \text{ mole}} = 0.494 \text{ g } \text{ AgCl}$$

(c)

%
$$\operatorname{ZrCl}_{4} = \frac{1.62 \times 10^{-1} g \operatorname{ZrCl}_{4} \times 100\%}{S_{w}} = 40\%$$

 $S_{w} = \frac{1.62 \times 10^{-1} g \operatorname{ZrCl}_{4} \times 100\%}{40\%} = 0.406 \text{ g sample}$

12-27. $\mathcal{M}_{\text{NaBr}} = 102.894 \text{ g/mol}$ $\mathcal{M}_{\text{KBr}} = 119.002 \text{ g/mol}$ $\mathcal{M}_{\text{AgBr}} = 187.772 \text{ g/mol}$ 0.8720 g sample = x g NaBr + y g KBr g AgBr from NaBr = x g NaBr × $\frac{1 \text{ mol NaBr}}{102.894 \text{ g}}$ × $\frac{1 \text{ mol AgBr}}{1 \text{ mol NaBr}}$ × $\frac{187.772 \text{ g AgBr}}{1 \text{ mole}}$ = 1.823 x g AgBr g AgBr from KBr = y g KBr × $\frac{1 \text{ mol KBr}}{119.002 \text{ g}}$ × $\frac{1 \text{ mol AgBr}}{1 \text{ mol KBr}}$ × $\frac{187.772 \text{ g AgBr}}{1 \text{ mole}}$ = 1.578 y g AgBr 1.505 g AgBr = 1.823 (x g NaBr) + 1.578 (y g KBr)

So, we have 2equations and 2 unknowns,

$$x + y = 0.8720$$

1.823x + 1.578y = 1.505.

These are solved by the a matrix method in the spreadsheet on the next page.

We would report % KBr = 39.6 and % NaBr = 60.4

Chapter 12

1	Α	В	С	D
1	Problem 12-27			
2				
3	Coefficient Matrix			Constant Matrix
4	1.823	1.578		1.505
5	1	1		0.872
6				
7	Inverse Matrix			Solution Matrix
8	4.081632653	-6.440816327		0.526465306
9	-4.081632653	7.440816327		0.345534694
10				
11	Sample Mass	0.872		
12	%KBr	39.62553829		
13	%NaBr	60.37446171		
14				
15	Documentation			
16	Cells A8:B9=MINVER	SE(A4:B5)		
17	Cells D8:D9=MMULT	A8:B9,D4:D5)		
18	Cell B12=(D9/B11)*10	00		
19	Cell B13=D8/B11*100			

12-28.
$$\mathcal{M}_{AgCl} = 143.32 \text{ g/mol}$$
 $\mathcal{M}_{AgI} = 234.77 \text{ g/mol}$

$$0.4430 \text{ g} = x \text{ g } \text{ AgCl} + y \text{ g } \text{ AgI}$$

g AgCl = x g AgCl + $\left(y \text{ g } \text{ AgI} \times \frac{1 \text{ mol } \text{ AgI}}{234.77 \text{ g}} \times \frac{1 \text{ mol } \text{ AgCl}}{1 \text{ mol } \text{ AgI}} \times \frac{143.32 \text{ g } \text{ AgCl}}{1 \text{ mol}} \right) = 0.3181 \text{ g}$
0.3181 = x g AgCl + 0.6104698 y g AgI

Here again, we have 2 equations and 2 unknowns,

x + y = 0.4430

x + 0.6104698y = 0.3181

The spreadsheet is shown on the next page

We would report % Cl = 4.72 and %I = 27.05

1	A	В	С	D			
1	Problem 12-28						
2	\mathcal{M}_{AgCI}	143.32					
3	\mathcal{M}_{Agl}	243.77					
4	M _{cl}	35.453					
5	\mathcal{M}_1	126.9045					
6							
7	Coefficient Matrix			Constant Matrix			
8	1	1		0.443			
9	1	0.6104698		0.3181			
10							
11	Inverse Matrix			Solution Matrix			
12	-1.567195047	2.56719505		0.122357339			
13	2.567195047	-2.56719505		0.320642661			
14							
15	Sample Mass	0.6407					
16	Mass AgCl	0.12235734					
17	Mass Agl	0.32064266					
18	%CI	4.72412619					
19	%I	26.0533363					
20							
21	Documentation						
22	Cells A12:B13=MINVERSE(A8:B9)						
23	Cells D12:D13=MMULT(A12:B13,D8:D9)						
24	Cell B18=(B16*B4/B2)/B15*100						
25	Cell B19=(B17*B5/B3)/B15*100						

12-29.

$$\mathcal{M}_{PbMoO_4} = 367.14 \text{ g/mol} \qquad \mathcal{M}_{P_2O_5} = 141.94 \text{ g/mol}$$

amount PbMoO₄ = 0.2922 g PbMoO₄ × $\frac{1 \text{ mol PbMoO}_4}{367.14 \text{ g}} = 7.9588 \times 10^{-4} \text{ mol}$
$$\frac{\left(7.9588 \times 10^{-4} \text{ mol PbMoO}_4 \times \frac{1 \text{ mol P}}{12 \text{ mole PbMoO}_4} \times \frac{1 \text{ mol P}_2O_5}{2 \text{ mol P}} \times \frac{141.94 \text{ g P}_2O_5}{1 \text{ mol}}\right)}{0.2091 \text{ g sample}} \times 100\%$$

 $= 2.251 \% P_2O_5$

Chapter 12

12-30.

$$\mathcal{M}_{CO_{2}} = 44.010 \text{ g/mol} \quad \mathcal{M}_{MgCO_{3}} = 84.31 \text{ g/mol} \quad \mathcal{M}_{K_{2}CO_{3}} = 138.21 \text{ g/mol}$$

mol CO₂ = mol MgCO₃ + mol K₂CO₃
= $\left(2.300 \text{ g sample} \times \frac{38 \text{ g MgCO}_{3}}{100 \text{ g sample}} \times \frac{1 \text{ mol MgCO}_{3}}{84.31 \text{ g}}\right) + \left(2.300 \text{ g sample} \times \frac{42 \text{ g K}_{2}CO_{3}}{100 \text{ g sample}} \times \frac{1 \text{ mol K}_{2}CO_{3}}{138.21 \text{ g}}\right)$
amount CO₂ = 0.0104 + 6.989 × 10⁻³ = 0.01736 mol
mass CO₂ = 0.01736 mole × $\frac{44.010 \text{ g CO}_{2}}{1 \text{ mole}} = 0.764 \text{ g}$

12-31.

$$\mathcal{M}_{M_{g_2P_2O_7}} = 222.55 \text{ g/mol} \qquad \mathcal{M}_{NaCl} = 58.44 \text{ g/mol} \qquad \mathcal{M}_{M_{gCl_2} \bullet 6H_2O} = 203.32 \text{ g/mol} \\ 0.1796 \text{ g} \text{ Mg}_2\text{P}_2\text{O}_7 \times \frac{1 \text{ mol} \text{ Mg}_2\text{P}_2\text{O}_7}{222.55 \text{ g}} \times \frac{2 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}}{1 \text{ mol} \text{ Mg}_2\text{P}_2\text{O}_7} = \\ 1.61402 \times 10^{-3} \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O} \\ 0.5923 \text{ g} \text{ AgCl} \times \frac{1 \text{ mol} \text{ AgCl}}{143.32 \text{ g}} = 4.13268 \times 10^{-3} \text{ mol} \text{ AgCl} \\ 1.61402 \times 10^{-3} \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O} \times \frac{2 \text{ mole} \text{ AgCl}}{1 \text{ mol} \text{ MgCl}_2} = 3.22804 \times 10^{-3} \text{ mol} \text{ AgCl} \\ 1.61402 \times 10^{-3} \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O} \times \frac{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}}{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}} = 3.22804 \times 10^{-3} \text{ mol} \text{ AgCl} \\ 1.61402 \times 10^{-3} \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O} \times \frac{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}}{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}} = 3.22804 \times 10^{-3} \text{ mol} \text{ AgCl} \\ 1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O} \times \frac{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}}{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}} = 3.22804 \times 10^{-3} \text{ mol} \text{ AgCl} \\ 1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O} \times \frac{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}}{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}} = 3.22804 \times 10^{-3} \text{ mol} \text{ AgCl} \\ 1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O} \times \frac{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}}{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}} = 3.22804 \times 10^{-3} \text{ mol} \text{ AgCl} \\ 1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O} \times \frac{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}}{1 \text{ mol} \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}} = 3.22804 \times 10^{-3} \text{ mol} \text{ MgCl}_2 \times 10^{-3} \text{ mol} \text{ mol$$

$$(4.13268 \times 10^{-3} - 3.228 \times 10^{-3}) \text{ mol } \text{AgCl} \times \frac{1 \text{ mol } \text{NaCl}}{1 \text{ mol } \text{AgCl}} = 9.0464 \times 10^{-4} \text{ mol } \text{NaCl}$$

$$\frac{1.61402 \times 10^{-3} \text{ mol } \text{MgCl}_2 \bullet 6\text{H}_2\text{O} \times \frac{203.32 \text{ g } \text{MgCl}_2 \bullet 6\text{H}_2\text{O}}{1 \text{ mol }} \times \frac{500.0 \text{ mL}}{50.0 \text{ mL}} \times 100\%$$

$$= 47.69\% \text{ MgCl}_2 \bullet 6\text{H}_2\text{O}$$

$$\frac{9.0464 \times 10^{-4} \text{ mol NaCl} \times \frac{58.44 \text{ g NaCl}}{1 \text{ mol}} \times \frac{500.0 \text{ mL}}{50.0 \text{ mL}}}{6.881 \text{ g sample}} \times 100\% = 7.68\% \text{ NaCl}$$

12-32.

$$\begin{aligned} \mathcal{M}_{\text{BaCl}_2 \bullet 2\text{H}_2\text{O}} &= 244.26 \text{ g/mol} \quad \mathcal{M}_{\text{NaIO}_3} = 197.89 \text{ g/mol} \quad \mathcal{M}_{\text{Ba(IO}_3)_2} = 487.13 \text{ g/mol} \\ 0.200 \text{ g } \text{BaCl}_2 \bullet 2\text{H}_2\text{O} \times \frac{1 \text{ mol } \text{BaCl}_2 \bullet 2\text{H}_2\text{O}}{244.26 \text{ g}} \times \frac{1 \text{ mol } \text{Ba}^{2+}}{1 \text{ mol } \text{BaCl}_2 \bullet 2\text{H}_2\text{O}} \\ &= 8.188 \times 10^{-4} \text{ mol } \text{Ba}^{2+} \\ 0.300 \text{ g } \text{NaIO}_3 \times \frac{1 \text{ mol } \text{NaIO}_3}{197.89 \text{ g}} \times \frac{1 \text{ mol } \text{IO}_3^-}{1 \text{ mol } \text{NaIO}_3} = 1.516 \times 10^{-3} \text{ mol } \text{IO}_3^- \\ \text{Because } \text{IO}_3^- \text{ is the limiting reagent,} \end{aligned}$$

(a)

amount
$$Ba(IO_3)_2 = \frac{1.516 \times 10^{-3} \text{ mol}}{2} = 7.580 \times 10^{-4} \text{ mol}$$

mass $Ba(IO_3)_2 = 7.580 \times 10^{-4} \text{ mol} \times \frac{487.13 \text{ g } Ba(IO_3)_2}{1 \text{ mol}} = 0.369 \text{ g } Ba(IO_3)_2$

(b)

amount BaCl₂•2H₂O remaining = $((8.188 \times 10^{-4}) - (7.580 \times 10^{-4}))$ mol = 6.080×10^{-5} mol mass BaCl₂•2H₂O = 6.08×10^{-5} mol BaCl₂•2H₂O $\times \frac{244.26 \text{ g BaCl}_2 \cdot 2\text{H}_2\text{O}}{1 \text{ mol}}$ = 0.0149 g

12-33.

$$\begin{split} \mathcal{M}_{A_{gNO_3}} &= 169.873 \text{ g/mol} \quad \mathcal{M}_{A_{g_2CrO_4}} = 331.730 \text{ g/mol} \quad \mathcal{M}_{K_2CrO_4} = 194.190 \text{ g/mol} \\ 0.500 \text{ g } \text{AgNO}_3 \times \frac{1 \text{ mol } \text{AgNO}_3}{169.873 \text{ g}} \times \frac{1 \text{ mol } \text{Ag}_2\text{CrO}_4}{2 \text{ mol } \text{AgNO}_3} \times \frac{331.730 \text{ g } \text{Ag}_2\text{CrO}_4}{1 \text{ mol}} \\ &= 0.4882 \text{ g } \text{Ag}_2\text{CrO}_4 \\ 0.300 \text{ g } \text{K}_2\text{CrO}_4 \times \frac{1 \text{ mol } \text{K}_2\text{CrO}_4}{194.190 \text{ g}} \times \frac{1 \text{ mol } \text{Ag}_2\text{CrO}_4}{1 \text{ mol } \text{K}_2\text{CrO}_4} \times \frac{331.730 \text{ g } \text{Ag}_2\text{CrO}_4}{1 \text{ mol}} \\ &= 0.5125 \text{ g } \text{Ag}_2\text{CrO}_4 \\ \text{Because } \text{Ag}^+ \text{ is the limiting reagent,} \end{split}$$

(a) mass $Ag_2CrO_4 = 0.488 g$

(b)

amount
$$K_2CrO_4$$
 remaining = $((1.545 \times 10^{-3}) - (1.472 \times 10^{-3}))$ mol = 7.331 × 10⁻⁵ mol
mass $K_2CrO_4 = 7.331 \times 10^{-5}$ mol $K_2CrO_4 \times \frac{194.190 \text{ g } K_2CrO_4}{1 \text{ mol}} = 0.0142 \text{ g}$

Chapter 13

13-1. (a) The *millimole* is the amount of an elementary species, such as an atom, an ion, a molecule, or an electron. A millimole contains

$$6.02 \times 10^{23} \frac{\text{particles}}{\text{prof}} \times \frac{\text{prof}}{1000 \text{ mmol}} = 6.02 \times 10^{20} \frac{\text{particles}}{\text{mmol}}$$

(**b**) A *titration* involves measuring the quantity of a reagent of known concentration required to react with a measured quantity of sample of an unknown concentration. The concentration of the sample is then determined from the quantities of reagent and sample, the concentration of the reagent, and the stoichiometry of the reaction.

(c) The *stoichiometric ratio* is the molar ratio of two chemical species that appear in a balanced chemical equation.

(d) *Titration error* is the error encountered in titrimetry that arises from the difference between the amount of reagent required to give a detectable end point and the theoretical amount for reaching the equivalence point.

13-2. amount A (mmol) = volume (mL) $\times c_A$ (mmol A/mL)

amount A (mmol) = $\frac{\text{mass A}(g)}{\text{millimolar mass A}(g/\text{mmol})}$

13-3. (a) The *equivalence point* in a titration is that point at which sufficient titrant has been added so that stoichiometrically equivalent amounts of analyte and titrant are present. The *end point* in a titration is the point at which an observable physical change signals the equivalence point.

(b) A *primary standard* is a highly purified substance that serves as the basis for a titrimetric method. It is used either (i) to prepare a standard solution directly by mass or (ii) to standardize a solution to be used in a titration.

A *secondary standard* is material or solution whose concentration is determined from the stoichiometry of its reaction with a primary standard material. Secondary standards are employed when a reagent is not available in primary standard quality. For example, solid sodium hydroxide is hygroscopic and cannot be used to prepare a standard solution directly. A secondary standard solution of the reagent is readily prepared, however, by standardizing a solution of sodium hydroxide against a primary standard reagent such as potassium hydrogen phthalate.

13-4. For a dilute aqueous solution, 1 L = 1000 mL = 1000g. So,

$$\frac{1 \text{ mg}}{\text{L}} = \frac{10^{-3} \text{ g solute}}{1000 \text{ g solution}} = \frac{1 \text{ g solute}}{1,000,000 \text{ g solution}} = 1 \text{ ppm}$$

13-5. (a)
$$\frac{1 \mod H_2 NNH_2}{2 \mod I_2}$$

(b) $\frac{5 \mod H_2O_2}{2 \mod MnO_4^-}$
(c) $\frac{1 \mod Na_2B_4O_7 \cdot 10H_2O}{2 \mod H^+}$
(d) $\frac{2 \mod S}{3 \mod S \operatorname{KIO}_3}$

13-6. (a)
$$2.00 \not L \times 2.76 \times 10^{-3} \frac{\text{mol}}{\not L} \times \frac{1000 \text{ mmol}}{\text{mol}} = 5.52 \text{ mmol}$$

Chapter 13

(b) 250.0 mL
$$\times$$
 0.0423 $\frac{\text{mmol}}{\text{ml}}$ = 10.575 mmol

(c)

$$\frac{2.97 \text{ gCuSO}_4}{10^6 \text{ g solution}} \times \frac{1 \text{ g solution}}{\text{mL}} \times \frac{1 \text{ mmol}}{0.1596 \text{ gCuSO}_4} \times 500.0 \text{ mL} = 9.305 \times 10^{-3} \text{ mmol}$$

13-7. (a) 2.95 mL
$$\times \frac{0.0789 \text{ mmol}}{\text{mL}} = 0.233 \text{ mmol}$$

$$\frac{47.5 \text{ g Mg(NO_3)}_2}{10^6 \text{ g soln}} \times \frac{1000 \text{ g soln}}{\cancel{L}} \times \frac{1 \text{ mol}}{148.31 \text{ g Mg(NO_3)}_2} \times 2.56 \cancel{L} \times \frac{1000 \text{ mmol}}{\cancel{mol}} = 0.820 \text{ mmol}$$

(d) 79.8 mL
$$\times \frac{0.1379 \text{ mmol}}{\text{mL}} = 11.00 \text{ mmol}$$

26.0 mL ×
$$\frac{0.250 \text{ mmol sucrose}}{\text{mL}}$$
 × $\frac{0.342 \text{ g}}{\text{mmol sucrose}}$ × $\frac{1000 \text{ mg}}{\text{g}}$ = 2.22 × 10³ mg

(b)
$$2.92 \not L \times \frac{5.23 \times 10^{-4} \text{ mol H}_2 \text{ O}_2}{\not L} \times \frac{34.02 \not g}{\text{mol H}_2 \text{ O}_2} \times \frac{1000 \text{ mg}}{\not g} = 51.95 \text{ mg}$$

(c)
$$\frac{5.76 \text{ mg Pb}(\text{NO}_3)_2}{\cancel{L}} \times \frac{1 \cancel{L}}{1000 \text{ mL}} \times 673 \text{ mL} = 3.88 \text{ mg}$$
 (1 ppm = 1 mg/L)

(d) 6.75 mL ×
$$\frac{0.0426 \text{ mmol-KNO}_3}{\text{ml}}$$
 × $\frac{101.10 \text{ mg}}{\text{mmol-KNO}_3}$ = 29.07 mg

13-9. (a) 450.0 mL ×
$$\frac{0.0986 \text{ mol} \text{H}_2 \text{O}_2}{\cancel{L}}$$
 × $\frac{34.02 \text{ g}}{\cancel{\text{mol} \text{H}_2 \text{O}_2}}$ × $\frac{1 \cancel{L}}{1000 \text{ mL}}$ = 1.51 g

(**b**)
$$26.4 \text{ mL} \times \frac{9.36 \times 10^{-4} \text{ mol}}{\cancel{1}} \times \frac{122.1 \text{ g}}{\cancel{1}} \times \frac{1 \cancel{1}}{1000 \text{ mL}} = 3.02 \times 10^{-3} \text{ g}$$

(c)
$$2.50 \not L \times \frac{23.4 \text{ mg}}{\not L} \times \frac{1 \text{ g}}{1000 \text{ mg}} = 0.0585 \text{ g}$$
 (1 ppm = 1 mg/L)

(d) 21.7 mL ×
$$\frac{0.0214 \text{ mol}}{\cancel{1}}$$
 × $\frac{167.0 \text{ g}}{\cancel{1000 \text{ mL}}}$ = 0.0776 g

13-10.

$$\frac{50.0 \text{ g NaOH}}{100 \text{ g sofn}} \times \frac{1.52 \text{ g sofn}}{\text{mL}} \times \frac{1 \text{ mol NaOH}}{39.997 \text{ g NaOH}} \times \frac{1000 \text{ mL}}{\text{L}} = 19.0 \frac{\text{mol NaOH}}{\text{L}} = 19.0 \text{ M}$$

$$13-11. \frac{20.0 \text{ g KCl}}{100 \text{ g sofn}} \times \frac{1.13 \text{ g sofn}}{\text{mL}} \times \frac{1 \text{ mmol KCl}}{0.07455 \text{ g KCl}} = 3.03 \frac{\text{mmol KCl}}{\text{mL}} = 3.03 \text{ M}$$

$$0.0750 \text{ M AgNO}_3 = \frac{0.0750 \text{ mole AgNO}_3}{\cancel{k}} \times \frac{1 \cancel{k}}{1000 \text{ mL}} \times 500 \text{ mL} = 0.0375 \text{ mole AgNO}_3$$

$$0.0375 \text{ mole-AgNO}_3 \times \frac{169.87 \text{ g AgNO}_3}{\text{mole-AgNO}_3} = 6.37 \text{ g AgNO}_3$$

Dissolve 6.37 g AgNO₃ in water and dilute to 500 mL.

(b) 0.325 M HCl =
$$\frac{0.325 \text{ mole HCl}}{\cancel{k}} \times 2.00 \ \cancel{k} = 0.650 \text{ mole HCl}$$

$$0.650 \text{ mole HCl} \times \frac{1 \text{ L}}{6.00 \text{ mole HCl}} = 0.108 \text{ L}$$

Dilute 108 mL of the 6 M HCl with enough water to make 2.00 L total volume

(c)
$$0.0900 \text{ M K}^+ = \frac{0.0900 \text{ mole } \text{K}^+}{\cancel{1}} \times \frac{1 \cancel{1}}{1000 \text{ mL}} \times 750 \text{ mL} = 0.0675 \text{ mole } \text{K}^+$$

$$0.0675 \text{ mole } \mathrm{K}^{+} \times \frac{1 \text{ mole } \mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}}{4 \text{ mole } \mathrm{K}^{+}} \times \frac{368.35 \text{ g } \mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}}{\text{ mole }} = 6.22 \text{ g } \mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$$

Dissolve 6.22 g K₄Fe(CN)₆ in water and dilute to 750 mL.

2.00% (w/v)
$$BaCl_2 = \frac{2.00 \text{ g BaCl}_2}{100 \text{ mL}} \times \frac{\text{mole BaCl}_2}{208.23 \text{ g BaCl}_2} \times 600 \text{ mL} = 0.0576 \text{ mole BaCl}_2$$

$$0.0576 \text{ mole-BaCl}_2 \times \frac{1 \text{ L}}{0.500 \text{ mole-BaCl}_2} = 0.115 \text{ L}$$

Dilute 115 mL of 0.500M BaCl₂ in enough water to yield 600 mL total volume.

(e)
$$0.120 \text{ M HClO}_4 = \frac{0.120 \text{ mole HClO}_4}{\cancel{k}} \times 2.00 \cancel{k} = 0.240 \text{ mole HClO}_4$$

$$\text{Commercial reagent} = \frac{1.60 \times 10^3 \text{ g/}}{\text{L}} \times \frac{60 \text{ g HCHO}_4}{100 \text{ g/}} \times \frac{\text{mole HClO}_4}{100.5 \text{ g HCHO}_4} = \frac{9.55 \text{ mole HClO}_4}{\text{L}}$$

vol. reagent = 0.240 mole HCIO₄ ×
$$\frac{L}{9.55 \text{ mole HCIO}_4}$$
 = 0.025 L

Dilute 25 mL HClO₄ reagent in enough water to yield 2.00 L.

(f) 60.0 ppm Na⁺ =
$$\frac{60 \text{ mg Na}^+}{\cancel{L}} \times 9.00 \cancel{L} = 5.40 \times 10^2 \text{ mg Na}^+$$

$$5.4 \times 10^{2} \text{ mg Na}^{+} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{\text{mole Na}^{+}}{22.99 \text{ g Na}^{+}} \times \frac{\text{mole Na}_{2}^{+} \text{SO}_{4}}{2 \text{ mole Na}^{+}} \times \frac{142.0 \text{ g Na}_{2} \text{SO}_{4}}{\text{mole Na}_{2}^{+} \text{SO}_{4}} = 1.67 \text{ g Na}_{2} \text{SO}_{4}$$

Dissolve 1.67 g Na₂SO₄ in water and bring to 9.00 L total volume.

13-13. (a)
$$1.00 \not L \times \frac{0.150 \text{ mol}}{\not L} \times \frac{158.03 \text{ g}}{\text{mol}} = 23.70 \text{ g}$$

Dissolve 23.70 g KMnO₄ in water and dilute to 1.00 L total volume.

(**b**) 2.50 L of 0.500 M HClO₄ contains 2.50
$$\not\!\!L \times \frac{0.500 \text{ mol}}{\not\!\!L} = 1.25 \text{ mol}$$

Need to take a volume of
$$\frac{1.25 \text{ mol}}{9.00 \text{ mol}/\text{L}} = 0.139 \text{ L}$$

Take 139 mL of concentrated (9.00 M) reagent and dilute to 2.50 L.

400 mL ×
$$\frac{0.0500 \text{ mot } \Gamma^-}{\cancel{k}}$$
 × $\frac{1 \cancel{k}}{1000 \text{ mL}}$ × $\frac{1 \text{ mol MgI}_2}{2 \text{ mot } \Gamma^-}$ × $\frac{278.11 \text{ g}}{\text{mol MgI}_2}$ = 2.78 g

Dissolve 2.78 g MgI₂ in water and bring to 400 mL total volume.

$$200 \text{ mL} \times \frac{1.00 \text{ gCuSO}_4}{100 \text{ mL}} \times \frac{1 \text{ mol}}{159.61 \text{ gCuSO}_4} \times \frac{1 \text{ }\text{L}}{0.218 \text{ mol}} \times \frac{1000 \text{ mL}}{1 \text{ }\text{L}} = 57.5 \text{ mL}$$

Take 57.5 mL of the 0.218 M solution and dilute to a volume of 200 mL.

(e) In 1.50 L of 0.215 M NaOH, there are

$$\frac{0.215 \text{ mole NaOH}}{L} \times 1.50 \text{ L} = 0.3225 \text{ mole NaOH}$$

The commercial reagent is
$$\frac{1.525 \times 10^3 \text{ g/}}{\text{L}} \times \frac{50 \text{ g NaOH}}{100 \text{ g/}} \times \frac{\text{mole}}{40.00 \text{ g NaOH}} = 19.06 \text{ M}$$

Thus, volume = 0.3225 mole NaOH ×
$$\frac{L}{19.06 \text{ mole NaOH}} = 0.0169 \text{ L}$$

Take 16.9 mL of the concentrated reagent and dilute to 1.50 L.

(f)
$$12 \text{ ppm } \text{K}^{+} = \frac{12 \text{ mg } \text{K}^{+}}{\cancel{\cancel{L}}} \times 1.50 \ \cancel{\cancel{L}} = 18 \text{ mg } \text{K}^{+}$$

 $18 \text{ mg} \times \frac{1 \cancel{\cancel{g}}}{1000 \text{ mg}} \times \frac{\text{mole } \text{K}^{+}}{39.10 \cancel{\cancel{g}}} \times \frac{\text{mole } \text{K}_{4} \text{Fe}(\text{CN})_{6}}{4 \text{ mole } \text{K}^{+}} \times \frac{368.3 \text{ g}}{\text{mole } \text{K}_{4} \text{Fe}(\text{CN})_{6}}$
 $= 0.0424 \text{ g } \text{K}_{4} \text{Fe}(\text{CN})_{6}$

. . .

Dissolve 42.4 mg K_4 Fe(CN)₆ in water and dilute to 1.50 L.

13-14.
$$\mathcal{M}_{HgO} = 216.59 \frac{g}{mole}$$

 $HgO(s) + 4Br^{-} + H_2O \implies HgBr_4^{2-} + 2OH^{-}$

 $\frac{0.4008 \text{ g HgO} \times \frac{1 \text{ mole HgO}}{216.59 \text{ g HgO}} \times \frac{2 \text{ mole OH}^{-}}{\text{mole HgO}} \times \frac{1 \text{ mole HClO}_{4}}{1 \text{ mole OH}^{-}} \times \frac{1000 \text{ mmol HClO}_{4}}{\text{mole}}{43.75 \text{ mL}}$

 $= 0.08459 \text{ M HClO}_{4}$

13-15. $\mathcal{M}_{Na_2CO_3} = 105.99 \frac{g}{mole}$

 $\mathrm{CO}_3^{2-} + 2\mathrm{H}^+ \rightleftharpoons \mathrm{H}_2\mathrm{O} + \mathrm{CO}_2(\mathrm{g})$

 $\underbrace{\frac{0.4723 \text{ g Na}_2 \text{CO}_3 \times \frac{1 \text{ mole Na}_2 \text{CO}_3}{105.99 \text{ g Na}_2 \text{CO}_3} \times \frac{2 \text{ mole H}^+}{\text{mole Na}_2 \text{CO}_3} \times \frac{1 \text{ mole H}_2 \text{SO}_4}{2 \text{ mole H}^+} \times \frac{1000 \text{ mmol}}{\text{mole H}_2 \text{SO}_4}}{34.78 \text{ mL}} \times \frac{1000 \text{ mmol}}{2 \text{ mole H}^+} \times \frac{1000 \text{ mmol}}{1000 \text{ mmol}}}{1000 \text{ mmol}}}$

$$= 0.1281 \text{ M}$$

13-16. $\mathcal{M}_{Na_2SO_4} = 142.04 \frac{g}{mole}$

$$\frac{0.5002 \text{ g}}{2000 \text{ g}} \times \frac{96.4 \text{ g} \text{ Na}_2 \text{SO}_4}{100 \text{ g}} \times \frac{1 \text{ mole} \text{ Na}_2 \text{SO}_4}{142.04 \text{ g} \text{ Na}_2 \text{SO}_4} \times \frac{1 \text{ mole} \text{ BaCI}_2}{1 \text{ mole} \text{ Na}_2 \text{SO}_4} \times \frac{1000 \text{ mmol}}{1 \text{ mole} \text{ BaCI}_2}}{48.63 \text{ mL}}$$

 $c_{\text{NaOH}} =$

13-17.
$$\frac{V_{\text{HCIO}_4}}{V_{\text{NaOH}}} = \frac{26.93 \text{ mL HCIO}_4}{25.00 \text{ mL NaOH}} = 1.0772 \frac{\text{mL HCIO}_4}{\text{mL NaOH}}$$

The volume of $HClO_4$ needed to titrate 0.4126 g of Na_2CO_3 is

40.00 mL HClO₄ – 9.20 mL NaOH ×
$$\frac{1.0772 \text{ mL HClO}_4}{\text{mL NaOH}}$$
 = 30.09 mL

Thus,
$$\frac{0.4126 \text{ g Na}_2\text{CO}_3}{30.09 \text{ mL HClO}_4} \times \frac{1 \text{ mmol Na}_2\text{CO}_3}{0.10588 \text{ g Na}_2\text{CO}_3} \times \frac{2 \text{ mmol HClO}_4}{\text{mmol Na}_2\text{CO}_3} = 0.2590 \text{ M HClO}_4$$

and

$$c_{\mathrm{HCIO}_{4}} \times \frac{V_{\mathrm{HCIO}_{4}}}{V_{\mathrm{NaOH}}}$$

$$= \frac{0.2590 \text{ mmol} \text{HClO}_4}{\text{mL} \text{HClO}_4} \times \frac{1.0772 \text{ mL} \text{HClO}_4}{\text{mL} \text{ NaOH}} \times \frac{1 \text{ mmol} \text{ NaOH}}{\text{mmol} \text{HClO}_4} = 0.2790 \text{ M}$$

13-18.

$$\frac{50.00 \text{ mL Na}_{2}C_{2}O_{4} \times \frac{0.04715 \text{ mmol Na}_{2}C_{2}O_{4}}{\text{mL Na}_{2}C_{2}O_{4}} \times \frac{2 \text{ mmol KMnO}_{4}}{5 \text{ mmol Na}_{2}C_{2}O_{4}}}{39.25 \text{ mL}} = 0.02403 \text{ M}$$

13-19. Each mole of KIO₃ consumes 6 moles of $S_2O_3^{2-}$

$$\frac{0.1142 \text{ g KHO}_3 \times \frac{1 \text{ mol-KHO}_3}{214.001 \text{ g KHO}_3} \times \frac{1000 \text{ mmol Na}_2\text{SO}_3}{\text{mol Na}_2\text{SO}_3} \times \frac{6 \text{ mol-Na}_2\text{SO}_3}{\text{mol-KHO}_3}}{27.95 \text{ mL Na}_2\text{SO}_3}$$

 $= 0.1146 \text{ M Na}_2 \text{SO}_3$

13-20. total mmol NaOH =
$$25.00 \text{ mL} \times 0.00873 \text{ mmol/mL} = 0.21825$$

mmol HCl added = $15.17 \text{ mL} \times 0.01102 \text{ mmol/mL} = 0.16717$

mmol NaOH consumed by analyte = 0.21825 - 0.16717 = 0.05108

$$\frac{0.05108 \text{ mmol NaOH} \times \frac{1 \text{ mmol H}_2 \text{SO}_4}{2 \text{ mmol NaOH}} \times \frac{1 \text{ mmol S}}{1 \text{ mmol H}_2 \text{SO}_4} \times \frac{0.03207 \text{ g S}}{\text{mmol S}} \times 10^6 \text{ ppm}}{4.912 \text{ g sample}}$$

= 166.7 ppm S

13-21. No. mmol Fe²⁺ = 25.00 mL ×
$$\frac{0.002517 \text{ mmol } \text{Cr}_2\text{O}_7^{2-}}{\text{mL}}$$
 × $\frac{6 \text{ mmol } \text{Fe}^{2+}}{\text{mmol } \text{Cr}_2\text{O}_7^{2-}}$ = 0.37755

= no. mmol analyte Fe^{2+} + no. mmol Fe^{2+} back titrated

No. mmol analyte $Fe^{2+} = 0.37755 - 8.53 \times 0.00949 \ M = 0.2966$

$$\frac{0.2966 \text{ mmot Fe}}{100 \text{ mL}} \times \frac{0.055845 \text{ g}}{\text{mmot Fe}} \times \frac{1 \text{ mL}}{\text{g}} \times 10^6 \text{ ppm} = 165.6 \text{ ppm Fe}$$

13-22. Amount Ag^+ added = = 40.00 mL × $\frac{0.05871 \text{ mmol}}{\text{mL}} = 2.348 \text{ mmol}$

Amount Ag^+ required for $Ag_3AsO_4 = 2.348 \text{ mmol} - 9.63 \text{ mL} \times 0.1000 \text{ M} = 1.385 \text{ mmol}$

$$\frac{1.3854 \text{ mmol} \text{Ag}^{+} \times \frac{1 \text{ mmol} \text{As}}{3 \text{ mmol} \text{Ag}} \times \frac{1 \text{ mmol} \text{As}_{2}\text{O}_{3}}{2 \text{ mmol} \text{As}} \times \frac{0.197841 \text{ g} \text{As}_{2}\text{O}_{3}}{\text{mmol} \text{As}_{2}\text{O}_{3}}}{1.203 \text{ g}} \times 100\%$$

$$= 3.797 \% \text{ As}_2\text{O}_3$$

13-23.
$$\frac{37.31 \text{ mL Hg}^{2+} \times \frac{0.009372 \text{ mmol Hg}^{2+}}{\text{mL Hg}^{2+}} \times \frac{4 \text{ mmol}}{\text{mmol Hg}^{2+}} \times \frac{0.07612 \text{ g}}{\text{mmol}}}{1.455 \text{ g}} \times 100\%$$

$$= 7.317 \% (NH_2)_2 CS$$

13-24. (a)

$$\frac{0.1215 \text{ g } \text{C}_{6}\text{H}_{5}\text{COOH} \times \frac{1 \text{ mole } \text{C}_{6}\text{H}_{5}\text{COOH}}{122.12 \text{ g}} \times \frac{1 \text{ mole } \text{Ba}(\text{OH})_{2}}{2 \text{ mole } \text{C}_{6}\text{H}_{5}\text{COOH}} \times \frac{1000 \text{ mmol}}{\text{mole}}}{43.25 \text{ mL}}$$

$$= 0.01150 \text{ M Ba(OH)}_{2}$$

(b)

$$s_y = (1.150 \times 10^{-2} \text{ M}) \times \sqrt{\left(\frac{0.0003}{0.1215}\right)^2 + \left(\frac{0.02}{43.25}\right)^2} = 2.9 \times 10^{-5} \text{ M}$$

Hence, the molarity of Ba(OH)₂ can be written 0.01150 ± 0.00003 M

(c) A mass measurement error of -0.3 mg would make the molarity actually

 $\frac{(0.1215 - 0.0003) \text{ g } \text{C}_6\text{H}_5\text{COOH} \times \frac{1 \text{ mole } \text{C}_6\text{H}_5\text{COOH}}{122.12 \text{ g}} \times \frac{1 \text{ mole } \text{Ba}(\text{OH})_2}{2 \text{ mole } \text{C}_6\text{H}_5\text{COOH}} \times \frac{1000 \text{ mmol}}{\text{mole}}{43.25 \text{ mL}}$

 $= 0.01147 \text{ M Ba(OH)}_{2}$

The error E is then

$$E = (0.1147 - 0.1150) \text{ M} = -3 \times 10^{-5} \text{ M}$$

The relative error, E_r is

$$E_r = \frac{(-3.0 \times 10^{-5} \text{ M})}{1.150 \times 10^{-2} \text{ M}} = -3.0 \times 10^{-3} \text{ or } -3 \text{ ppt}$$

13-25. Total amount KOH = $40.00 \text{ mL} \times 0.04672 \text{ mmol/mL} = 1.8688 \text{ mmol}$

KOH reacting with H₂SO₄

$$= 3.41 \text{ mL} \text{H}_2 \text{SO}_4 \times \frac{0.05042 \text{ mmol} \text{H}_2 \text{SO}_4}{\text{mL} \text{H}_2 \text{SO}_4} \times \frac{2 \text{ mmol} \text{ KOH}}{\text{mmol} \text{H}_2 \text{SO}_4} = 0.34386 \text{ mmol}$$

mass EtOAc = (1.8688 - 0.34386) mmol KOH × $\frac{1 \text{ mmol EtOAc}}{\text{mmol KOH}}$ × $\frac{0.08811 \text{ g}}{\text{mmol EtOAc}}$

= 0.13436 g in the 20.00-mL portion. In the entire 100.00-mL there are

 5×0.13326 g or 0.6718 g.

13-26. (a)

For sample 1, the w/v percentage HOAc is given by

 $\frac{\frac{0.1475 \text{ mmol Ba}(\text{OH})_2}{\text{mL}} \times 43.17 \text{ mL} \times \frac{2 \text{ mmol HOAc}}{1 \text{ mmol Ba}(\text{OH})_2} \times \frac{60.05 \text{ g HOAc}}{1000 \text{ mmol}}}{50.00 \text{ mL}} \times 100\%$

= 1.529% HOAC

Similar calculations for samples 2-4 give the results shown in the spreadsheet that follows.

(b) See the spreadsheet

(c) See the spreadsheet. The 90% CI = 1.528 ± 0.007

(d) The values of 1.535 and 1.521 can be considered for rejection. The Q values are calculated in the spreadsheet. Since both results are less than $Q_{crit} = 0.765$, neither value should be rejected.

1	A	В	С	D
1	Pb 13-26			
2				
3	conc. Ba(OH) ₂	0.1475		
4	MW HOAc	60.05		
5				
6	Sample	Sample Vol., mL	Vol. Ba(OH) ₂ , mL	w/v % HOAc
7	1	50.00	43.17	1.529
8	2	49.50	42.68	1.527
9	3	25.00	21.47	1.521
10	4	50.00	43.33	1.535
11				
12	Mean w/v %	1.528		
13	SD	0.00571		
14	t	2.353363435		
15	CI	0.006714204		
16	Q for 1.535	0.41		
17	Q for 1.521	0.44		
18				
19	Documentation			
20	Cell D7=((\$B\$3*C7*2*\$B\$4/1000)/B7)*100			
21	Cell B12=AVERAGE(D7:D10)			
and the second second second	Cell B13=STDEV(D7:D10)			
	Cell B14=TINV(0.1,3)			
and the second se	Cell B15=B14*B13/SQRT(4)			
	Cell B16=(D10-D7)/(D10-D9)			
26	Cell B17=(D9-D8)/(D9-D10)			

13-27. (a)
$$\frac{0.3147 \text{ g Na}_2 \text{C}_2 \text{O}_4}{0.1340 \text{ g Na}_2 \text{C}_2 \text{O}_4 / \text{ mmol Na}_2 \text{C}_2 \text{O}_4} \times \frac{2 \text{ mmol KMnO}_4}{5 \text{ mmol Na}_2 \text{C}_2 \text{O}_4} = 0.9394 \text{ mmol KMnO}_4$$

$$\frac{0.9394 \text{ mmol KMnO}_4}{31.67 \text{ mL}} = 0.02966 \text{ M KMnO}_4$$

(b) $MnO_4^- + 5Fe^{2+} + 8H^+ \implies Mn^{2+} + 5Fe^{3+} + 4H_2O$

26.75 mL KMnO₄ × 0.02966 M = 0.7934 mmol KMnO₄. Each mmol KMnO₄ consumes 5 mmol Fe²⁺. So

mmol $\mathrm{Fe}^{2+} = 5 \times 0.7934 = 3.967$

$$\frac{3.967 \text{ mmol Fe}^{2+} \times \frac{1 \text{ mmol Fe}_{2}\text{O}_{3}}{2 \text{ mmol Fe}^{2+}} \times \frac{0.15969 \text{ g Fe}_{2}\text{O}_{3}}{\text{mmol Fe}_{2}\text{O}_{3}}}{0.6656 \text{ g}} \times 100\% = 47.59\%$$

13-28. (a)

weight molarity
$$Ag^+ = \frac{0.1527 \text{ g AgNO}_3 \times \frac{1 \text{ mmol AgNO}_3}{0.16987 \text{ g}} \times \frac{1 \text{ mmol Ag}^+}{1 \text{ mmol AgNO}_3}}{502.3 \text{ g}}$$

$$= 1.7896 \times 10^{-3} \text{ mmol/g}$$

(b)

Reaction $Ag^+ + SCN^- \rightleftharpoons AgSCN(s)$ Each mole of Ag^+ consumes 1 mole of SCN^-

24.615 g AgNO₃ × 1.7896 × 10^{-3} mmol/g = 0.04405 mmol AgNO₃ or KSCN

weight molarity KSCN =
$$\frac{0.04405 \text{ mmol KSCN}}{25.171 \text{ g}} = 1.750 \times 10^{-3} \text{ mmol/g}$$

(c) Total amount of AgNO₃ added = $20.102 \text{ g} \times 1.7896 \times 10^{-3} \text{ mmol/g} = 0.03597 \text{ mmol}$

Excess AgNO₃ = $7.543 \text{ g} \times 1.750 \times 10^{-3} \text{ mmol/g} = 0.01320 \text{ mmol}$

Amount AgNO₃ used for analyte = 0.03597 - 0.01320 = 0.02277 mmol

There are 2 moles Ag^+ used for each mole of $BaCl_2$ in the $Ag^+ + Cl^- \rightarrow AgCl(s)$ reaction

mmol BaCl₂•2H₂O = 0.02277 mmol AgNO₃ ×
$$\frac{1 \text{ mmol BaCl}_2 \cdot 2H_2O}{2 \text{ mmol AgNO}_3} = 0.011385$$

$$\frac{0.011385 \text{ mmol } BaCl_2 \cdot 2H_2O}{0.7120 \text{ g}} \times \frac{0.24428 \text{ g } BaCl_2 \cdot 2H_2O}{\text{mmol } BaCl_2 \cdot 2H_2O} \times 100\% = 0.3906\%$$

13-29. (a)
$$c = \frac{7.48 \text{ g} \times \frac{1 \text{ mol}}{277.85 \text{ g}}}{2.000 \text{ L}} = 1.35 \times 10^{-2} \text{ M}$$

(b)
$$[Mg^{2+}] = 1.35 \times 10^{-2} M$$

(c) There are 3 moles of Cl^{-} for each mole of $KCl \bullet MgCl_{2} \bullet 6H_{2}O$. Hence,

$$[Cl^{-}] = 3 \times 1.346 \times 10^{-2} = 4.038 \times 10^{-2} M$$

(d)
$$\frac{7.48 \text{ g}}{2.00 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 100\% = 0.374\% \text{ (w/v)}$$

$$\frac{1.346 \times 10^{-2} \text{ mmol KCl-MgCl}_2}{\text{mmol KCl-MgCl}_2} \times \frac{3 \text{ mmol Cl}^-}{\text{mmol KCl-MgCl}_2} \times 25.00 \text{ mml} = 1.0095 \text{ mmol Cl}^-$$

(f)

$$\frac{1.346 \times 10^{-2} \text{ mmol KCl} \cdot \text{MgCl}_2}{\text{mL}} \times \frac{1 \text{ mmol K}^+}{\text{mmol KCl} \cdot \text{MgCl}_2} \times \frac{39.10 \text{ mg}}{\text{mmol K}^+} \times \frac{1000 \text{ mL}}{\text{L}} = \frac{526 \text{ mg K}^+}{\text{L}}$$

$$= 526 \text{ ppm K}^+$$

13-30. (a)
$$c_{\rm K_3Fe(CN)_6} = \frac{367 \text{ mg} \times \frac{1 \text{ mmol}}{329.2 \text{ mg}}}{750.0 \text{ mL}} = 1.49 \times 10^{-3} \text{ M}$$

- **(b)** $[K^+] = 3 \times 1.49 \times 10^{-3} = 4.46 \times 10^{-3} M$
- (c) $[\text{Fe}(\text{CN})_6^{3-}] = c_{\text{K}_3\text{Fe}(\text{CN})_6} = 1.49 \times 10^{-3} \text{ M}$

(d)
$$\frac{367 \text{ mg K}_{3}\text{Fe(CN)}_{6}}{750 \text{ mL}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times 100\% = 4.89 \times 10^{-2}\% \text{ (m/v)}$$

(e)
$$\frac{1.49 \times 10^{-3} \text{ mmol } \text{K}_3 \text{Fe}(\text{CN})_6}{\text{mm}} \times \frac{3 \text{ mmol } \text{K}^+}{\text{mmol } \text{K}_3 \text{Fe}(\text{CN})_6} \times 50 \text{ mL} = 0.224 \text{ mmol } \text{K}^+$$

(f) The molar mass of $Fe(CN)_{6}^{3-} = 212.0 \text{ g/mol}$

$$\frac{1.49 \times 10^{-3} \text{ mol}}{\text{L}} \times \frac{212.0 \text{ g}}{\text{mol}} \times \frac{1 \text{ L}}{1000 \text{ g}} \times 10^{6} \text{ ppm} = 316 \text{ ppm}$$

Chapter 14

- 14-1. The eye has limited sensitivity. To see the color change requires a roughly tenfold excess of one or the other form of the indicator. This change corresponds to a pH range of the indicator $pK_a \pm 1$ pH unit, a total range of 2 pH units.
- **14-2.** End-point sharpness is influenced by completeness of the reaction between the analyte and titrant and the concentrations of the analyte and titrant.
- **14-3.** (a) The initial pH of the NH₃ solution will be less than that for the solution containing NaOH. With the first addition of titrant, the pH of the NH₃ solution will decrease rapidly and then level off and become nearly constant throughout the middle part of the titration. In contrast, additions of standard acid to the NaOH solution will cause the pH of the NaOH solution to decrease gradually and nearly linearly until the equivalence point is approached. The equivalence point pH for the NH₃ solution will be well below 7, whereas for the NaOH solution it will be exactly 7.

(**b**) Beyond the equivalence point, the pH is determined by the excess titrant. Thus, the curves become identical in this region.

- 14-4. The standard reagents in neutralization titrations are generally strong acids or strong bases because the reactions with this type of titrant are more complete than with those of their weaker counterparts. Sharper end points are the end result of this difference.
- **14-5.** The variables are temperature, ionic strength, and the presence of organic solvents and colloidal particles.
- 14-6. The sharper end point will be observed with the solute having the larger $K_{\rm b}$.

(a) For NaOCl,
$$K_{\rm b} = \frac{1.00 \times 10^{-14}}{3.0 \times 10^{-8}} = 3.3 \times 10^{-7}$$

For hydroxylamine
$$K_{\rm b} = \frac{1.00 \times 10^{-14}}{1.1 \times 10^{-6}} = 9.1 \times 10^{-9}$$
 Thus, NaOCl

(b) For NH₃,
$$K_{\rm b} = \frac{1.00 \times 10^{-14}}{5.7 \times 10^{-10}} = 1.75 \times 10^{-5}$$

For sodium phenolate, $K_{\rm b} = \frac{1.00 \times 10^{-14}}{1.00 \times 10^{-10}} = 1.00 \times 10^{-4}$ sodium phenolate

(c) For hydroxylamine
$$K_b = 9.1 \times 10^{-9}$$
 (part a)

For methyl amine, $K_{\rm b} = \frac{1.00 \times 10^{-14}}{2.3 \times 10^{-11}} = 4.3 \times 10^{-4}$ Thus, methyl amine

(d) For hydrazine
$$K_{\rm b} = \frac{1.00 \times 10^{-14}}{1.05 \times 10^{-8}} = 9.5 \times 10^{-7}$$

For NaCN,
$$K_{\rm b} = \frac{1.00 \times 10^{-14}}{6.2 \times 10^{-10}} = 1.6 \times 10^{-3}$$
 NaCN

14-7. The sharper end point will be observed with the solute having the larger $K_{a.}$

(a)	For nitrous acid	$K_{\rm a} = 7.1 \times 10^{-4}$	
	For iodic acid	$K_{\rm a} = 1.7 \times 10^{-1}$	Thus, iodic acid
(b)	For anilinium	$K_{\rm a} = 2.51 \times 10^{-5}$	
	For benzoic acid	$K_{\rm a} = 6.28 \times 10^{-5}$	benzoic acid
(c)	For hypochlorous aci	d $K_{\rm a} = 3.0 \times 10^{-8}$	
	For pyruvic acid	$K_{\rm a} = 3.2 \times 10^{-3}$	Thus, pyruvic acid
(d)	For salicylic acid	$K_{\rm a} = 1.06 \times 10^{-3}$	
	For acetic acid	$K_{\rm a} = 1.75 \times 10^{-5}$	salicylic acid

Chapter 14

14-8. HIn + H₂O
$$\rightleftharpoons$$
 H₃O⁺ + In⁻ $\frac{[H_3O^+][In^-]}{[HIn]} = K_a$

For bromthyol blue, $pK_a = 7.10$ (Table 14-1)

$$K_{\rm a} = {\rm antilog}(-7.10) = 7.94 \times 10^{-8}$$

 $[HIn]/[In^-] = 1.29$

Substituting these values into the equilibrium expression and rearranging gives

$$[H_3O^+] = 7.94 \times 10^{-8} \times 1.29 = 1.025 \times 10^{-7}$$
$$pH = -\log(1.025 \times 10^{-7}) = 6.99$$

14-9. $\operatorname{InH}^+ + \operatorname{H}_2 O \rightleftharpoons \operatorname{In} + \operatorname{H}_3 O^+ \qquad \qquad \frac{[\operatorname{H}_3 O^+][\operatorname{In}]}{[\operatorname{InH}^+]} = K_a$

For methyl orange, $pK_a = 3.46$ (Table 14-1) $K_a = antilog(-3.46) = 3.47 \times 10^{-4}$ $[InH^+]/[In] = 1.84$

Substituting these values into the equilibrium expression and rearranging gives

$$[H_{3}O^{+}] = 3.47 \times 10^{-4} \times 1.84 = 6.385 \times 10^{-4}$$

pH = -log(6.385 × 10⁻⁴) = 3.19

14-10. $[H_3O^+] = \sqrt{K_w}$ and $pH = -\log(K_w)^{1/2} = -\frac{1}{2}\log K_w$

At
$$0^{\circ}$$
C, pH = $-\frac{1}{2}\log(1.14 \times 10^{-15}) = 7.47$

- At 50°C, $pH = -\frac{1}{2}\log(5.47 \times 10^{-14}) = 6.63$
- At 100° C, $pH = -\frac{1}{2}\log(4.9 \times 10^{-13}) = 6.16$
- **14-11.** At 0°C, $pK_w = -\log(1.14 \times 10^{-15}) = 14.94$

At 50°C,
$$pK_w = -\log(5.47 \times 10^{-14}) = 13.26$$

3

At 100°C,
$$pK_w = -\log(4.9 \times 10^{-13}) = 12.31$$

14-12. $pK_w = pH + pOH$; $pOH = -log[OH^-] = -log(1.00 \times 10^{-2}) = 2.00$

(a)
$$pH = pK_w - pOH = 4.94 - 2.00 = 12.94$$

(b)
$$pH = 13.26 - 2.00 = 11.26$$

(c) pH = 12.31 - 2.00 = 10.31

14-13.
$$\frac{3.00 \text{ g.HCl}}{100 \text{ g/}} \times \frac{1.015 \text{ g/}}{\text{mL}} \times \frac{1 \text{ mmol HCl}}{0.03646 \text{ g.HCl}} = 0.835 \text{ M}$$
$$[\text{H}_{3}\text{O}^{+}] = 0.835 \text{ M}; \qquad \text{pH} = -\log 0.835 = 0.078$$
$$14-14. \quad \frac{2.00 \text{ g.NaOH}}{100 \text{ g/}} \times \frac{1.022 \text{ g/}}{\text{mL}} \times \frac{1 \text{ mmol NaOH}}{0.04000 \text{ g.NaOH}} = 0.511 \text{ M}$$
$$[\text{OH}^{-}] = 0.511 \text{ M}; \qquad \text{pH} = 14.00 - (-\log 0.511) = 13.71$$

14-15. The solution is so dilute that we must take into account the contribution of water to [OH⁻] which is equal to $[H_3O^+]$. Thus,

$$[OH^{-}] = 2.00 \times 10^{-8} + [H_{3}O^{+}] = 2.00 \times 10^{-8} + \frac{1.00 \times 10^{-14}}{[OH^{-}]}$$
$$[OH^{-}]^{2} - 2.00 \times 10^{-8}[OH^{-}] - 1.00 \times 10^{-14} = 0$$
Solving the quadratic equation yields, $[OH^{-}] = 1.105 \times 10^{-7} \text{ M}$
$$pOH = -\log 1.105 \times 10^{-7} = 6.957; \quad pH = 14.00 - 6.957 = 7.04$$

14-16. The solution is so dilute that we must take into account the contribution of water to $[H_3O^+]$ which is equal to $[OH^-]$. Thus,

$$[H_{3}O^{+}] = 2.00 \times 10^{-8} + [OH^{-}] = 2.00 \times 10^{-8} + \frac{1.00 \times 10^{-14}}{[H_{3}O^{+}]}$$
$$[H_{3}O^{+}]^{2} - 2.00 \times 10^{-8}[H_{3}O^{+}] - 1.00 \times 10^{-14} = 0$$
$$4$$

$$[H_3O^+] = 1.105 \times 10^{-7} \text{ M};$$
 $pH = -\log 1.105 \times 10^{-7} = 6.96$

14-17. amount of Mg(OH)₂ taken =
$$\frac{0.093 \text{ g Mg(OH)}_2}{0.05832 \text{ g Mg(OH)}_2 / \text{mmol}} = 1.595 \text{ mmol}$$

(a)
$$c_{\text{HCl}} = (75.0 \times 0.0500 - 1.595 \times 2)/75.0 = 7.467 \times 10^{-3} \text{ M}$$

 $[\text{H}_3\text{O}^+] = 7.467 \times 10^{-3}; \qquad \text{pH} = -\log(7.467 \times 10^{-3}) = 2.13$

(b)
$$c_{\text{HCl}} = 100.0 \times 0.0500 - 1.595 \times 2)/100.0 = 0.0181 \text{ M}$$

 $pH = -\log(0.0181) = 1.74$

(c)
$$15.0 \times 0.050 = 0.750$$
 mmol HCl added. Solid Mg(OH)₂ remains and

$$[Mg^{2+}] = 0.750 \text{ mmol } \text{HCl} \times \frac{1 \text{ mmol } Mg^{2+}}{2 \text{ mmol } \text{HCl}} \times \frac{1}{15.0 \text{ mL}} = 0.0250 \text{ M}$$
$$K_{\text{sp}} = 7.1 \times 10^{-12} = [Mg^{2+}][\text{OH}^{-}]^{2}$$
$$[\text{OH}^{-}] = \sqrt{\frac{7.1 \times 10^{-12}}{0.0250}} = 1.68 \times 10^{-5} \text{ M}$$
$$\text{pH} = 14.00 - (-\log(1.68 \times 10^{-5})) = 9.22$$

(d) Since Mg(OH)₂ is fairly insoluble, the Mg²⁺ essentially all comes from the added MgCl₂, and $[Mg^{2+}] = 0.0500 \text{ M}$

$$[OH^{-}] = \sqrt{\frac{7.1 \times 10^{-12}}{0.0500}} = 1.19 \times 10^{-5} \text{ M}$$
$$pH = 14.00 - (-\log(1.19 \times 10^{-5})) = 9.08$$

14-18. In each part,
$$(20.0 \text{ mL HCl} \times 0.1750 \text{ mmol HCl/mL}) = 3.50 \text{ mmol HCl is taken$$

(a)
$$c_{\text{HCl}} = [\text{H}_3\text{O}^+] = \frac{3.50 \text{ mmol HCl}}{(20.0 + 25.0) \text{ mL}} = 0.0778 \text{ M}$$

$$pH = -log \ 0.0778 = 1.11$$

(b) Same as in part (a);
$$pH = 1.11$$

(c)
$$c_{\text{HCl}} = (3.50 - 25.0 \times 0.132)/(20.0 + 25.0) = 4.444 \times 10^{-3} \text{ M}$$

$$[H_3O^+] = 4.444 \times 10^{-3} \text{ M}; \text{ pH} = -\log 4.444 \times 10^{-3} = 2.35$$

(d) As in part (c),
$$c_{\text{HCl}} = 4.444 \times 10^{-3} \text{ M}$$
 and pH = 2.35

(The presence of NH_4^+ will not alter the pH significantly.)

(e)
$$c_{\text{NaOH}} = (25.0 \times 0.232 - 3.50)/(45.0) = 5.11 \times 10^{-2} \text{ M}$$

$$pOH = -\log(5.11 \times 10^{-2}) = 1.29$$
 $pH = 14 - 1.29 = 12.71$

14-19. (a)
$$[H_3O^+] = 0.0500 \text{ M}; \text{ pH} = -\log(0.0500) = 1.30$$

(b)
$$\mu = \frac{1}{2} \{ (0.0500)(+1)^2 + (0.0500)(-1)^2 \} = 0.0500 \}$$

 $\gamma_{_{H_3O^+}} = 0.85$ (Table 10-2)

$$a_{\rm H_3O^+} = 0.85 \times 0.0500 = 0.0425$$

pH = -log(0.0425) = 1.37

14-20. (a)
$$[OH^-] = 2 \times 0.0167 = 0.0334 \text{ M}$$

pH = 14 - (-log(0.0334)) = 12.52

(b)
$$\mu = \frac{1}{2} \{ (0.0167)(+2)^2 + (0.0334)(-1)^2 \} = 0.050$$

$$\gamma_{OH^-} = 0.81$$
 (Table 10-2)

$$a_{\rm OH^-} = 0.81 \times 0.0334 = 0.0271$$

$$a_{_{\rm OH^-}} \, \times \, a_{_{\rm H_3O^+}} = 1.00 \times 10^{-14}$$

$$a_{\rm H_{3}O^{+}} = 1.00 \times 10^{-14} / 0.0271 = 3.69 \times 10^{-13}$$

$$pH = -\log(3.69 \times 10^{-13}) = 12.43$$

14-21. HOCl + H₂O
$$\rightleftharpoons$$
 H₃O⁺ + OCl⁻ $K_a = \frac{[H_3O^+][OCl^-]}{[HOCl]} = 3.0 \times 10^{-8}$

 $[H_3O^+] = [OCI^-] \text{ and } [HOC1] = c_{HOC1} - [H_3O^+]$ $[H_3O^+]^2/(c_{HOC1} - [H_3O^+]) = 3.0 \times 10^{-8}$

rearranging gives: $[H_3O^+]^2 + 3 \times 10^{-8} [H_3O^+] - c_{HOCl} \times 3.0 \times 10^{-8} = 0$

	<i>c</i> _{HOCl}	$[H_3O^+]$	pН
(a)	0.100	5.476×10^{-5}	4.26
(b)	0.0100	1.731×10^{-5}	4.76
(c)	$1.00 imes 10^{-4}$	1.717×10^{-6}	5.76

14-22. OCl⁻ + H₂O
$$\rightleftharpoons$$
 HOCl + OH⁻ $K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a}} = \frac{[\text{HOCl}][\text{OH}^-]}{[\text{OCl}^-]} = \frac{1.00 \times 10^{-14}}{3.0 \times 10^{-8}} = 3.33 \times 10^{-7}$

 $[HOC1] = [OH^{-}] \text{ and } [OC1^{-}] = c_{NaOC1} - [OH^{-}]$ $[OH^{-}]^{2}/(c_{NaOC1} - [OH^{-}]) = 3.33 \times 10^{-7}$

rearranging gives $[OH^{-}]^{2} + 3.33 \times 10^{-7} [OH^{-}] - c_{NaOCl} \times 3.33 \times 10^{-7} = 0$

	<i>c</i> _{NaOCl}	$[OH^-]$	рОН	pН
(a)	0.100	1.823×10^{-4}	3.74	10.26
(b)	0.0100	$5.754 imes 10^{-5}$	4.24	9.76
(c)	1.00×10^{-4}	5.606×10^{-6}	5.25	8.75

14-23.
$$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^ K_b = \frac{1.00 \times 10^{-14}}{5.7 \times 10^{-10}} = 1.75 \times 10^{-5}$$

 $[NH_4^+] = [OH^-]$ and $[NH_3] = c_{NH_3} - [OH^-]$

 $[\text{OH}^-]^2 / (c_{\text{NH}_3} - [\text{OH}^-]) = 1.75 \times 10^{-5}$

rearranging gives: $[OH^{-}]^{2} + 1.75 \times 10^{-5}[OH^{-}] - c_{NH_{3}} \times 1.75 \times 10^{-5} = 0$

	$c_{_{ m NH_3}}$	[OH ⁻]	рOH	pН
(a)	0.100	1.314×10^{-3}	2.88	11.12
(b)	0.0100	$4.097 imes 10^{-4}$	3.39	10.62
(c)	$1.00 imes 10^{-4}$	3.399×10^{-5}	4.47	9.53

14-24.
$$NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$$
 $K_a = 5.7 \times 10^{-10}$

$$[H_3O^+] = [NH_3]$$
 and $[NH_4^+] = c_{NH_4^+} - [H_3O^+]$
 $[H_3O^+]^2 / (c_{NH_4^+} - [H_3O^+]) = 5.7 \times 10^{-10}$

rearranging gives: $[H_3O^+]^2 + 5.7 \times 10^{-10} [H_3O^+] - c_{NH_4^+} \times 5.7 \times 10^{-10} = 0$

	$c_{_{ m NH_4^+}}$	$[H_3O^+]$	pН
(a)	0.100	7.550×10^{-6}	5.12
(b)	0.0100	2.387×10^{-6}	5.62
(c)	$1.00 imes 10^{-4}$	1.385×10^{-7}	6.62

14-25. $C_5H_{11}N + H_2O \rightleftharpoons C_5H_{11}NH^+ + OH^-$	$K_{\rm b} = \frac{1.00 \times 10^{-14}}{7.5 \times 10^{-12}} = 1.333 \times 10^{-3}$
---	---

$$[C_5H_{11}NH^+] = [OH^-]$$
 and $[C_5H_{11}N] = c_{C_5H_{11}N} - [OH^-]$

$$[OH^{-}]^{2}/(c_{C_{5}H_{11}N} - [OH^{-}]) = 1.333 \times 10^{-3}$$

rearranging gives: $[OH^-]^2 + 1.333 \times 10^{-3} [OH^-] - c_{C_5H_{11}N} \times 1.333 \times 10^{-3} = 0$

	$c_{\mathrm{C_5H_{11}N}}$	$[OH^-]$	рОН	pН
(a)	0.100	1.090×10^{-2}	1.96	12.04
(b)	0.0100	3.045×10^{-3}	2.52	11.48
(c)	1.00×10^{-4}	9.345×10^{-5}	4.03	9.97

14-26.
$$\text{HSfm} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ \text{Sfm}^ K_a = 1.03 \times 10^{-1}$$

 $[H_3O^+] = [Sfm^-]$ and $[HSfm] = c_{HSfm} - [H_3O^+]$

$$[H_3O^+]^2/(c_{HSfm} - [H_3O^+]) = 1.03 \times 10^{-1}$$

rearranging gives: $[H_3O^+]^2 + 1.03 \times 10^{-1} [H_3O^+] - c_{HIO_3} \times 1.03 \times 10^{-1} = 0$

	<i>C</i> _{HSfm}	$[H_3O^+]$	pН
(a)	0.100	6.23×10^{-2}	1.21
(b)	0.0100	9.18×10^{-3}	2.04
(c)	$1.00 imes 10^{-4}$	$9.90 imes 10^{-5}$	4.00

14-27. (a)

 $c_{\rm HA} = 36.5 \text{ g HA} \times \frac{1 \text{ mmol HA}}{0.090079 \text{ g HA}} \times \frac{1}{500 \text{ mL soln}} = 0.8104 \text{ M HA}$

 $HL + H_2O \rightleftharpoons H_3O^+ + L^ K_a = 1.38 \times 10^{-4}$

$$[H_3O^+] = [L^-]$$
 and $[HL] = 0.8104 - [H_3O^+]$

$$[H_3O^+]^2/(0.8104 - [H_3O^+]) = 1.38 \times 10^{-4}$$

rearranging and solving the quadratic gives: $[H_3O^+] = 0.0105$ and pH = 1.98

(b)
$$c_{\text{HA}} = 0.8104 \times 25.0/250.0 = 0.08104 \text{ M HL}$$

Proceeding as in part (a) we obtain: $[H_3O^+] = 3.28 \times 10^{-3}$ and pH = 2.48

(c)
$$c_{\text{HA}} = 0.08104 \times 10.0/1000.0 = 8.104 \times 10^{-4} \text{ M HL}$$

Proceeding as in part (a) we obtain: $[H_3O^+] = 2.72 \times 10^{-4}$ and pH = 3.56

Chapter 14

$$c_{\rm HPc} = 2.13 \text{ g HPc} \times \frac{1 \text{ mmol HPc}}{0.22911 \text{ g HPc}} \times \frac{1}{100 \text{ mL soln}} = 0.09297 \text{ M HPc}$$

$$HPc + H_2O \rightleftharpoons H_3O^+ + Pc^ K_a = 0.43$$

$$[H_3O^+] = [Pc^-]$$
 and $[HPc] = 0.09297 - [H_3O^+]$

$$[H_3O^+]^2 / (0.09297 - [H_3O^+]) = 0.43$$

rearranging and solving the quadratic gives: $[H_3O^+] = 0.0786$ and pH = 1.10

(b) $c_{\rm HPc} = 0.09297 \times 10.0/100.0 = 0.009297 \text{ M HPc}$

Proceeding as in part (a) we obtain: $[H_3O^+] = 9.10 \times 10^{-3}$ and pH = 2.04

(c)
$$c_{\text{HA}} = 0.009297 \times 10.0/1000.0 = 9.297 \times 10^{-5} \text{ M HPc}$$

Proceeding as in part (a) we obtain: $[H_3O^+] = 9.29 \times 10^{-5}$ and pH = 4.03

14-29. amount HFm taken = 20.00 mL $\times \frac{0.1750 \text{ mmol}}{\text{mL}} = 3.50 \text{ mmol}$

(a) $\text{HFm} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{Fm}^ K_a = 1.80 \times 10^{-4}$

 $c_{\rm HFm} = 3.50/45.0 = 7.78 \times 10^{-2} \,\mathrm{M}$

 $[H_3O^+] = [Fm^-]$ and $[HFm] = 0.0778 - [H_3O^+]$

 $[H_3O^+]^2/(0.0778 - [H_3O^+]) = 1.80 \times 10^{-4}$

rearranging and solving the quadratic gives: $[H_3O^+] = 3.65 \times 10^{-3}$ and pH = 2.44

(b) amount NaOH added = $25.0 \times 0.140 = 3.50$ mmol

Since all the formic acid has been neutralized, we are left with a solution of NaFm.

$$Fm^{-} + H_2O \Longrightarrow OH^{-} + HFm$$
 $K_b = 1.00 \times 10^{-14} / (1.80 \times 10^{-4}) = 5.56 \times 10^{-11}$

$$c_{\rm Fm^-} = 3.00/45.0 = 7.78 \times 10^{-2} \,\mathrm{M}$$

$$[OH^{-}] = [HFm] \text{ and } [Fm^{-}] \quad 0.0778 - [OH^{-}]$$

$$[OH^{-}]^{2}/(0.0778 - [OH^{-}]) = 5.56 \times 10^{-11}$$

rearranging and solving the quadratic gives: $[OH^-] = 2.08 \times 10^{-6}$ and pH = 8.32

(c) amount NaOH added =
$$25.0 \times 0.200 = 5.00$$
 mmol

therefore, we have an excess of NaOH; the pH is determined by the excess [OH⁻].

$$[OH^{-}] = (5.00 - 3.50)/45.0 = 3.333 \times 10^{-2} M$$

pH = 14 - pOH = 12.52

(d) amount NaFm added =
$$25.0 \times 0.200 = 5.00$$
 mmol

$$[HFm] = 3.50/45.0 = 0.0778$$

$$[Fm^{-}] = 5.00/45.00 = 0.1111$$

$$[H_3O^+] \times 0.1111/0.0778 = 1.80 \times 10^{-4}$$

$$[H_3O^+] = 1.260 \times 10^{-4}$$
 and pH = 3.90

14-30. amount NH₃ taken = 40.0 mL $\times \frac{0.1250 \text{ mmol}}{\text{mL}} = 5.00 \text{ mmol}$

(a)
$$NH_3 + H_2O \rightleftharpoons OH^- + NH_4^+$$
 $K_b = \frac{1.00 \times 10^{-14}}{5.7 \times 10^{-10}} = 1.75 \times 10^{-5}$

 $c_{\rm NH_3} = 5.00/60.0 = 8.333 \times 10^{-2} \,\mathrm{M}$

 $[NH_4^+] = [OH^-]$ and $[NH_3] = 0.0833 - [OH^-]$

 $[OH^{-}]^{2}/(0.0833 - [OH^{-}]) = 1.75 \times 10^{-5}$

rearranging and solving the quadratic gives: $[OH^-] = 1.20 \times 10^{-3}$ and pH = 11.08

(b) amount HCl added = $20.0 \times 0.250 = 5.00$ mmol

The NH₃ is just neutralized and we are left with a solution of NH₄Cl.

$$NH_{4}^{+} + H_{2}O \rightleftharpoons H_{3}O^{+} + NH_{3} \qquad K_{a} = 5.7 \times 10^{-10}$$

$$c_{NH_{4}^{+}} = 5.00/60.0 = 8.33 \times 10^{-2}$$

$$[H_{3}O^{+}] = [NH_{3}] \text{ and } [NH_{4}^{+}] = 0.0833 - [H_{3}O^{+}]$$

$$[H_{3}O^{+}]^{2}/(0.0833 - [H_{3}O^{+}]) = 5.7 \times 10^{-10}$$

rearranging and solving the quadratic gives: $[H_3O^+] = 6.89 \times 10^{-6}$ and pH = 5.16

(c) amount HCl added = $20.0 \times 0.300 = 6.00$ mmol

We have an excess of HCl which determines the pH.

$$[H_3O^+] = (6.00 - 5.00)/60.0 = 1.67 \times 10^{-2} \text{ M}$$

pH = 1.78

(d) amount NH₄Cl added =
$$20.0 \times 0.200 = 4.00$$
 mmol

 $[NH_3] = 5.00/60.0 = 0.0833$ $[NH_4^+] = 4.00/60.0 = 0.0667$

$$[\mathrm{H_{3}O^{+}}] \times 0.0.0833 / 0.0667 = 5.70 \times 10^{-10}$$

 $[H_3O^+] = 4.56 \times 10^{-10}$ and pH = 9.34

(e) amount HCl added =
$$20.0 \times 0.100 = 2.00$$
 mmol

$$[NH_3] = (5.00 - 2.00)/60.0 = 0.0500$$
 $[NH_4^+] = 2.00/60.0 = 0.0333$

$$[H_3O^+] \times 0.0.050/0.0333 = 5.70 \times 10^{-10}$$

$$[H_3O^+] = 3.80 \times 10^{-10}$$
 pH = 9.42

14-31. (a) $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$ $K_a = 5.70 \times 10^{-10} = \frac{[H_3O^+][NH_3]}{[NH_4^+]}$

 $[NH_3] = 0.0300 \text{ M}$ and $[NH_4^+] = 0.0500 \text{ M}$

$$[H_{3}O^{+}] = 5.70 \times 10^{-10} \times 0.0500/0.0300 = 9.50 \times 10^{-10} M$$

$$[OH^{-}] = 1.00 \times 10^{-14}/9.50 \times 10^{-10} = 1.05 \times 10^{-5} M$$

$$pH = -log (9.50 \times 10^{-10}) = 9.02$$

(b) $\mu = \frac{1}{2} \{(0.0500)(+1)^{2} + (0.0500)(-1)^{2}\} = 0.0500$
From Table 10-2 $\gamma_{NH_{4}^{+}} = 0.80$ and $\gamma_{NH_{3}} = 1.0$

$$a_{H_{3}O^{+}} = \frac{K_{a}\gamma_{NH_{4}^{+}}[NH_{4}^{+}]}{\gamma_{NH_{4}}[NH_{3}]} = \frac{5.70 \times 10^{-5} \times 0.80 \times 0.0500}{1.00 \times 0.0300} = 7.60 \times 10^{-10}$$

$$pH = -\log(7.60 \times 10^{-10}) = 9.12$$

14-32. In each part of this problem, a buffer solution of a weak acid, HA, and its conjugate base, NaA, is formed. In each case, we initially assume that $[H_3O^+]$ and $[OH^-]$ are much smaller than the molar concentration of the acid and conjugate base so that $[A^-] \cong c_{\text{NaA}}$ and $[HA] \cong c_{\text{HA}}$. These assumptions then lead to the following:

$$[\mathrm{H}_{3}\mathrm{O}^{+}] = \frac{K_{\mathrm{a}}c_{\mathrm{HA}}}{c_{\mathrm{NaA}}}$$

(a) $c_{\text{HA}} = 7.85 \text{ g.HA} \times \frac{1 \text{ mol HA}}{90.08 \text{ g.HA}} \times \frac{1}{1.00 \text{ L soln}} = 0.0871 \text{ M}$

$$c_{\text{NaA}} = 10.09 \text{ g.HA} \times \frac{1 \text{ mol NaA}}{112.06 \text{ g.NaA}} \times \frac{1}{1.00 \text{ L soln}} = 0.0900 \text{ M}$$

$$[\mathrm{H}_{3}\mathrm{O}^{+}] = 1.38 \times 10^{-4} \times \frac{0.0871}{0.0900} = 1.34 \times 10^{-4} \mathrm{M}$$

Note that $[H_3O^+]$ (and $[OH^-]$) << c_{HA} (and c_{NaA}) as assumed. Therefore pH = 3.87

(**b**) $c_{\text{HA}} = 0.0630 \text{ M}$ and $c_{\text{NaA}} = 0.0210 \text{ M}$

$$[H_3O^+] = 1.75 \times 10^{-5} \times 0.0630 / 0.0210 = 5.25 \times 10^{-5}$$
$$pH = -log(5.25 \times 10^{-5}) = 4.28$$

(c) Original amount HA = 3.00
$$\not g \times \frac{\text{mmol HA}}{0.13812 \not g} = 21.72 \text{ mmol HA}$$

Original amount NaOH = 50.0 mL $\times \frac{0.1130 \text{ mmol HA}}{\text{mL}} = 5.65 \text{ mmol NaOH}$

 $c_{\text{HA}} = (21.72 - 5.65)/500 = 3.214 \times 10^{-2} \text{ M}$

 $c_{\text{NaA}} = 5.65/500 = 1.130 \times 10^{-2} \text{ M}$

estimated
$$[H_3O^+]_{est} = 1.06 \times 10^{-3} \times 3.214 \times 10^{-2} / (1.130 \times 10^{-2}) = 3.015 \times 10^{-3} \text{ M}$$

Note, that $[H_3O^+]_{est}$ is not $\ll c_{HA}$ (and c_{NaA}) as assumed. Therefore

$$[A^{-}] = 1.130 \times 10^{-2} + [H_3O^{+}] - [OH^{-}]$$

$$[HA] = 3.214 \times 10^{-2} - [H_3O^+] + [OH^-]$$

Since $K_a = 1.06 \times 10^{-3}$, the solution should be acidic and so $[OH^-] \ll [H_3O^+]$

Substituting into the dissociation-constant expression gives

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}](1.130 \times 10^{-2} + [\mathrm{H}_{3}\mathrm{O}^{+}])}{3.214 \times 10^{-2} - [\mathrm{H}_{3}\mathrm{O}^{+}]} = 1.06 \times 10^{-3}$$

Rearranging gives

$$[H_3O^+]^2 + 1.236 \times 10^{-2} [H_3O^+] - 3.407 \times 10^{-5} = 0$$

 $[H_3O^+] = 2.321 \times 10^{-3} \text{ M} \text{ and } \text{pH} = 2.63$

(d) Here we must again proceed as in part (c). This leads to

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}](0.100 + [\mathrm{H}_{3}\mathrm{O}^{+}])}{0.0100 - [\mathrm{H}_{3}\mathrm{O}^{+}]} = 4.3 \times 10^{-1}$$
$$[\mathrm{H}_{3}\mathrm{O}^{+}]^{2} + 0.53 \ [\mathrm{H}_{3}\mathrm{O}^{+}] - 4.3 \times 10^{-3} = 0$$
$$14$$

$$[H_3O^+] = 7.99 \times 10^{-3} \text{ M} \text{ and } \text{pH} = 2.10$$

14-33. In each of the parts of this problem, we are dealing with a weak base B and its conjugate acid BHCl or (BH)₂SO₄. The pH determining equilibrium can then be written as

$$BH^+ + H_2O \rightleftharpoons H_3O^+ + B$$

The equilibrium concentration of BH⁺ and B are given by

$$[BH^{+}] = c_{BHC1} + [OH^{-}] - [H_{3}O^{+}]$$
(1)
$$[B] = c_{B} - [OH^{-}] + [H_{3}O^{+}]$$
(2)

In many cases [OH⁻] and [H₃O⁺] will be much smaller than $c_{\rm B}$ and $c_{\rm BHCl}$ and [BH⁺] $\approx c_{\rm BHCl}$ and [B] $\approx c_{\rm B}$ so that

$$[\mathrm{H}_{3}\mathrm{O}^{+}] = K_{a} \times \frac{c_{\mathrm{BHCl}}}{c_{\mathrm{B}}}$$
(3)

(a) Amount
$$\mathrm{NH}_4^+ = 3.30 \ \mathrm{g} (\mathrm{NH}_4)_2 \mathrm{SO}_4 \times \frac{1 \ \mathrm{mmol} (\mathrm{NH}_4)_2 \mathrm{SO}_4}{0.13214 \ \mathrm{g} (\mathrm{NH}_4)_2 \mathrm{SO}_4} \times \frac{2 \ \mathrm{mmol} \ \mathrm{NH}_4^+}{\mathrm{mmol} (\mathrm{NH}_4)_2 \mathrm{SO}_4}$$

=49.95 mmol

Amount NaOH = $125.0 \text{ mL} \times 0.1011 \text{ mmol/mL} = 12.64 \text{ mmol}$

$$c_{\rm NH_3} = 12.64 \text{ mmol NaOH} \times \frac{1 \text{ mmol NH}_3}{\text{mmol NaOH}} \times \frac{1}{500.0 \text{ mL}} = 2.528 \times 10^{-2} \text{ M}$$

$$c_{\rm NH_4^+} = (49.95 - 12.64) \text{ mmol NH}_4^+ \times \frac{1}{500.0 \text{ mL}} = 7.462 \times 10^{-2} \text{ M}$$

Substituting these relationships in equation (3) gives

$$[H_{3}O^{+}] = K_{a} \times \frac{c_{BHCL}}{c_{B}} = 5.70 \times 10^{-10} \times 7.462 \times 10^{-2} / (2.528 \times 10^{-2}) = 1.682 \times 10^{-9} M$$

 $[OH^-] = 1.00 \times 10^{-14} / 1.682 \times 10^{-9} = 5.95 \times 10^{-6} \ M$

Note, $[H_3O^+]$ and $[OH^-]$ are small compared to c_{NH_3} and $c_{NH_3^+}$ so our assumption is valid.

$$pH = -\log(1.682 \times 10^{-9}) = 8.77$$

(**b**) Substituting into equation (3) gives

$$[H_3O^+] = 7.5 \times 10^{-12} \times 0.010/0.120 = 6.25 \times 10^{-13} M$$

$$[OH^{-}] = 1.00 \times 10^{-14} / 6.25 \times 10^{-13} = 1.60 \times 10^{-2} M$$

Again our assumption is valid and

 $pH = -\log(6.25 \times 10^{-13}) = 12.20$

(c) $c_{\rm B} = 0.050 \text{ M} \text{ and } c_{\rm BHCl} = 0.167 \text{ M}$

$$[H_3O^+] = 2.31 \times 10^{-11} \times 0.167/0.050 = 7.715 \times 10^{-11} M$$

 $[OH^{-}] = 1.00 \times 10^{-14} / 7.715 \times 10^{-11} = 1.30 \times 10^{-4} M$

The assumption is valid and

 $pH = -log(7.715 \times 10^{-11}) = 10.11$

(d) Original amount B = $2.32 \text{ g/B} \times \frac{1 \text{ mmol}}{0.09313 \text{ g/B}} = 24.91 \text{ mmol} = 24.91 \text{ mmol}$

Amount HCl = 100 mL × 0.0200 mmol/mL = 2.00 mmol $c_{\rm B} = (24.91 - 2.00)/250.0 = 9.164 \times 10^{-2} \,{\rm M}$ $c_{\rm BH^+} = 2.00/250.0 = 8.00 \times 10^{-3} \,{\rm M}$ $[{\rm H}_3{\rm O}^+] = 2.51 \times 10^{-5} \times 8.00 \times 10^{-3}/(9.164 \times 10^{-2}) = 2.191 \times 10^{-6} \,{\rm M}$ $[{\rm OH}^-] = 1.00 \times 10^{-14}/2.191 \times 10^{-6} = 4.56 \times 10^{-9} \,{\rm M}$ Our assumptions are valid, so ${\rm pH} = -\log(2.191 \times 10^{-6}) = 5.66$

(b) $[H_3O^+]$ changes to 0.00500 M from 0.0500 M

 $\Delta pH = -\log(0.00500) - [-\log(0.0500)] = 2.301 - 1.301 = 1.000$

- (c) pH diluted solution = $14.000 [-\log (0.00500)] = 11.699$ pH undiluted solution = $14.000 - [-\log (0.0500)] = 12.699$ $\Delta pH = 11.699 - 12.699 = -1.000$
- (d) In order to get a better picture of the pH change with dilution, we will dispense with the usual approximations and write

$$K_{\rm a} = \frac{[{\rm H}_{3}{\rm O}^{+}][{\rm OAc}^{-}]}{[{\rm HOAc}]} = 1.75 \times 10^{-5}$$

$$\left[H_{3}O^{+}\right]^{2} + 1.75 \times 10^{-5} \left[H_{3}O^{+}\right] - 0.0500 \times 1.75 \times 10^{-5} = 0$$

Solving the quadratic or using successive approximations, gives

$$[H_3O^+] = 9.267 \times 10^{-4} \text{ M}$$
 and $pH = -\log(9.267 \times 10^{-4}) = 3.033$

For the diluted solution, the quadratic becomes

$$[H_{3}O^{+}]^{2} + 1.75 \times 10^{-5} - 0.00500 \times 1.75 \times 10^{-5} = 0$$

$$[H_{3}O^{+}] = 2.872 \times 10^{-4} \text{ M} \text{ and } \text{pH} = 3.542$$

$$\Delta \text{pH} = 3.033 - 3.542 = -0.509$$

(e) $OAc^- + H_2O \rightleftharpoons HOAc + OH$

$$K_{\rm b} = \frac{[\rm HOAc][\rm OH^{-}]}{[\rm OAc^{-}]} = \frac{1.00 \times 10^{-14}}{1.75 \times 10^{-5}} = 5.71 \times 10^{-10}$$

Here we can use an approximation because K_b is very small. For the undiluted sample:

$$\frac{[OH^{-}]^{2}}{0.0500} = 5.71 \times 10^{-10}$$

[OH⁻] = $(5.71 \times 10^{-10} \times 0.0500)^{1/2} = 5.343 \times 10^{-6}$ M
pH = $14.00 - [-\log(5.343 \times 10^{-6})] = 8.728$
For the diluted sample
[OH⁻] = $(5.71 \times 10^{-10} \times 0.00500)^{1/2} = 1.690 \times 10^{-6}$ M
pH = $14.00 - [-\log(1.690 \times 10^{-6})] = 8.228$
 Δ pH = $8.228 - 8.728 = -0.500$

(f) Here we must avoid the approximate solution because it will not reveal the small pH change resulting from dilution. Thus, we write

$$[HOAc] = c_{HOAc} + [OH^{-}] - [H_3O^{+}] \approx c_{HOAc} - [H_3O^{+}]$$
 since the solution is acidic
 $[OAc^{-}] = c_{NaOAc} - [OH^{-}] + [H_3O^{+}] \approx c_{NaOAc} + [H_3O^{+}]$
 $K_a = 1.75 \times 10^{-5} = \frac{[H_3O^{+}](0.0500 + [H_3O^{+}])}{0.0500 - [H_3O^{+}]}$
 $[H_3O^{+}]^2 + 5.0018 \times 10^{-2}[H_3O^{+}] - 8.75 \times 10^{-7} = 0$
 $[H_3O^{+}] = 1.749 \times 10^{-5}$ and pH = 4.757
Proceeding in the same way we obtain for the diluted sample
 $1.75 \times 10^{-5} = \frac{[H_3O^{+}](0.00500 + [H_3O^{+}])}{0.00500 - [H_3O^{+}]}$
 $[H_3O^{+}]^2 + 5.0175 \times 10^{-3}[H_3O^{+}] - 8.75 \times 10^{-8} = 0$

$$[H_3O^+] = 1.738 \times 10^{-5}$$
 and $pH = 4.760$

$$\Delta pH = 4.760 - 4.757 = 0.003$$

Note the very small pH change that occurs on diluting this buffer solution.

- (g) Proceeding as in part (f) a 10-fold dilution of this solution results in a pH change that is less than 1 in the third decimal place. Thus for all practical purposes, $\Delta pH = 0.000$ Note a more concentrated buffer compared to part (f) gives an even smaller pH change.
- 14-35. (a) After addition of acid, $[H_3O^+] = 1 \text{ mmol}/100 \text{ mL} = 0.0100 \text{ M}$ and pH = 2.00Since original pH = 7.00

 $\Delta pH = 2.00 - 7.00 = -5.00$

(**b**) After addition of acid

 $c_{\rm HCl} = (100 \times 0.0500 + 1.00)/100 = 0.0600 \text{ M}$

 $\Delta pH = -\log(0.0600) - [-\log(0.0500)] = 1.222 - 1.301 = -0.079$

(c) After addition of acid,

 $c_{\text{NaOH}} = (100 \times 0.0500 - 1.00)/100 = 0.0400 \text{ M}$

 $[OH^{-}] = 0.0400 \text{ M}$ and $pH = 14.00 - [-\log(0.0400)] = 12.602$

From Problem 14-34 (c), original pH = 12.699

 $\Delta pH = -0.097$

(d) From Solution 14-34 (d), original pH = 3.033

Upon adding 1 mmol HCl to the 0.0500 M HOAc, we produce a mixture that is 0.0500 M in HOAc and 1.00/100 = 0.0100 M in HCl. The pH of this solution is approximately that of a 0.0100 M HCl solution, or 2.00. Thus

 $\Delta pH = 2.000 - 3.033 = -1.033$

(If the contribution of the dissociation of HOAc to the pH is taken into account, a

pH of 1.996 is obtained and $\Delta pH = -1.037$ is obtained.)

(e) From Solution 14-34 (e), original pH = 8.728

Upon adding 1.00 mmol HCl we form a buffer having the composition

 $c_{\rm HOAc} = 1.00/100 = 0.0100$

 $c_{\text{NaOAc}} = (0.0500 \times 100 - 1.00)/100 = 0.0400$

 $[H_3O^+] = 1.75 \times 10^{-5} \times 0.0100 / 0.0400 = 4.575 \times 10^{-6} \text{ M}$

 $pH = -log(4.575 \times 10^{-6}) = 5.359$

 $\Delta pH = 5.359 - 8.728 = -3.369$

(f) From Solution 14-34 (f), original pH = 4.757

With the addition of 1.00 mmol of HCl we have a buffer whose concentrations are

 $c_{\text{HOAc}} = 0.0500 + 1.00/100 = 0.0600 \text{ M}$

 $c_{\text{NaOAc}} = 0.0500 - 1.00/100 = 0.0400 \text{ M}$

Proceeding as in part (e), we obtain

 $[H_3O^+] = 2.625 \times 10^{-5} \text{ M}$ and pH = 4.581

 $\Delta pH = 4.581 - 4.757 = -0.176$

Note again the very small pH change as compared to unbuffered solutions.

(g) For the original solution

 $[H_3O^+] = 1.75 \times 10^{-5} \times 0.500/0.500 = 1.75 \times 10^{-5} M$

 $pH = -log(1.75 \times 10^{-5}) = 4.757$

After addition of 1.00 mmol HCl

 $c_{\text{HOAc}} = 0.500 + 1.00/100 = 0.510 \text{ M}$

$$c_{\text{NaOAc}} = 0.500 - 1.00/100 = 0.490 \text{ M}$$

Proceeding as in part (e), we obtain
 $[\text{H}_3\text{O}^+] = 1.75 \times 10^{-5} \times 0.510/0.490 = 1.821 \times 10^{-5} \text{ M}$
 $p\text{H} = -\log(1.821 \times 10^{-5}) = 4.740$
 $\Delta p\text{H} = 4.740 - 4.757 = -0.017$

Note that the more concentrated buffer is even more effective in resisting pH changes.

14-36. (a)
$$c_{\text{NaOH}} = 1.00/100 = 0.0100 = [OH^-]$$

pH = 14.00 - [-log(0.0100)] = 12.00

Original pH = 7.00 and $\Delta pH = 12.00 - 7.00 = 5.00$

(b) Original
$$pH = 1.301$$
 [see Problem 14-34 (b)]

After addition of base, $c_{\text{HCl}} = (100 \times 0.0500 - 1.00)/100 = 0.0400 \text{ M}$

 $\Delta pH = -\log(0.0400) - 1.301 = 1.398 - 1.30 = 0.097$

(c) Original pH = 12.699 [see Problem 14.34 (c)]
After addition of base,
$$c_{\text{NaOH}} = (100 \times 0.0500 + 1.00)/100 = 0.0600 \text{ M}$$

pH = 14.00 - [-log(0.0600)] = 12.778
 Δ pH = 12.778 - 12.69 = 0.079

(d) Original pH = 3.033 [see Problem 14-34 (d)]

Addition of strong base gives a buffer of HOAc and NaOAc

 $c_{\text{NaOAc}} = 1.00 \text{ mmol}/100 = 0.0100 \text{ M}$

 $c_{\text{HOAc}} = 0.0500 - 1.00/100 = 0.0400 \text{ M}$

Proceeding as in Solution 14-35 (e) we obtain

$$[H_3O^+] = 1.75 \times 10^{-5} \times 0.0400/0.0100 = 7.00 \times 10^{-5} M$$

pH

$$pH = -\log(7.00 \times 10^{-5}) = 4.155$$
$$\Delta pH = 4.155 - 3.033 = 1.122$$

Note rather large change in pH since there was no buffer until after the base was added.

(e) Original pH = 8.728 [see Problem 14.34 (e)]

We have a mixture of NaOAc and NaOH and the pH is determined by the excess NaOH

 $c_{\text{NaOH}} = 1.00 \text{ mmol}/100 = 0.0100 \text{ M}$

pH = 14.00 - [-log(0.0100)] = 12.00

 $\Delta pH = 12.00 - 8.728 = 3.272$

Note again the large change in pH.

(f) Original
$$pH = 4.757$$
 [see Problem 14-34 (f)]

$$c_{\text{NaOAc}} = 0.0500 + 1.00/100 = 0.0600 \text{ M}$$

 $c_{\text{HOAc}} = 0.0500 - 1.00/100 = 0.0400 \text{ M}$

Proceeding as in Solution 14.35 (e) we obtain

 $[H_3O^+] = 1.167 \times 10^{-5} \text{ M}$ and pH = 4.933

$$\Delta pH = 4.933 - 4.757 = 0.176$$

Note that the pH change is relatively small with this buffer solution.

(g) Original pH = 4.757 [see Problem 14-34 (f)]

$$c_{\text{HOAc}} = 0.500 - 1.00/100 = 0.490 \text{ M}$$

 $c_{\text{NaOAc}} = 0.500 + 1.00/100 = 0.510 \text{ M}$
 $[\text{H}_3\text{O}^+] = 1.75 \times 10^{-5} \times 0.400/0.510 = 1.681 \times 10^{-5} \text{ M}$
 $p\text{H} = -\log(1.681 \times 10^{-5}) = 4.774$
 $\Delta p\text{H} = 4.774 - 4.757 = 0.017$

22

Note here the extremely small pH change with this more concentrated buffer solution.

14-37. For lactic acid,
$$K_a = 1.38 \times 10^{-4} = [H_3O^+][L^-]/[HL]$$

Throughout this problem we will base calculations on Equations 9-25 and 9-26

$$[L^{-}] = c_{\text{NaL}} + [H_3O^+] - [OH^-] \approx c_{\text{NaL}} + [H_3O^+]$$
$$[HL] = c_{\text{HL}} - [H_3O^+] - [OH^-] \approx c_{\text{HL}} - [H_3O^+]$$
$$[H_3O^+] (c_{\text{NaL}} + [H_3O^+])$$

$$\frac{[\text{H}_{3}\text{O}^{-1}](c_{\text{NaL}} + [\text{H}_{3}\text{O}^{-1}])}{c_{\text{HL}} - [\text{H}_{3}\text{O}^{+}]} = 1.38 \times 10^{-4}$$

This equation rearranges to

$$[\mathrm{H}_{3}\mathrm{O}^{+}]^{2} + (1.38 \times 10^{-4} + 0.0800)[\mathrm{H}_{3}\mathrm{O}^{+}] - 1.38 \times 10^{-4} \times c_{\mathrm{HL}} = 0$$

(a) Before addition of acid

$$[H_3O^+]^2 + (1.38 \times 10^{-4} + 0.0800)[H_3O^+] - 1.38 \times 10^{-4} \times 0.0200 = 0$$

$$[H_3O^+] = 3.443 \times 10^{-5} \text{ and } pH = 4.46$$

Upon adding 0.500 mmol of strong acid

$$c_{\text{HL}} = (100 \times 0.0200 + 0.500)/100 = 0.0250 \text{ M}$$

 $c_{\text{NaL}} = (100 \times 0.0800 - 0.500)/100 = 0.0750 \text{ M}$
 $[\text{H}_3\text{O}^+]^2 + (1.38 \times 10^{-4} + 0.0750)[\text{H}_3\text{O}^+] - 1.38 \times 10^{-4} \times 0.0250 = 0$
 $[\text{H}_3\text{O}^+] = 4.589 \times 10^{-5} \text{ and } \text{pH} = 4.338$
 $\Delta \text{pH} = 4.338 - 4.463 = -0.125$

(**b**) Before addition of acid

$$[H_{3}O^{+}]^{2} + (1.38 \times 10^{-4} + 0.0200)[H_{3}O^{+}] - 1.38 \times 10^{-4} \times 0.0800 = 0$$

$$[H_{3}O^{+}] = 5.341 \times 10^{-5} \text{ and } pH = 3.272$$

After adding acid

$$c_{\text{HL}} = (100 \times 0.0800 + 0.500)/100 = 0.0850 \text{ M}$$

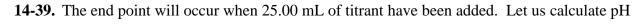
 $c_{\text{NaL}} = (100 \times 0.0200 - 0.500)/100 = 0.0150 \text{ M}$
 $[\text{H}_3\text{O}^+]^2 + (1.38 \times 10^{-4} + 0.0150)[\text{H}_3\text{O}^+] - 1.38 \times 10^{-4} \times 0.0850 = 0$
 $[\text{H}_3\text{O}^+] = 7.388 \times 10^{-4} \text{ and } \text{pH} = 3.131$
 $\Delta \text{pH} = 3.131 - 3.272 = -0.141$

(c) Before addition of acid

$$\begin{split} [\mathrm{H}_{3}\mathrm{O}^{+}]^{2} + (1.38 \times 10^{-4} + 0.0500)[\mathrm{H}_{3}\mathrm{O}^{+}] &= 1.38 \times 10^{-4} \times 0.0500 = 0 \\ [\mathrm{H}_{3}\mathrm{O}^{+}] &= 1.372 \times 10^{-4} \text{ and } \mathrm{pH} = 3.863 \\ \text{After adding acid} \\ c_{\mathrm{HL}} &= (100 \times 0.0500 + 0.500)/100 = 0.0550 \text{ M} \\ c_{\mathrm{NaL}} &= (100 \times 0.0500 - 0.500)/100 = 0.0450 \text{ M} \\ [\mathrm{H}_{3}\mathrm{O}^{+}]^{2} + (1.38 \times 10^{-4} + 0.0450)[\mathrm{H}_{3}\mathrm{O}^{+}] - 1.38 \times 10^{-4} \times 0.0550 = 0 \\ [\mathrm{H}_{3}\mathrm{O}^{+}] &= 1.675 \times 10^{-4} \text{ and } \mathrm{pH} = 3.776 \\ \Delta \mathrm{pH} &= 3.776 - 3.863 = -0.087 \end{split}$$

Note very small change in pH when concentrations of HL and NaL are equal to start.

14-38. Before the equivalence point (50.00 mL), we calculate the number of mmol NaOH remaining from the original number of mmol of NaOH present minus the number of mmol of HCl added. The [OH⁻] is then obtained from the number of mmol of NaOH remaining divided by the total solution volume. The pOH and pH are then calculated from [OH⁻]. At the equivalence point, the solution is neutral and the pOH and pH are obtained from $\sqrt{K_w}$. After the equivalence point, we calculate the excess HCl from the number of mmol of HCl added minus the number of mmol of NaOH originally present.


The number of mmol of HCl in excess divided by the total volume gives the

concentration of H_3O^+ and from this the pH. The spreadsheet shows the resulting pH

values after each increment of added NaOH. The plot is an XY (Scatter) plot of pH vs.

Vol. HCl.

	A	В	С	D	E	F	G	Н	1
1	Pb. 14-38 A 50.00	-mL aliquot of 0.10	00 M NaOH titrated wi	th 0.1000 M H	CI				
2	Conc. NaOH, M	0.1000							
3	Volume NaOH, mL	50.00							
4	Conc. HCI, M	0.1000							
5	Kw	1.00E-14							
6	Vol. HCI added	mmol HCI added	mmol NaOH remainin	g Excess HCI	Vol. soln.	[OH ⁻]	$[H_3O^+]$	pOH	pH
7	0.00	0.00	5.00		50.00	0.10000		1.00	13.00
8	10.00	1.00	4.00		60.00	0.06667		1.18	12.82
9	25.00	2.50	2.50		75.00	0.03333		1.48	12.52
10	40.00	4.00	1.00		90.00	0.01111		1.95	12.05
11	45.00	4.50	0.50		95.00	0.00526		2.28	11.72
12	49.00	4.90	0.10		99.00	0.00101		3.00	11.00
13	50.00	5.00	0.00		100.00	1.00E-07	1.00E-07	7.00	7.00
14	51.00	5.10		0.10	101.00		0.00099		3.00
15	55.00	5.50		0.50	105.00		0.00476		2.32
16	60.00	6.00		1.00	110.00		0.00909		2.04
17	Spreadsheet Doc	umentation							
18	Cell B7=\$B\$4*A7		14.00 T						
19	Cell C7=\$B\$2*\$B\$	3-B7	14.00	-					
20	Cell D14=B14-\$B\$	2*\$B\$3	12.00		A.				
21	Cell E7=\$B\$3+A7		10.00		1	1			
22	Cell F7=C7/E7								
23	Cell F13=SQRT(\$E	'	- 8.00						
24	Cell G13=SQRT(\$E		표 _{6.00}		1				
25	Cell G14=D14/E14		0.00			2			
26	Cell H7=-LOG10(F		4.00		-				
27	Cell I7=-LOG(\$B\$5		2.00		2	~			
28	Cell I13=-LOG(G13	3)	2.00			T			
29			0.00						
30			0.00	20.00	40.00	60.00	80.	00	
31				V	ol. HCI, mL				
32									

when 24.95 and 25.05 mL of reagent have been added.

$$c_{\rm A^-} \approx \frac{\text{amount KOH added}}{\text{total volume soln}} = \frac{24.95 \times 0.1000 \text{ mmol KOH}}{74.95 \text{ mL soln}} = \frac{2.495}{74.95} = 0.03329 \text{ M}$$

 $c_{\rm HA} \approx [\text{HA}] = \frac{\text{original amount HA} - \text{amount KOH added}}{\text{total volume soln}}$

$$= \frac{(50.00 \times 0.0500 - 24.95 \times 0.1000) \text{ mmol HA}}{74.95 \text{ mL soln}}$$
$$= \frac{2.500 - 2.495}{74.95} = \frac{0.005}{74.95} = 6.67 \times 10^{-5} \text{ M}$$

Substituting into Equation 9-29

$$[\mathrm{H}_{3}\mathrm{O}^{+}] = K_{\mathrm{a}} \frac{c_{\mathrm{HA}}}{c_{\mathrm{A}^{-}}} = \frac{1.80 \times 10^{-4} \times 6.67 \times 10^{-5}}{0.03329} = 3.607 \times 10^{-7} \mathrm{M}$$

$$pH = -\log(3.607 \times 10^{-7}) = 6.44$$

At 25.05 mL KOH

$$c_{\text{KOH}} = [\text{OH}^-] = \frac{\text{amount KOH added} - \text{initial amount HA}}{\text{total volume soln}}$$

$$=\frac{25.05 \times 0.1000 - 50.00 \times 0.05000}{75.05 \text{ mL soln}} = 6.66 \times 10^{-5} \text{ M}$$

$$pH = 14.00 - [-log(6.66 \times 10^{-5})] = 9.82$$

Thus, the indicator should change color in the range of pH 6.5 to 9.8. Cresol

 BH^+]

purple (range 7.6 to 9.2, Table 14-1) would be quite suitable.

14-40. (See Solution 14-39) Let us calculate the pH when 49.95 and 50.05 mL of $HClO_4$ have been added

been added.

 $B = C_2H_5NH_2$ $BH^+ = C_2H_5NH_3^+$

At 49.95 mL HClO₄

$$c_{\rm BH^+} = \frac{\text{no. mmol HClO}_4}{\text{total volume soln}} = \frac{49.95 \times 0.10000}{99.95} = \frac{4.995}{99.95} \approx 1000 + 1000 + 1000 + 1000 + 10000 = \frac{0.00500}{99.95} \approx 1000 + 1000 + 1000 = \frac{0.00500}{99.95} \approx 1000 = \frac{0.0050}{99.95} \approx 1000 = \frac{0.0050}{99.95} \approx 10000 = \frac{0.0050}{99.95} \approx 10000 =$$

$$\frac{[H_3O^+][B]}{[BH^+]} = 2.31 \times 10^{-11} = \frac{[H_3O^+](0.00500/99.95)}{4.995/99.95}$$
$$[H_3O^+] = 2.31 \times 10^{-11} \times 4.995/0.00500) = 2.308 \times 10^{-8} M$$
$$pH = -\log(2.308 \times 10^{-8}) = 7.64$$

At 50.05 mL HClO₄

$$c_{\rm HCIO_4} = \frac{(50.05 \times 0.1000 - 50.00 \times 0.1000)}{100.05} = 4.998 \times 10^{-5} = [\rm H_3O^+]$$

 $pH = -log(4.998 \times 10^{-5}) = 4.30$

The indicator should change color in the pH range of 7.64 to 4.30. Bromocresol purple would be suitable.

Problems 14-41 through 14-43. We will set up spreadsheets that will solve a quadratic equation to determine $[H_3O^+]$ or $[OH^-]$, as needed. While approximate solutions are appropriate for many of the calculations, the approach taken represents a more general solution and is somewhat easier to incorporate in a spreadsheet. As an example consider the titration of a weak acid with a strong base. Here c_a and V_i represent initial concentration and initial volume.

Before the equivalence point:

$$[HA] = \frac{\left(c_{i HA}V_{i HA} - c_{i NaOH}V_{NaOH}\right)}{\left(V_{i HA} + V_{NaOH}\right)} - [H_{3}O^{+}]$$
and

$$[OH^{-}] = \frac{\left(c_{i NaOH}V_{NaOH} - c_{i HA}V_{i HA}\right)}{\left(V_{i HA} + V_{NaOH}\right)} + [HA]$$

Substituting these expressions into the equilibrium expression for [HA] and rearranging gives

$$[H_{3}O^{+}]^{2} + \left(\frac{(c_{i \text{ NAOH}}V_{\text{NAOH}})}{(V_{i \text{ HA}} + V_{\text{NAOH}})} + K_{a}\right)[H_{3}O^{+}] - \frac{K_{a}(c_{i \text{ HA}}V_{i \text{ HA}} - c_{i \text{ NAOH}}V_{\text{NAOH}})}{(V_{i \text{ HA}} + V_{\text{NAOH}})} = 0$$

From which $[H_3O^+]$ is directly determined.

At and after the equivalence point:

$$[A^{-}] = \frac{(c_{i HA}V_{HA})}{(V_{i HA} + V_{NaOH})} - [HA]$$

$$[OH^{-}] = \frac{(c_{i NaOH}V_{NaOH} - c_{i HA}V_{i HA})}{(V_{i HA} + V_{NaOH})} + [HA]$$

Substituting these expressions into the equilibrium expression for [A⁻] and rearranging gives

$$[\text{HA}]^{2} + \left(\frac{\left(c_{i \text{ NAOH}}V_{\text{NAOH}} - c_{i \text{ HA}}V_{i \text{ HA}}\right)}{\left(V_{i \text{ HA}} + V_{\text{NAOH}}\right)} + \frac{K_{\text{w}}}{K_{\text{a}}}\right)[\text{HA}] - \frac{K_{\text{w}}\left(c_{i \text{ HA}}V_{\text{HA}}\right)}{K_{\text{a}}\left(V_{i \text{ HA}} + V_{\text{NAOH}}\right)} = 0$$

From which [HA] can be determined and $[OH^-]$ and $[H_3O^+]$ subsequently calculated. A similar approach is taken for the titration of a weak base with a strong acid.

14-41.

	A	В	С	D	E	F	G
1	Pb 14-41(a)						
2	V _i HNO ₂	50.00					
3	ci HNO2	0.1000					
4	c i NaOH	0.1000					
5	Ka for HNO2	7.10E-04					
6	Kw	1.00E-14					
7	Vep	50.00					
8							
9	V _{NaOH} , mL	b in quadratic	c in quadratic	[HNO ₂]	[OH ⁻]	[H ₃ O ⁺]	pH
10	0.00	7.1000E-04	-7.1000E-05			8.0786E-03	2.0927
11	5.00	9.8009E-03	-5.8091E-05			4.1607E-03	2.3808
12	15.00	2.3787E-02	-3.8231E-05			1.5112E-03	2.8207
13	25.00	3.4043E-02	-2.3667E-05			6.8155E-04	3.1665
14	40.00	4.5154E-02	-7.8889E-06			1.7404E-04	3.7594
15	45.00	4.8078E-02	-3.7368E-06			7.7599E-05	4.1101
16	49.00	5.0205E-02	-7.1717E-07	1		1.4281E-05	4.8452
17	50.00	1.4085E-11	-7.0423E-13	8.39174E-07	8.3917E-07	1.1916E-08	7.9239
18	51.00	9.9010E-04	-6.9725E-13	7.04225E-10	9.9010E-04	1.0100E-11	10.9957
19	55.00	4.7619E-03	-6.7069E-13	1.40845E-10	4.7619E-03	2.1000E-12	11.6778
20	60.00	9.0909E-03	-6.4020E-13	7.04225E-11	9.0909E-03	1.1000E-12	11.9586
21	Spreadshee	et Documentation					
22	Cell B7=B2*	B3/B4					
23	Cell B10=\$B	\$4*A10/(\$B\$2+A10)+\$B\$5				
24	Cell C10=-\$E	3\$5*(\$B\$3*\$B\$2-\$B	\$4*A10)/(\$B\$2-	+A10)			
25		10+SQRT(B10^2-4*				· · · · · · · · · · · · · · · · · · ·	
26	Cell G10=-L(DG(F10)					
27		3\$4*A17-\$B\$3*\$B\$2	2)/(\$B\$2+A17)+	\$B\$6/\$B\$5			
28	Cell C17=-\$E	3\$6*\$B\$3*\$B\$2/(\$B	\$5*(\$B\$2+A17))			
29	Cell D17=(-B	17+SQRT(B17^2-4*	C17))/2				
30	Cell E17=(\$E	3\$4*A17-\$B\$3*\$B\$2	2)/(\$B\$2+A17)+	D17			
31	Cell F17=\$B						

2 V _i 3 c _i 4 c _i 5 K _a 6 K _w 7 V _e 8 9 V _N 10 11 11 12 13	b 14-41(b) ' _i PyH ⁺ _i PyH ⁺ _i NaOH ' _a for PyH+	50.00 0.1000 0.1000					
3 c _i 4 c _i 5 K _a 6 K _w 7 V _e 8 9 V _N 10 11 12 13	i PyH⁺ i NaOH ′a for PyH+	0.1000 0.1000					
4 c _i 5 K _a 6 K _w 7 V _e 8 9 V _N 10 11 12 13	i NaOH a for PyH+	0.1000					
5 K _a 6 K _w 7 V _e 8 9 V _N 10 11 12 13	a for PyH+						
6 K _w 7 V _e 8 9 V _N 10 11 12 13		5 005 00					
7 V _e 8 9 V _N 10 11 12 13	w	5.90E-06					
8 9 V _N 10 11 12 13		1.00E-14					
9 V _N 10 11 12 13	ер	50.00					
10 11 12 13							
11 12 13	′ _{NaOH} , mL	b in quadratic	c in quadratic	[PyH⁺]	[OH ⁻]	[H₃O ⁺]	pН
12 13	0.00	5.9000E-06	-5.9000E-07			7.6517E-04	3.1162
13	5.00	9.0968E-03	-4.82727E-07			5.2760E-05	4.2777
	15.00	2.3083E-02	-3.17692E-07			1.3755E-05	4.8615
	25.00	3.3339E-02	-1.96667E-07			5.8979E-06	5.2293
14	40.00	4.4450E-02	-6.55556E-08			1.4748E-06	5.8313
15	45.00	4.7374E-02	-3.10526E-08			6.5546E-07	6.1835
16	49.00	4.9501E-02	-5.9596E-09			1.2039E-07	6.9194
17	50.00	1.6949E-09	-8.47458E-11	9.2E-06	9.2049E-06	1.0864E-09	8.9640
18	51.00	9.9010E-04	-8.3907E-11	8.47E-08	9.9018E-04	1.0099E-11	10.9957
19	55.00	4.7619E-03	-8.0710E-11	1.69E-08	4.7619E-03	2.1000E-12	11.6778
20	60.00	9.0909E-03	-7.7042E-11	8.47E-09	9.0909E-03	1.1000E-12	11.9586
	•	t Documentation					
	ell B7=B2*B		0005				
		4*A10/(\$B\$2+A10)					
			4*A10)/(\$B\$2+A10)	1			
	ell G10=(-B1	0+SQRT(B10^2-4*C	,10))/Z				
		· · · ·	/(\$B\$2+A17)+\$B\$6				
		\$6*\$B\$3*\$B\$2/(\$B\$		10000			
		17+SQRT(B17^2-4*0					
31 Ce	ell E17=(\$B	\$4*A17-\$B\$3*\$B\$2)	V(\$B\$2+A17)+D17				

	А	В	С	D	E	F	G
1	Pb 14-41(c)						
2	V _i HL	50.00					
3	c _i HL	0.1000					
4	c _i NaOH	0.1000					
5	K _a for HL	1.38E-04					
6	K _w	1.00E-14					
7	V _{ep}	50.00					
8	-						
9	V _{NaOH} , mL	b in quadratic	c in quadratic	[HL]	[OH ⁻]	[H₃O ⁺]	pН
10	0.00	1.3800E-04	-1.3800E-05			3.6465E-03	2.4381
11	5.00	9.2289E-03	-1.12909E-05			1.0938E-03	2.9611
12	15.00	2.3215E-02	-7.43077E-06			3.1579E-04	3.5006
13	25.00	3.3471E-02	-0.0000046			1.3687E-04	3.8637
14	40.00	4.4582E-02	-1.53333E-06			3.4367E-05	4.4639
15	45.00	4.7506E-02	-7.26316E-07			1.5284E-05	4.8158
16	49.00	4.9633E-02	-1.39394E-07			2.8083E-06	5.5516
17	50.00	7.2464E-11	-3.62319E-12	1.9E-06	1.9034E-06	5.2537E-09	8.2795
18	51.00	9.9010E-04	-3.5873E-12	3.62E-09	9.9010E-04	1.0100E-11	10.9957
19	55.00	4.7619E-03	-3.4507E-12	7.25E-10	4.7619E-03	2.1000E-12	11.6778
20	60.00	9.0909E-03	-3.2938E-12	3.62E-10	9.0909E-03	1.1000E-12	11.9586
21	Spreadshee	t Documentation					
22	Cell B7=B2*E	33/B4					
23	Cell B10=\$B\$	64*A10/(\$B\$2+A10)-	+\$B\$5				
24	Cell C10=-\$B	\$5*(\$B\$3*\$B\$2-\$B\$	4*A10)/(\$B\$2+A	(10)			
25	Cell F10=(-B1	10+SQRT(B10^2-4*C	(10))/2				
26	Cell G10=-LO	G(F10)					
27	Cell B17=(\$B	\$4*A17-\$B\$3*\$B\$2)	/(\$B\$2+A17)+\$E	B\$6/\$B\$5			
28	Cell C17=-\$B	\$6*\$B\$3*\$B\$2/(\$B\$	5*(\$B\$2+A17))				
29	Cell D17=(-B'	17+SQRT(B17^2-4*0	(17))/2				
30	Cell E17=(\$B	\$4*A17-\$B\$3*\$B\$2)	/(\$B\$2+A17)+D	17			
31	Cell F17=\$B\$	6/E17					
00							

14-42. Considerations similar to those in Problem 14-41 lead to the following quadratic equation for titrating a weak base with HCl.

Before the equivalence point

$$[OH^{-}]^{2} + \left(\frac{\left(c_{i \text{ HCl}}V_{\text{HCl}}\right)}{\left(V_{i \text{ NH}_{3}} + V_{\text{HCl}}\right)} + \frac{K_{w}}{K_{a}}\right)[OH^{-}] - \frac{\frac{K_{w}}{K_{a}} \times \left(c_{i \text{ NH}_{3}}V_{i \text{ NH}_{3}} - c_{i \text{ HCl}}V_{\text{HCl}}\right)}{\left(V_{i \text{ NH}_{3}} + V_{\text{HCl}}\right)} = 0$$

At and after the equivalence point

$$[\mathbf{NH}_{3}]^{2} + \left(\frac{(c_{i \text{ HCl}}V_{\text{HCl}} - c_{i \text{ NH}_{3}}V_{i \text{ NH}_{3}}}{V_{\text{HCl}} + V_{i \text{ NH}_{3}}} + K_{a}\right)[\mathbf{NH}_{3}] - K_{a}\left(\frac{c_{i \text{ NH}_{3}}V_{i \text{ NH}_{3}}}{V_{i \text{ NH}_{3}} + V_{\text{HCl}}}\right) = 0$$

The ammonia concentration can then be used to calculate $[OH^-]$ and $[H_3O^+]$.

1	A	В	С	D	E	F	G
1	Pb 14-42(a)						
2	V _i NH ₃	50.00					
3	CiNH3	0.1000					
4	c _i HCl	0.1000					
5	Ka for NH4 ⁺	5.70E-10					
6	Kw	1.00E-14					
7	Vep	50.00					
8	· ep						
9	V _{HCI} , mL	b in quadratic	c in quadratic	[NH ₃]	[OH ⁻]	[H ₃ O ⁺]	pН
10	0.00	1.7544E-05	-1.7544E-06		1.3158E-03	7.6000E-12	11.1192
11	5.00	9.1085E-03	-1.4354E-06		1.5495E-04	6.4535E-11	10.1902
12	15.00	2.3094E-02	-9.4467E-07		4.0832E-05	2.4490E-10	9.6110
13	25.00				1.7525E-05	5.7060E-10	9.2437
14	40.00				4.3838E-06	2.2811E-09	8.6419
15	45.00			1	1.9485E-06	5.1321E-09	8.2897
16	49.00	4.9512E-02	-1.7721E-08		3.5791E-07	2.7940E-08	7.5538
17	50.00	5.7000E-10		5.3383E-06	1.	5.3383E-06	5.2726
18	51.00	9.9010E-04	-2.8218E-11			9.9013E-04	3.0043
19	55.00	4.7619E-03	-2.7143E-11			4.7619E-03	2.3222
20	60.00		-2.5909E-11			9.0909E-03	2.0414
21	Spreadshee	et Documentation					
22	Cell B7=B2*	B3/B4					
23	Cell B10=\$B	\$4*A10/(\$B\$2+A10)+\$B\$6/\$B\$5				
24		3\$6/\$B\$5*(\$B\$3*\$E		\$2+A10)			
25		10+SQRT(B10^2-4					
26	Cell F10=\$B						
27	Cell G10=-L0	DG(F10)					
28	Cell B17=(\$E	3\$4*A17-\$B\$3*\$B\$	2)/(\$B\$2+A17)+\$E	\$5			
29	Cell C17=-\$E	3\$5*\$B\$3*\$B\$2/(\$E	3\$2+A17)				
30		17+SQRT(B17^2-4		· · ·			
31		3\$4*A17-\$B\$3*\$B\$		7			

	A	В	C	D	E	F	G
1	Pb 14-42(b)						
2	V _i H ₂ NNH ₂	50.00					
3	Ci H2NNH2	0.1000					
4	c _i HCI	0.1000					
5	K _a for H ₂ NNH ₃ ⁺	1.05E-08					
6	K _w	1.00E-14					
7	V _{ep}	50.00					
8							
9	V _{HCI} , mL	b in quadratic	c in quadratic	[H ₂ NH ₂]	[OH ⁻]	[H ₃ O ⁺]	pH
10	0.00	9.5238E-07	-9.5238E-08		3.0813E-04	3.2454E-11	10.4887
11	5.00	9.0919E-03	-7.7922E-08		8.5625E-06	1.1679E-09	8.9326
12	15.00	2.3078E-02	-5.1282E-08		2.2219E-06	4.5006E-09	8.3467
13	25.00	3.3334E-02	-3.1746E-08		9.5233E-07	1.0501E-08	7.9788
14	40.00	4.4445E-02	-1.0582E-08		2.3809E-07	4.2001E-08	7.3767
15	45.00	4.7369E-02	-5.0125E-09		1.0582E-07	9.4502E-08	7.0246
16	49.00	4.9496E-02	-9.6200E-10		1.9436E-08	5.1451E-07	6.2886
17	50.00	1.0500E-08	-5.2500E-10	2.2908E-05		2.2908E-05	4.6400
18	51.00	9.9011E-04	-5.1980E-10	5.2472E-07		9.9062E-04	3.0041
19	55.00	4.7619E-03	-5.0000E-10	1.0500E-07		4.7620E-03	2.3222
20	60.00	9.0909E-03	-4.7727E-10	5.2500E-08		9.0910E-03	2.0414
21	Spreadsheet Do	ocumentation					
22	Cell B7=B2*B3/E	34					
23	Cell B10=\$B\$4*A	A10/(\$B\$2+A10)+\$	B\$6/\$B\$5				
24	Cell C10=-\$B\$6/	\$B\$5*(\$B\$3*\$B\$2-	\$B\$4*A10)/(\$B\$2	+A10)			
25	Cell E10=(-B10+	SQRT(B10^2-4*C1	0))/2				
26	Cell F10=\$B\$6/E	10					
27	Cell G10=-LOG(F	10)					
28	Cell B17=(\$B\$4*)	A17-\$B\$3*\$B\$2)/(\$B\$2+A17)+\$B\$5				
29	Cell C17=-\$B\$5*	\$B\$3*\$B\$2/(\$B\$2-	+A17)				
30	Cell D17=(-B17+)	SQRT(B17^2-4*C1	7))/2				
31		A17-\$B\$3*\$B\$2)/(

	A	B	С	D	E	F	G
1	Pb 14-42(c)						
2	V _i NaCN	50.00					
3	c NaCN	0.1000					
4	c _i HCI	0.1000					
5	K _a for HCN	6.20E-10					
6	Kw	1.00E-14					
7	Vep	50.00					
8							
9	V _{HCI} , mL	b in quadratic	c in quadratic	[CN ⁻]	[OH ⁻]	[H ₃ O ⁺]	pH
10	0.00	1.6129E-05	-1.6129E-06		1.2620E-03	7.9242E-12	11.1010
11	5.00	9.1070E-03	-1.3196E-06		1.4267E-04	7.0092E-11	10.1543
12	15.00	2.3093E-02			3.7547E-05	2.6633E-10	9.5746
13	25.00	3.3349E-02	-5.3763E-07		1.6113E-05	6.2060E-10	9.2072
14	40.00	4.4461E-02	-1.7921E-07		4.0304E-06	2.4811E-09	8.6054
15	45.00	4.7385E-02	-8.4890E-08		1.7914E-06	5.5821E-09	8.2532
16	49.00	4.9511E-02	-1.6292E-08		3.2905E-07	3.0390E-08	7.5173
17	50.00	6.2000E-10	-3.1000E-11	5.5675E-06		5.5675E-06	5.2543
18	51.00	9.9010E-04	-3.0693E-11	3.0999E-08		9.9013E-04	3.0043
19	55.00	4.7619E-03	-2.9524E-11	6.2000E-09		4.7619E-03	2.3222
20	60.00	9.0909E-03	-2.8182E-11	3.1000E-09		9.0909E-03	2.0414
21	Spreadshee	t Documentatio	n		1		
22	Cell B7=B2*E	33/B4			1		
23	Cell B10=\$B3	64*A10/(\$B\$2+A	10)+\$B\$6/\$B\$5				
24			6B\$2-\$B\$4*A10)/(\$B	\$2+A10)			
25		10+SQRT(B10^2-					
26	Cell F10=\$B\$		"		1		
27	Cell G10=-LC	G(F10)					
28	Cell B17=(\$B	\$4*A17-\$B\$3*\$B	\$2)/(\$B\$2+A17)+\$B\$	\$5			
29		\$5*\$B\$3*\$B\$2/(9					
30		17+SQRT(B17^2-					
31			\$2)/(\$B\$2+A17)+D17	7	1		

14-43 (a) This titration of a weak acid with strong base follows the same basic spreadsheet as Pb

14-41 with the concentrations changed. A Scatter plot of pH vs. volume of NaOH is

produced from the data.

	A	В	С	D	E	F	G
1	Pb 14-43(a)						
2	Vi CICH2COOH	50.00					
3	ci CICH2COOH	0.0100					
4	c NaOH	0.0100			-		
5	K _a for CICH ₂ COOH	1.36E-03					
6	Kw	1.00E-14					
7	V _{ep}	50.00					
8	v ep	50.00					
9	V _{NaOH} , mL	b in quadratic	c in quadratic	[HA]	[OH ⁻]	[H ₃ O ⁺]	pН
10	0.00			[]		3.0700E-03	2.5129
11	5.00					2.3889E-03	2.6218
12	15.00					1.4351E-03	2.8431
13	25.00					8.2196E-04	3.0852
14	40.00					2.4960E-04	3.6027
15	45.00					1.1523E-04	3.9385
16	49.00					2.1698E-05	4.6636
17	50.00			1.92E-07	1.9174E-07	5.2155E-08	7.2827
18	51.00			3.68E-10	9.9010E-05	1.0100E-10	9.9957
19	55.00			7.35E-11	4.7619E-04	2.1000E-11	10.6778
20	60.00			3.68E-11	9.0909E-04	1.1000E-11	10.9586
21	Spreadsheet Docu	mentation					
22	Same as Pb 14-41a						
23	12.00 ¬						
24	12.00						
25	10.00 -			6			
26	10.00			ſ			
27	8.00 -						
28	0.00			+			
29	T 6.00 -			1			
30	a 0.00						
31	4.00 -						
32							
33	2.00 -						
34							
35	0.00 -						
36	0.0	0 10.00 2	20.00 30.00 40	0.00 50.00	60.00 70.0	0	
37	0.0	10.00 2	0.00 00.00 40		/0.00 /0.0		
38			V _{NaOH} , n	nL			
39							
40			1				

	A	В	С	D	E	F	G	Н
1	Pb 14-43(b)							
2	Vi C8H5NH3+	50.00						
3	ci C ₆ H ₅ NH ₃ ⁺	0.1000						
4	c _i NaOH	0.1000						
5	Ka for C6H5NH3+	2.51E-05						
6	Kw	1.00E-14						
7	V _{ep}	50.00						
8	· ep							
9	V _{NaOH} , mL	b in quadratic	c in quadratic	[HA]	[OH ⁻]	[H ₃ O ⁺]	pН	
10	0.00	2.5100E-05	-2.5100E-06			1.5718E-03	2.8036	
11	5.00	9.1160E-03	-2.0536E-06			2.1997E-04	3.6576	
12	15.00	2.3102E-02	-1.3515E-06			5.8356E-05	4.2339	
13	25.00	3.3358E-02	-8.3667E-07			2.5062E-05	4.6010	
14	40.00	4.4470E-02	-2.7889E-07			6.2706E-06	5.2027	
15	45.00	4.7394E-02	-1.3211E-07			2.7872E-06	5.5548	
16	49.00	4.9520E-02	-2.5354E-08			5.1198E-07	6.2907	
17	50.00	3.9841E-10	-1.9920E-11	1 46E-06	4.4630E-06	2.2406E-09	8.6496	
18	51.00	9.9010E-04	-1.9723E-11	1.99E-08	9.9012E-04	1.0100E-11	10.9957	
19	55.00	4.7619E-03	-1.8972E-11	3.98E-09	4.7619E-03	2.1000E-12	11.6778	
20	60.00	9.0909E-03	-1.8109E-11	1.99E-09	9.0909E-03	1.1000E-12	11.9586	
21	Spreadsheet Doc		I.OTODE III	1.002 00	0.00002 00	1.10002 12	11.0000	
22	Same as Pb 14-41							
23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
24	14.00	1						
25	12.00							
26	12.00			*				
27	10.00	-		1				
28				1				
29	T 8.00	-		1				
30	E 6.00			*				
31	0.00]		++				
32	4.00	-						
33		-						
34	2.00	-				-		
35	0.00							
36		1 1	1	1 1				
37	C	0.00 10.00 2	0.00 30.00 4	0.00 50.00	60.00 70.0	00		
38			V _{NaOH} , I	ml				
39			NaOH,					
10								

(b) This titration also follows the same procedure as that in part (a).

(c)

	A	В	С	D	E	F	G
1	Pb 14-43(c)						
2	V _i HOCI	50.00					
3	ci HOCI	0.1000					
4	c _i NaOH	0.1000					
5	K _a for HOCI	3.00E-08					
6	Kw	1.00E-14					
7		50.00					
8	V _{ep}	50.00					
9	V _{NaOH} , mL	b in quadratic	o in quadratia	[HA]	[OH ⁻]	[HO+1	- L
	0.00	3.0000E-08		[HA]	fourl	[H ₃ O ⁺]	pH 4 acto
10 11						5.4757E-05	4.2616
	5.00	9.0909E-03				2.6999E-07	6.5687
12	15.00	2.3077E-02				7.0000E-08	7.1549
13	25.00	3.3333E-02				3.0000E-08	7.5229
14	40.00	4.4444E-02				7.5000E-09	8.1249
15	45.00	4.7368E-02				3.3333E-09	8.4771
16	49.00	4.9495E-02				6.1224E-10	9.2131
17	50.00	3.3333E-07		0.000129	1.2893E-04	7.7560E-11	10.1104
18	51.00	9.9043E-04		1.64E-05	1.0065E-03	9.9355E-12	11.0028
19	55.00	4.7622E-03		3.33E-06	4.7652E-03	2.0985E-12	11.6781
20	60.00	9.0912E-03		1.67E-06	9.0926E-03	1.0998E-12	11.9587
21		Documentatio	n				
22	Same as Pb 1	4-41a					
23	14	1.00 7					
24							
25	12	2.00 -			-		
26		1.1			*		
27	10	0.00 -		1			
28		3.00 -				·	
29	Ha		+ +				
30	۹.	.00 -					
31							
32	4	.00 4					
33							
34	2	2.00 -					
35	0	.00					
36			20.00 20.00	40.00 50	00 60 00 70 0	0	
37		0.00 10.00	20.00 30.00	40.00 50.	.00 60.00 70.0		
38			VNO	H, mL			
39			- Nau				
-							

(d) This is a titration of a weak base with HCl and so follows the format of Pb 14-42. A

Scatter plot is produced.

	А	В	С	D	E	F		G
1	Pb 14-43(d)							
2	V _i HONH ₂	50.00						
3	ci HONH ₂	0.1000						
4	c _i HCI	0.1000						
5	K _a for HONH ₃ ⁺	1.10E-06			· · · · · · · · · · · · · · · · · · ·			
6	Kw	1.00E-14						
7	V _{ep}	50.00						
8	r ep							
9	VHCL mL	b in quadratic	c in quadratic	[HONH ₂]	[OH ⁻]	[H ₃ O ⁺]		pH
10	0.00	9.0909E-09			3.0147E-05	3.3171E	E-10	9.4792
11	5.00	9.0909E-03			8.1817E-08	1.22228		6.9128
12	15.00	2.3077E-02	-4.8951E-10		2.1212E-08	4.7143E	E-07	6.3266
13	25.00	3.3333E-02	-3.0303E-10		9.0909E-09	1.1000E	E-06	5.9586
14	40.00	4.4444E-02	-1.0101E-10		2.2727E-09	4.4000E	E-06	5.3565
15	45.00	4.7368E-02	-4.7847E-11		1.0101E-09	9.9000E	E-06	5.0044
16	49.00	4.9495E-02	-9.1827E-12		1.8553E-10	5.3900E	E-05	4.2684
17	50.00	1.1000E-06	-5.5000E-08	2.3397E-04		2.3397E	E-04	3.6308
18	51.00	9.9120E-04	-5.4455E-08	5.2191E-05		1.0423E	E-03	2.9820
19	55.00	4.7630E-03	-5.2381E-08	1.0972E-05		4.7729E	E-03	2.3212
20	60.00	9.0920E-03	-5.0000E-08	5.4960E-06		9.0964E	E-03	2.0411
21	Spreadsheet D		n					
22	Same as Pb 14	-42a						
23		23						
24	10.00	+				_		
25	9.00	p - \					_	
26	8.00) - \				-	_	
27	7.00) - 🔪					- 4	
28	6.00		+ +				_	
29 30				++				
31				-	*			
32	4.00	D -			7	-		
33	3.00	0 -			*			
34	2.00	0 -			* *			
35	1.00) -						
36	0.00	p ↓	1.0		15 15			
37		0.00 10.00	20.00 30.00	40.00	50.00 60.00	70.00		
38			V	ICL, mL				
39								
40			ř – – – – – – – – – – – – – – – – – – –	1	ti ti			

Chapter 14

14-44. Here, we make use of Equations 9-36 And 9-37:

	A	B	С	D	E	F	G
1		Species	pH	[H ₃ O ⁺]	Ka	ao	<i>α</i> 1
2	(a)	Acetic acid	5.320	4.7863E-06	1.75E-05	0.215	0.785
3	(b)	Picric acid	1.250	5.6234E-02	4.30E-01	0.116	0.884
4	(c)	HOCI	7.000	1.0000E-07	3.00E-08	0.769	0.231
5	(d)	HONH ₃ ⁺	5.120	7.5858E-06	1.10E-06	0.873	0.127
6	(e)	Piperdine	10.080	8.3176E-11	7.50E-12	0.917	0.083
7							
8	Spreads	heet Documen	tation				
9	Cell D2=	10^(-C2)					
10	Cell F2=	D2/(D2+E2)					
11	Cell G2=	E2/(D2+E2					

$$\alpha_0 = \frac{[H_3O^+]}{[H_3O^+] + K_a} \qquad \qquad \alpha_1 = \frac{K_a}{[H_3O^+] + K_a}$$

14-45. $[H_3O^+] = 3.38 \times 10^{-12} \text{ M}$. For $CH_3NH_3^+$, Equation 9-37 takes the form,

$$\alpha_{1} = \frac{[CH_{3}NH_{2}]}{c_{T}} = \frac{K_{a}}{[H_{3}O^{+}] + K_{a}} = \frac{2.3 \times 10^{-11}}{3.38 \times 10^{-12} + 2.3 \times 10^{-11}} = 0.872$$

$$[CH_3NH_2] = 0.872 \times 0.120 = 0.105 \text{ M}$$

14-46. For **a** pH of 3.200, $[H_3O^+] = 10^{-3.200} = 6.310 \times 10^{-4}$ M. For formic acid $K_a = 1.80 \times 10^{-4}$

$$\alpha_0 = \frac{6.310 \times 10^{-4}}{6.310 \times 10^{-4} + 1.80 \times 10^{-4}} = 0.778$$
$$\frac{[\text{HCOOH}]}{c_{\text{T}}} = \frac{[\text{HCOOH}]}{0.0850} = \alpha_0$$

$$[\text{HCOOH}] = \alpha_0 \times c_{\text{T}} = 0.778 \times 0.0850 = 6.61 \times 10^{-2} \text{ M}$$

14-47. For lactic acid, $K_a = 1.38 \times 10^{-4}$

$$\alpha_0 = \frac{[\mathrm{H}_3\mathrm{O}^+]}{K_{\mathrm{a}} + [\mathrm{H}_3\mathrm{O}^+]} = \frac{[\mathrm{H}_3\mathrm{O}^+]}{1.38 \times 10^{-4} + [\mathrm{H}_3\mathrm{O}^+]}$$

$$\alpha_0 = 0.640 = \frac{[\text{HA}]}{c_{\text{T}}} = \frac{[\text{HA}]}{0.120}$$

$$[\text{HA}] = 0.640 \times 0.120 = 0.0768 \text{ M}$$

$$\alpha_1 = 1.000 - 0.640 = 0.360$$

$$[\text{A}^-] = \alpha_1 \times 0.120 = (1.000 - 0.640) \times 0.120 = 0.0432 \text{ M}$$

$$[\text{H}_3\text{O}^+] = K_a \times c_{\text{HA}}/c_{\text{A}^-} = 1.38 \times 10^{-4} \times 0.640/(1 - 0.640) = 2.453 \times 10^{-4} \text{ M}$$

$$p\text{H} = -\log(2.453 \times 10^{-4}) = 3.61$$

The remaining entries in the table are obtained in a similar manner. Bolded entries are the missing data points.

Acid	c _T	pН	[HA]	[A ⁻]	$lpha_0$	α_1	
Lactic	0.120	3.61	0.0768	0.0432	0.640	0.360	
Iodic	0.200	1.28	0.0470	0.153	0.235	0.765	
Butanoic	0.162	5.00	0.644	0.0979	0.397	0.604	
HOC1	0.280	7.00	0.215	0.0646	0.769	0.231	
Nitrous	0.179	3.30	0.0739	0.105	0.413	0.587	
HCN	0.366	9.39	0.145	0.221	0.396	0.604	
Sulfamic	0.250	1.20	0.095	0.155	0.380	0.620	

Chapter 15

15-1. Not only is NaHA a proton donor, it is also the conjugate base of the parent acid H₂A. HA⁻ + H₂O \rightleftharpoons H₃O⁺ + A²⁻

 $HA^- + H_2O \rightleftharpoons H_2A + OH^-$

Solutions of acid salts can be acidic or alkaline, depending on which of the above equilibria predominates. In order to calculate the pH of solutions of this type, it is necessary to take both equilibria into account.

- **15-2.** The first term arises from the dissociation of HA⁻ to give H_3O^+ and A^{2-} . The second term arises from HA⁻ reacting in water to give H_2A and OH⁻. The equation makes intuitive sense because H_3O^+ is formed by reaction that gives A^{2-} , while it is depleted by reaction to give H_2A and OH⁻.
- **15-3.** In Equation 15-15, the only concentration term is c_{NaHA} . Thus, the equation is only applicable to a solution in which the only species affecting pH is the acid salt NaHA.
- **15-4.** The species HPO_4^{2-} is such a weak acid ($K_{a3} = 4.5 \times 10^{-13}$) that the change in pH in the vicinity of the third equivalence point is too small to be observable.
- **15-5.** (a) $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$ $K_a = 5.70 \times 10^{-10}$

$$OAc^{-} + H_2O \rightleftharpoons HOAc + OH^{-}$$
 $K_b = \frac{K_w}{K_a} = \frac{1.00 \times 10^{-14}}{1.75 \times 10^{-5}} = 5.71 \times 10^{-10}$

Since the *K*'s are essentially identical, the solution should be approximately neutral

(b) $NO_2^- + H_2O \rightleftharpoons HNO_2 + OH^-$ Solution will be basic

(c) Neither K^+ nor NO_3^- reacts with H_2O . Solution will be neutral

(d) $HC_2O_4^- + H_2O \rightleftharpoons C_2O_4^{2-} + H_3O^+$ $K_{a2} = 5.42 \times 10^{-5}$

$$\text{HC}_2\text{O}_4^- + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{C}_2\text{O}_4 + \text{OH}^- \qquad K_{b2} = \frac{1.00 \times 10^{-14}}{5.60 \times 10^{-2}} = 1.79 \times 10^{-13}$$

Solution will be acidic since $K_{a2} >> K_{b2.}$

(e)
$$C_2O_4^{2-} + H_2O \leftrightarrows HC_2O_4^{-} + OH^{-}$$
 $K_b = \frac{1.00 \times 10^{-14}}{5.42 \times 10^{-5}} = 1.84 \times 10^{-10}$

Solution will be basic

(f)
$$\text{HPO}_4^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{PO}_4^{3-} + \text{H}_3\text{O}^+$$
 $K_{a3} = 4.5 \times 10^{-13}$

$$\text{HPO}_4^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{PO}_4^- + \text{OH}^- \qquad K_{b2} = \frac{1.00 \times 10^{-14}}{6.32 \times 10^{-8}} = 1.58 \times 10^{-7}$$

Solution will be basic

(g)
$$H_2PO_4^- + H_2O \rightleftharpoons HPO_4^{2-} + H_3O^+ \quad K_{a2} = 6.32 \times 10^{-8}$$

$$H_2PO_4^- + H_2O \rightleftharpoons H_3PO_4 + OH^ K_{b3} = \frac{1.00 \times 10^{-14}}{7.11 \times 10^{-3}} = 1.4 \times 10^{-12}$$

Solution will be acidic

(**h**)
$$PO_4^{3-} + H_2O \Longrightarrow HPO_4^{2-} + OH^ K_{b1} = \frac{1.00 \times 10^{-14}}{4.5 \times 10^{-13}} = 2.2 \times 10^{-2}$$

Solution will be basic

15-6. We can approximate the $[H_3O^+]$ at the first equivalence point by Equation 15-16. Thus,

$$[\mathrm{H}_{3}\mathrm{O}^{+}] = \sqrt{5.8 \times 10^{-3} \times 1.1 \times 10^{-7}} = 2.53 \times 10^{-5}$$

$$pH = -\log(2.53 \times 10^{-5}) = 4.60$$

Bromocresol green would be a satisfactory indicator.

15-7. Let us assume that $c_{\text{Na}_2\text{HAsO}_4} = 0.033 \text{ M}$ at the equivalence point. Also, $K_{a2} = 1.1 \times 10^{-7}$

and $K_{a3} = 3.2 \times 10^{-12}$. Substituting into Equation 15-15 gives

$$[\mathrm{H}_{3}\mathrm{O}^{+}] = \sqrt{\frac{3.2 \times 10^{-12} \times 0.033 + 1 \times 10^{-14}}{1 + 0.033/(1.1 \times 10^{-7})}} = 6.2 \times 10^{-10}$$

$$pH = -\log(6.2 \times 10^{-10}) = 9.2$$

Phenolphthalein would be a suitable indicator.

- **15-8.** Curve *A* in figure 15-4 is the titration curve for H₃PO₄. Note that one end point occurs at about pH 4.5 and a second at about pH 9.5. Thus, H₃PO₄ would be determined by titration with bromocresol green as an indicator (pH 3.8 to 5.4). A titration to the second end point with phenolphthalein would give the number of millimoles of NaH₂PO₄ plus twice the number of millimoles of H₃PO₄. Thus, the concentration of NaH₂PO₄ is obtained from the difference in volume for the two titrations.
- 15-9. (a)To obtain the approximate equivalence point pH, we employ Equation 15-16

$$[H_{3}O^{+}] = \sqrt{K_{a1}K_{a2}} = \sqrt{4.2 \times 10^{-7} \times 4.69 \times 10^{-11}} = 4.4 \times 10^{-9}$$

pH = 8.4

Cresol purple (7.6 to 9.2) would be suitable.

(b)
$$P^{2-} + H_2O \rightleftharpoons HP^- + OH^ K_{b1} =$$

$$\frac{[OH^{-}][HP^{-}]}{[P^{2-}]} = \frac{1.00 \times 10^{-14}}{3.91 \times 10^{-6}} = 2.56 \times 10^{-9}$$

 $[OH^{-}] = [HP^{-}]$ and we assume $[P^{2-}] = 0.05 - [OH^{-}] \approx 0.05$

$$[OH^{-}] = (0.05 \times 2.56 \times 10^{-9})^{1/2} = 1.13 \times 10^{-5} M$$

pH = 14.00 - $[-\log(1.13 \times 10^{-5})] = 9.05$
Phenolphthalein (8.3 to 10)

(c) As in part (b)

 $[OH^-] = (0.05 \times 1.00 \times 10^{-14} / 4.31 \times 10^{-5})^{1/2} = 3.41 \times 10^{-6} \text{ M}$

$$pH = 14.00 - [-\log(3.41 \times 10^{-6})] = 8.53$$

Cresol purple (7.6 to 9.2)

(d) Here we are able to use equation 15-16

 $[H_{3}O^{+}] = (1.42 \times 10^{-7} \times 1.18 \times 10^{-10})^{1/2} = 4.09 \times 10^{-9} \text{ M}$ $pH = -\log(4.09 \times 10^{-9}) = 8.39$

Cresol purple (7.6 to 9.2)

(e)
$$NH_3C_2H_4NH_3^{2+} + H_2O \Longrightarrow NH_3C_2H_4NH_2^{+} + H_3O^{+}$$
 $K_{a1} = 1.42 \times 10^{-7}$

 $[H_{3}O^{+}] = (0.05 \times 1.42 \times 10^{-7})^{1/2} = 8.43 \times 10^{-5} \text{ M}$ pH = -log(8.43 × 10⁻⁵) = 4.07 Bromocresol green (3.8 to 5.4)

(f) Substituting into Equation 15-15 gives

$$[\mathrm{H}_{3}\mathrm{O}^{+}] = \sqrt{\frac{0.05 \times 6.6 \times 10^{-8} + 1.0 \times 10^{-14}}{1 + 0.05 / (1.23 \times 10^{-2})}} = 2.55 \times 10^{-5}$$

 $pH = -log(2.55 \times 10^{-5}) = 4.59$

Bromocresol green (3.8 to 5.4)

(g) Proceeding as in part (b) we obtain pH = 9.94

Phenolphthalein (8.5 to 10.0)

15-10. (a)
$$H_3PO_4 + H_2O \rightleftharpoons H_3O^+ + H_2PO_4^ K_{a1} = 7.11 \times 10^{-3}$$

$$\frac{[H_3O^+][H_2PO_4^-]}{[H_3PO_4]} = \frac{[H_3O^+]^2}{0.040 - [H_3O^+]} = 7.11 \times 10^{-3}$$
 $[H_3O^+]^2 + 7.11 \times 10^{-3}[H_3O^+] - 0.040 \times 7.11 \times 10^{-3} = 0$
Solving by the quadratic formula or by successive approximations, gives
 $[H_3O^+] = 1.37 \times 10^{-2} M$ pH = $-\log(1.37 \times 10^{-2}) = 1.86$
(b) Proceeding as in part (a) we have pH = 1.57
(c) pH = 1.64

(d)
$$pH = 1.77$$

(e) pH = 4.21

(f)
$$NH_2C_2H_4NH_2 + H_2O \rightleftharpoons NH_3C_2H_4NH_2^+ + OH^ K_{b1} = \frac{1.00 \times 10^{-14}}{1.18 \times 10^{-10}} = 8.47 \times 10^{-5}$$

$$\frac{[OH^{-}]^{2}}{0.0400} = 8.47 \times 10^{-5}$$
$$[OH^{-}] = (0.0400 \times 8.47 \times 10^{-5})^{1/2} = 1.84 \times 10^{-3} \text{ M}$$
$$pH = 14.00 - [-\log(1.84 \times 10^{-3})] = 11.26$$

15-11. Throughout this problem, we will use Equation 15-15 or one of its simplificationws.

(a)
$$[H_{3}O^{+}] = \sqrt{\frac{0.0400 \times 6.32 \times 10^{-8}}{1 + 0.0400/(7.11 \times 10^{-3})}} = 1.95 \times 10^{-5}$$
$$pH = -\log(1.95 \times 10^{-5}) = 4.71$$

(b) as in part (a), we obtain pH = 2.95

(c)
$$pH = 4.28$$

Chapter 15

(d)
$$pH = 4.60$$

(e)
$$pH = 9.80$$

(f)
$$pH = 8.39$$

15-12. (a)
$$PO_4^{3-} + H_2O \implies HPO_4^{2-} + OH^ K_{b1} = \frac{K_w}{K_{a3}} = \frac{1.00 \times 10^{-14}}{4.5 \times 10^{-13}} = 2.2. \times 10^{-2}$$

$$\frac{[OH^{-}]^{2}}{0.040 - [OH^{-}]} = 2.22 \times 10^{-2}$$

$$[OH^{-}]^{2} + 2.22 \times 10^{-2} [OH^{-}] - 8.88 \times 10^{-4} = 0$$
Solving gives
$$[OH^{-}] = 2.07 \times 10^{-2} M$$

$$pH = 14.00 - [-\log(2.07 \times 10^{-2})] = 12.32$$
(b)
$$C_{2}O_{4}^{2-} + H_{2}O \rightleftharpoons HC_{2}O_{4}^{-} + OH^{-}$$

$$K_{b1} = \frac{1.00 \times 10^{-14}}{5.42 \times 10^{-5}} = 1.84 \times 10^{-10}$$

$$[OH^{-}] = \sqrt{0.040 \times 1.84 \times 10^{-10}} = 2.72 \times 10^{-6} M$$

$$pH = 8.43$$

(c) Proceeding as in part (b), we obtain
$$pH = 9.70$$
.

(d) As in part (b), we obtain,
$$pH = 9.89$$

(e) Proceeding as in part (a), gives
$$pH = 12.58$$

(f)
$$NH_3C_2H_4NH_3^{2+} + H_2O \rightleftharpoons NH_3C_2H_4NH_2^{+} + H_3O^{+}$$
 $K_{a1} = 1.42 \times 10^{-7}$

$$[H_3O^+] = (0.0400 \times 1.42 \times 10^{-7})^{1/2} = 7.54 \times 10^{-5} \text{ M} \text{ and } \text{ pH} = 4.12$$

15-13. (a)
$$H_3PO_4 + H_2O \rightleftharpoons H_2PO_4^- + H_3O^+$$
 $K_{a1} = 7.11 \times 10^{-3}$

$$7.11 \times 10^{-3} = \frac{[\text{H}_{3}\text{O}^{+}][\text{H}_{2}\text{PO}_{4}^{-}]}{[\text{H}_{3}\text{PO}_{4}]} = \frac{(0.0200 + [\text{H}_{3}\text{O}^{+}])[\text{H}_{3}\text{O}^{+}]}{0.0500 - [\text{H}_{3}\text{O}^{+}]}$$

$$[H_{3}O^{+}]^{2} + (0.0200 + 7.11 \times 10^{-3})[H_{3}O^{+}] - (7.11 \times 10^{-3})(0.0500) = 0$$

$$[H_{3}O^{+}] = 9.67 \times 10^{-3} \text{ M and } \text{ pH} = 2.01$$

(b) $H_{2}AsO_{4}^{-} + H_{2}O \rightleftharpoons HAsO_{4}^{2-} + H_{3}O^{+}$ $K_{a2} = 1.1 \times 10^{-7}$

$$1.1 \times 10^{-7} = \frac{[H_3O^+][HAsO_4^{2-}]}{[H_2AsO_4^{-}]} = \frac{(0.0500 + [H_3O^+])[H_3O^+]}{0.0300 - [H_3O^+]} \cong \frac{(0.0500)[H_3O^+]}{0.0300}$$

 $[H_3O^+] = 6.66 \times 10^{-8} \text{ M} \text{ and } pH = 7.18$

(c) Proceeding as in part (b), we obtain $[H_3O^+] = 2.34 \times 10^{-11}$ and pH = 10.63

$$(\mathbf{d}) \qquad \mathrm{H}_{3}\mathrm{PO}_{4} + \mathrm{HPO}_{4}^{2-} \rightarrow 2\mathrm{H}_{2}\mathrm{PO}_{4}$$

For each milliliter of solution, 0.0200 mmol Na₂HPO₄ reacts with 0.0200 mmol H₃PO₄ to give 0.0400 mmol NaH₂PO₄ and to leave 0.0200 mmol H₃PO₄. Thus, we have a buffer that is 0.0200 M in H₃PO₄ and 0.0400 M in NaH₂PO₄. Proceeding as in part (a) we obtain $[H_3O^+] = 2.82 \times 10^{-3}$ M and pH = 2.55

- (e) Proceeding as in part (a) we obtain $[H_3O^+] = 8.66 \times 10^{-3}$ M and pH = 2.06
- **15-14.** (a) Proceeding as in Problem 15-12(a), $[H_3O^+] = 3.77 \times 10^{-3}$ M and pH = 2.42
 - (b) Proceeding as in 15-12(b), $[H_3O^+] = 3.10 \times 10^{-8}$ Mand pH = 7.51
 - (c) $HOC_2H_4NH_3^+ + H_2O \rightleftharpoons HOC_2H_4NH_2 + H_3O^+$ $K_a = 3.18 \times 10^{-10}$

Proceeding as in 15-12(b) we obtain $[H_3O^+] = 3.73 \times 10^{-10} \text{ M}$ and pH = 9.43

(d)
$$H_2C_2O_4 + C_2O_4^{2-} \rightarrow 2HC_2O_4^{-}$$

For each milliliter of solution, 0.0240 mmol H_2HPO_4 reacts with 0.0240 mmol $C_2O_4^{2-}$ to give 0.0480 mmol $HC_2O_4^{-}$ and to leave 0.0120 mmol $C_2O_4^{2-}$. Thus, we have a buffer that is 0.0480 M in $HC_2O_4^{-}$ and 0.0120 M in $C_2O_4^{2-}$.

Proceeding as in 15-12(a), we obtain $[H_3O^+] = 2.17 \times 10^{-4} \text{ M}$ and pH = 3.66

(e) Proceeding as in 15-12(b), we obtain $[H_3O^+] = 2.17 \times 10^{-4}$ and pH = 3.66

15-15. (a)
$$(NO_2)_3C_6H_2OH + H_2O \rightleftharpoons (NO_2)_3C_6H_2O^- + H_3O^+$$
 $K_a = 0.43$

$$0.43 = \frac{[H_3O^+][(NO_2)_3C_6H_2O^-]}{[(NO_2)_3C_6H_2OH]} = \frac{(0.0100 + x)x}{0.0200 - x}$$

Rearranging gives $x^2 + (0.0100 + 0.43)x - (0.43)(0.0200) = 0$ solving the quadratic, gives $x = 1.87 \times 10^{-2}$

The total $[H_3O^+] = 0.0100 + x = 0.0287$ M and pH = 1.54

(b) Proceeding as in part (a), we obtain $[H_3O^+] = 1.013 \times 10^{-2} \text{ M}$ and pH = 1.99

(c)
$$\operatorname{CO_3^{2-}} + \operatorname{H_2O} \rightleftharpoons \operatorname{HCO_3^-} + \operatorname{OH^-} \qquad K_{b1} = \frac{1.00 \times 10^{-14}}{4.69 \times 10^{-11}} = 2.13 \times 10^{-4}$$

$$2.13 \times 10^{-4} = \frac{[OH^{-}][HCO_{3}^{-}]}{[CO_{3}^{2-}]} = \frac{(0.0100 + x)x}{0.100 - x}$$

Rearranging gives $0 = x^2 + (0.0100 + 2.13 \times 10^{-4})x - (2.13 \times 10^{-4})(0.100)$ and solving the quadratic gives $x = 1.78 \times 10^{-3}$ The total [OH⁻] = 0.0100 + x = 0.0118 M and pH = 12.07

(d) Proceeding as in part (c), we obtain $[OH^-] = 1.017 \times 10^{-2}$ M and pH = 12.01

15-16. (a) Proceeding as in 15-14(a), we obtain
$$[H_3O^+] = 1.287 \times 10^{-2}$$
 M and pH = 1.89

(b) Recognizing that the first proton of H_2SO_4 completely dissociates we obtain

$$HSO_4^- + H_2O \rightleftharpoons SO_4^{2--} + H_3O^+ \qquad K_{a2} = 1.02 \times 10^{-2}$$

$$1.02 \times 10^{-2} = \frac{[\text{H}_{3}\text{O}^{+}][\text{SO}_{4}^{2-}]}{[\text{HSO}_{4}^{-}]} = \frac{(0.0100 + 0.0150 + x)x}{0.0150 - x}$$

Rearranging gives $x^2 + (0.0250 + 1.02 \times 10^{-2})x - (1.02 \times 10^{-2})(0.0150) = 0$ Solving the quadratic, gives $x = 3.91 \times 10^{-3}$

The total
$$[H_3O^+] = 0.0250 + x = 0.0289$$
 M and pH = 1.54

(c) Proceeding as in 15-14(c) we obtain $[OH^-] = 0.0382$ M and pH = 12.58

(d)
$$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^ K_{b1} = \frac{1.00 \times 10^{-14}}{1.75 \times 10^{-5}} = 5.7 \times 10^{-10}$$

 CH_3COO^- is such a weak base that it makes no significant contribution to $[OH^-]$ Therefore, $[OH^-] = 0.010$ M and pH = 12.00

15-17. (a) Let's compare the ratio $[H_2SO_3]/[HSO_3^-]$ with that of $[SO_3^{2-}]/[HSO_3^-]$ at

 $[H_3O^+] = 1.00 \times 10^{-6}$. The larger ratio is the predominant acid/base pair.

$$\frac{[\text{H}_2\text{SO}_3]}{[\text{HSO}_3^-]} = \frac{[\text{H}_3\text{O}^+]}{K_{\text{al}}} = \frac{1.00 \times 10^{-6}}{1.23 \times 10^{-2}} = 8.1 \times 10^{-5}$$

$$\frac{[\mathrm{SO}_3^{2^-}]}{[\mathrm{HSO}_3^-]} = \frac{K_{a2}}{[\mathrm{H}_3\mathrm{O}^+]} = \frac{6.6 \times 10^{-8}}{1.00 \times 10^{-6}} = 0.066$$

Clearly the predominant pair is SO_3^{2-}/HSO_3^{-} and its acid/base ratio is

$$1/0.066 = 15.2$$

(b) Substituting $[H_3O^+] = 1.00 \times 10^{-6}$ into the expressions for K_{a1} , K_{a2} and K_{a3} yields

$$\frac{[\text{H}_2\text{Cit}^-]}{[\text{H}_3\text{Cit}]} = 745 \qquad \frac{[\text{HCit}^{2-}]}{[\text{H}_2\text{Cit}^-]} = 17.3 \qquad \frac{[\text{Cit}^{3-}]}{[\text{HCit}^{2-}]} = 0.40$$

The large size of the first two ratios and the small size of the third indicate the $HCit^{2-}$ is a predominant species in this solution. To compare $[Cit^{3-}]$ and $[H_2Cit^-]$ we invert the second ratio. Then

$$[H_2Cit^-]/[HCit^{2-}] = 1/17.3 = 0.058$$

Thus, the predominant acid/base system involves [Cit³⁻] and [HCit²⁻] and their acid/base ratio is

$$[\text{HCit}^{2-}]/[\text{Cit}^{3-}] = 1/0.40 = 2.5$$

- (c) Proceeding as in part (a), we obtain $[HM^-]/[M^{2-}] = 0.498$
- (d) Proceeding as in part (a), we obtain $[HT^-]/[T^{2-}] = 0.0232$.

15-18. (a) Proceeding as in Problem 15-16(a) with
$$[H_3O^+] = 1.00 \times 10^{-9}$$
 we obtain $[H_2S]/[HS^-] = 0.010$

(b) Formulating the three species as BH_2^{2+} , BH^+ and B, where B is the symbol for $NH_2C_2H_5NH_2$.

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{B}\mathrm{H}^{+}]}{[\mathrm{B}\mathrm{H}_{2}^{2+}]} = K_{\mathrm{a}1} = 1.42 \times 10^{-7} \text{ and } \frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{B}]}{[\mathrm{B}\mathrm{H}^{+}]} = K_{\mathrm{a}2} = 1.18 \times 10^{-10}$$

$$[\mathrm{BH_2}^{2+}]/[\mathrm{BH}^+] = \frac{1.00 \times 10^{-9}}{1.42 \times 10^{-7}} = 0.0070$$

$$[\mathbf{B}]/[\mathbf{B}\mathbf{H}^+] = \frac{1.18 \times 10^{-10}}{1.00 \times 10^{-9}} = 0.118$$

 $[BH_2^{2^+}]$ is < [B] and $[BH^+]/[B] = 1.00/0.118 = 8.5$

(c) Proceeding as in Problem 15-16(b) we find

 $[H_2AsO_4^-]/[HAsO_4^{2-}] = 9.1 \times 10^{-3}$

(d) Proceeding as in Problem 15-16(a) we find

 $[\text{HCO}_3^-]/[\text{CO}_3^{2-}] = 21$

15-19. pH = 7.30; $[H_3O^+] = antilog (-7.30) = 5.012 \times 10^{-8} M$ $K_{a2} = [H_3O^+][HPO_4^{2-}]/[H_2PO_4^{--}] = 6.32 \times 10^{-8}$ $[HPO_4^{2-}]/[H_2PO_4^{--}] = 6.32 \times 10^{-8}/(5.012 \times 10^{-8}) = 1.261$

$$HPO_4^{2-} + H_3PO_4 \rightarrow 2H_2PO_4$$

amount H_3PO_4 present = 500 mL × 0.160 M = 80.0 mmol

amount $H_2PO_4^-$ in the buffer = 2 × 80.0 mmol = 160.0 mmol

amount HPO_4^{2-} needed for the buffer = $1.261 \times 160.0 \text{ mmol} = 201.8 \text{ mmol}$

Thus, we need 80.0 mmol of Na_2HPO_4 to react with the H_3PO_4 and an additional 201.8

mmol to provide the needed concentration of HPO_4^{2-} or 281.8 mmol.

mass $Na_2HPO_4 \bullet 2H_2O = 281.8 \text{ mmol} \times 0.17799 \text{ g/mmol} = 50.2 \text{ g}$

15-20. pH = 5.75; $[H_3O^+] = antilog (-5.75) = 1.778 \times 10^{-6}$

 $K_{a2} = [H_3O^+][P^{2-}]/[HP^-] = 3.91 \times 10^{-6}$

 $[P^{2-}]/[HP^{-}] = 3.91 \times 10^{-6}/(1.778 \times 10^{-6}) = 2.199$

 $P^{2-} + H_2P \rightarrow 2HP^-$

amount H_2P present = 750 mL × 0.0500 M = 37.5 mmol

amount HP⁻ in the buffer = 2×37.5 mmol = 75.0 mmol

amount P^{2-} needed in the buffer = 2.199×75.0 mmol = 164.9 mmol

Thus, we need $37.5 + 164.9 = 202.4 \text{ mmol of } \text{K}_2\text{P}$.

mass $K_2P = 202.4 \text{ mmol} \times 0.24232 \text{ g/mmol} = 49.0 \text{ g}$

15-21. amount NaH₂PO₄ = $40.0 \times 0.200 = 8.00$ mmol

(a) no. mmol H_3PO_4 formed = no. mmol HCl added = $60.0 \times 0.100 = 6.00$

 $c_{\text{H}_{2}\text{PO}_{4}} = 6.00/100 = 0.0600 \text{ M}$

 $c_{\text{NaH}_2\text{PO}_4} = (8.00 - 6.00)/100 = 0.0200$

Proceeding as in Problem 15-12(a), we obtain pH = 1.95

(b)
$$c_{\text{Na}_2\text{HPO}_4} = 6.00/100 = 0.0600 \text{ M}$$

 $c_{\text{NaH},\text{PO}_4} = (8.00 - 6.00)/100 = 0.0200 \text{ M}$

Proceeding as in Problem 15-12(b), using K_2 gives pH = 7.68

15-22. amount KHP = $100 \text{ mL} \times 0.150 \text{ M} = 15.0 \text{ mmol}$

(a) amount
$$P^- = 100 \text{ mL} \times 0.0800 \text{ M} = 8.00 \text{ mmol}$$

amount KHP = 15.0 - 8.00 = 7.00 mmol

$$c_{\rm HP^{-}} = 7.00/200 = 0.0350 \,\text{M};$$
 $c_{\rm P^{2-}} = 8.00/200 = 0.0400 \,\text{M}$

Proceeding as in Problem 15-12(b), we obtain pH = 5.47

(b)
$$c_{\text{H}_2\text{P}} = 8.00/200 = 0.0400 \text{ M};$$
 $c_{\text{HP}} = (15.00 - 8.00)/200 = 0.0350 \text{ M}$

Proceeding as in Problem 15-12(a), we obtain pH = 2.92

15-23. pH = 9.45;
$$[H_3O^+] = antilog (-9.45) = 3.548 \times 10^{-10}$$

 $K_{a2} = [H_3O^+][CO_3^{2-}]/[HCO_3^{-}] = 4.69 \times 10^{-11}$
 $[CO_3^{2-}]/[HCO_3^{-}] = 4.69 \times 10^{-11}/(3.5428 \times 10^{-10}) = 0.1322$
Let V_{HC1} = volume 0.200 M HCl in mL and $V_{Na_2CO_3}$ = volume 0.300 M Na₂CO₃ in mL

Since the solutions are dilute, the volumes will be additive

$$V_{\rm HCl} + V_{\rm Na_2CO_3} = 1000 \text{ mL}$$

Assume

$$[\mathrm{CO}_3^{2-}] \approx c_{\mathrm{Na}_2\mathrm{CO}_3} = (V_{\mathrm{Na}_2\mathrm{CO}_3} \times 0.300 - V_{\mathrm{HCl}} \times 0.200)/1000$$

$$[\text{HCO}_3^-] \approx c_{\text{HCO}_3^-} = V_{\text{HCl}} \times 0.200/1000$$

Substituting these relationships into the ratio [CO₃²⁻]/[HCO₃⁻] gives

$$\frac{0.300 V_{Na_2CO_3} - 0.200V_{HCI}}{0.200V_{HCI}} = 0.1322$$

$$0.300V_{Na_2CO_3} - 0.200V_{HCI} = 0.02644V_{HCI}$$

$$0.300(1000 - V_{HCI}) - 0.200V_{HCI} = 0.02644V_{HCI}$$

$$V_{HCI} = 300/0.52644 = 570 \text{ mL}$$

$$V_{Na_2CO_3} = 1000 - 570 = 430 \text{ mL}$$

Thus, mix 430 mL of 0.300 M Na_2CO_3 with 570 mL of 0.200 M HCl

15-24. $[H_3O^+][HPO_4^{2-}]/[H_2PO_4^{-}] = 6.32 \times 10^{-8}$

$$\frac{[\text{HPO}_4^{2^-}]}{[\text{H}_2\text{PO}_4^{-}]} = \frac{6.32 \times 10^{-8}}{1.00 \times 10^{-7}} = 0.632$$
(1)

Let $V_{\rm H_3PO_4}$ and $V_{\rm NaOH}$ be the volume in milliliters of the two reagents. Then

$$V_{\rm H_3PO_4} + V_{\rm NaOH} = 1000 \,\,\rm{mL}$$
⁽²⁾

From mass-balance considerations we may write that in the 1000 mL

amount NaH₂PO₄ + amount Na₂HPO₄ =
$$0.200 \times V_{H_3PO_4}$$
 mmol (3)

amount NaH₂PO₄ + 2 × amount Na₂HPO₄ =
$$0.160 \times V_{\text{NaOH}} \text{ mmol}$$
 (4)

Equation (1) can be rewritten

$$\frac{\text{no. mmol Na}_{2}\text{HPO}_{4}/1000}{\text{no. mmol NaH}_{2}\text{PO}_{4}/1000} = \frac{\text{no. mmol Na}_{2}\text{HPO}_{4}}{\text{no. mmol NaH}_{2}\text{PO}_{4}} = 0.632$$
(5)

Thus, we have four equations, (2), (3), (4) and (5), and four unknowns: $V_{\text{H}_3\text{PO}_4}$, V_{NaOH} , no.

mmol NaH₂PO₄ and no. mmol Na₂HPO₄. Subtracting Equation (3) from (4) yields

no. mmol Na₂HPO₄ = 0.160
$$V_{\text{NaOH}} - 0.200 V_{\text{H}_3\text{PO}_4}$$
 (6)

Substituting Equation (6) into (3) gives

no. mmo NaH₂PO₄ + 0.160
$$V_{\text{NaOH}} - 0.200 V_{\text{H}_3\text{PO}_4} = 0.200 V_{\text{H}_3\text{PO}_4}$$

no. mmo NaH₂PO₄ = -0.160 $V_{\text{NaOH}} + 0.400 V_{\text{H}_3\text{PO}_4}$ (7)

Substituting Equations (6) and (7) into (5) gives

$$\frac{0.160V_{\text{NaOH}} - 0.200V_{\text{H}_3\text{PO}_4}}{0.400V_{\text{H}_3\text{PO}_4} - 0.160V_{\text{NaOH}}} = 0.632$$

This equation rearranges to

 $0.2611 V_{\text{NaOH}} = 0.4528 V_{\text{H_2PO_4}}$

Substituting Equation (2) gives

$$0.2611 (1000 - V_{\rm H_3PO_4}) = 0.4528 V_{\rm H_3PO_4}$$

 $V_{\rm H, PO_4} = 261.1/0.7139 = 366 \text{ mL}$ and $V_{\rm NaOH} = 1000 - 366 = 634 \text{ mL}$

Thus, mix 366 mL H_3PO_4 with 634 mL NaOH

15-25. $[H_3O^+][HAsO_4^{2-}]/[H_2AsO_4^{-}] = 1.1 \times 10^{-7}$

$$[HAsO_4^{2-}]/[H_2AsO_4^{-}] = 1.1 \times 10^{-7}/(1.00 \times 10^{-6}) = 0.11$$
(1)

As in Problem 15-23 we now develop four independent equations that allow calculation of V_{HCl} , $V_{\text{Na}_2\text{AsO}_4}$, no. mmol of HAsO_4^{2-} and no. mmol of $\text{H}_2\text{AsO}_4^{-}$.

$$V_{\text{Na}_3\text{AsO}_4} + V_{\text{HCl}} = 1000 \text{ mL}$$
(2)

no. mmol NaH₂AsO₄ + no. mmol Na₂HAsO₄ = 0.500
$$V_{\text{Na}_3\text{AsO}_4}$$
 (3)

$$2 \times \text{no. mmol NaH}_2\text{AsO}_4 + \text{no. mmol Na}_2\text{HAsO}_4 = 0.400 V_{\text{HCl}}$$
 (4)

no. mmol Na₂HAsO₄ / no. mmol NaH₂AsO₄ =
$$0.11$$

Proceeding as in Problem 15-23 we solve equations (2), (3), (4) and (5) and conclude that 704 mL of 0.400 M HCl should be mixed with 296 mL of 0.500 M Na₃AsO₄.

- **15-26.** (a) For Na₂M, $K_1 = 1.3 \times 10^{-2}$ and $K_2 = 5.9 \times 10^{-7}$. This initial pH is high and two equally spaced end points will be encountered. Thus, curve C.
 - (**b**) Curve A
 - (c) Curve C for the reasons given in part (a).
- **15-27.** (a) Titrations with NaOH of a solution containing a mixture of two weak acids HA_1 and HA_2 . HA_1 is present in a greater concentration and has a dissociation constant that is larger by a factor of about 10^4 .
 - (b) Titration of a typical monoprotic weak acid.
 - (c) Titration of a mixture of a weak base, such as Na_2CO_3 , and an acid salt, such as $NaHCO_3$.
- **15-28.** For the titration of a mixture of H_3PO_4 and $H_2PO_4^-$, the volume to the first end point would have to be smaller than one half the total volume to the second end point because in the titration from the first to second end points both analytes are titrated, whereas to the first end point only the H_3PO_4 is titrated.
- 15-29. For this problem, we set up spreadsheets that will solve a quadratic equation to determine [H₃O⁺] or [OH⁻], as needed (See approach taken for Problems 14-41 through 43). While approximate solutions are appropriate for many of the calculations, the approach taken represents a more general solution and is somewhat easier to incorporate in a spreadsheet. As an example consider the titration of a weak diprotic acid with a strong base.

Before the 1st equivalence point:
$$[H_2A] = \frac{\left(c_{iH_2A}V_{iH_2A} - c_{iNaOH}V_{NaOH}\right)}{\left(V_{iH_2A} + V_{NaOH}\right)} - [H_3O^+]$$

Chapter 15

Substituting these expressions into the equilibrium expression for H₂A and rearranging gives

 $[\mathrm{HA}^{-}] = \frac{\left(c_{\mathrm{i \ NaOH}}V_{\mathrm{NaOH}}\right)}{\left(V_{\mathrm{i \ H_2A}} + V_{\mathrm{NaOH}}\right)} + [\mathrm{H_3O^{+}}]$

$$\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]^{2} + \left(\frac{\left(c_{i\,\text{NaOH}}V_{\text{NaOH}}\right)}{\left(V_{i\,\text{H}_{2}\text{A}} + V_{\text{NaOH}}\right)} + K_{\text{a1}}\right)\left[\mathbf{H}_{3}\mathbf{O}^{+}\right] - \frac{K_{\text{a1}}\left(c_{i\,\text{H}_{2}\text{A}}V_{i\,\text{H}_{2}\text{A}} - c_{i\,\text{NaOH}}V_{\text{NaOH}}\right)}{\left(V_{i\,\text{H}_{2}\text{A}} + V_{\text{NaOH}}\right)} = 0$$

From which $[H_3O^+]$ is directly determined.

At the 1st equivalence point we use Equation 15-13

$$[\mathbf{H}_{3}\mathbf{O}^{+}] = \sqrt{\frac{K_{a2}c_{i\mathbf{H}_{2}\mathbf{A}}V_{i\mathbf{H}_{2}\mathbf{A}} / (V_{i\mathbf{H}_{2}\mathbf{A}} + V_{NaOH}) + K_{w}}{1 + c_{i\mathbf{H}_{2}\mathbf{A}}V_{i\mathbf{H}_{2}\mathbf{A}} / (K_{a1}(V_{i\mathbf{H}_{2}\mathbf{A}} + V_{NaOH}))}}$$

After the 1st and before the 2nd equivalence point:

$$[HA^{-}] = \frac{\left(2 \times c_{i H_{2}A} V_{i H_{2}A} - c_{i NaOH} V_{NaOH}\right)}{\left(V_{i H_{2}A} + V_{NaOH}\right)} - [H_{3}O^{+}]$$
$$[A^{2-}] = \frac{\left(c_{i NaOH} V_{NaOH} - c_{i H_{2}A} V_{i H_{2}A}\right)}{\left(V_{i H_{2}A} + V_{NaOH}\right)} + [H_{3}O^{+}]$$

Substituting these expressions into the equilibrium expression for HA⁻ and rearranging gives

$$[H_{3}O^{+}]^{2} + \left(\frac{\left(c_{i \text{ NAOH}}V_{\text{NAOH}} - c_{i H_{2}A}V_{i H_{2}A}\right)}{\left(V_{i H_{2}A} + V_{\text{NAOH}}\right)} + K_{a2}\right)[H_{3}O^{+}] - \frac{K_{a2}\left(2 \times c_{i H_{2}A}V_{i H_{2}A} - c_{i \text{ NAOH}}V_{\text{NAOH}}\right)}{\left(V_{i H_{2}A} + V_{\text{NAOH}}\right)} = 0$$

From which $[H_3O^+]$ is directly determined.

At and after the 2nd equivalence point:
$$[A^{2-}] = \frac{(c_{i H_2A}V_{H_2A})}{(V_{i H_2A} + V_{NAOH})} - [HA^-]$$

$$[OH^{-}] = \frac{\left(c_{i \text{ NaOH}} V_{\text{NaOH}} - 2 \times c_{i \text{ H}_2\text{A}} V_{i \text{ H}_2\text{A}}\right)}{\left(V_{i \text{ H}_2\text{A}} + V_{\text{NaOH}}\right)} + [HA^{-}]$$

and

and

Substituting these expressions into the equilibrium expression for A^{2–} and rearranging gives

$$[\mathrm{HA}^{-}]^{2} + \left(\frac{\left(c_{\mathrm{i}\,\mathrm{NaOH}}V_{\mathrm{NaOH}} - 2 \times c_{\mathrm{i}\,\mathrm{H}_{2}\mathrm{A}}V_{\mathrm{i}\,\mathrm{H}_{2}\mathrm{A}}\right)}{\left(V_{\mathrm{i}\,\mathrm{H}_{2}\mathrm{A}} + V_{\mathrm{NaOH}}\right)} + \frac{K_{\mathrm{w}}}{K_{\mathrm{a}2}}\right)[\mathrm{HA}^{-}] - \frac{K_{\mathrm{w}}\left(c_{\mathrm{i}\,\mathrm{H}_{2}\mathrm{A}}V_{\mathrm{i}\mathrm{H}_{2}\mathrm{A}}\right)}{K_{\mathrm{a}2}\left(V_{\mathrm{i}\,\mathrm{H}_{2}\mathrm{A}} + V_{\mathrm{NaOH}}\right)} = 0$$

From which $[HA^-]$ can be determined and $[OH^-]$ and $[H_3O^+]$ subsequently calculated. A similar approach is taken for the titration of a weak base with a strong acid.

	A	В	С	D	E	F	G
1	Pb15-29(a)	U U	~	0	-		0
	V ₁ H ₂ SO ₃	50.00					
2					<u></u>		
3	c1 H2SO3	0.1000					
4	c ₁ NaOH	0.2000					
5	Ka1 for H2SO3	1.23E-02					
6	Kag for H2SO3	6.60E-08					
7	Kw	1.00E-14					
8	∧w	1.002-14					
9	V ml	h in mundmatic	a in available	THEO 1	[OH]	FU 01	
9 10	V _{NaOH} , mL 0.00	b in quadratic	c in quadratic -1.2300E-03	[HSO _s ⁻]	[Un]	[H ₈ O*]	pH 1.53
11	12.50	1.2300E-02 5.2300E-02	-0.000492			2.9456E-02 8.1403E-03	2.09
12		6.9443E-02	-0.000175714			2.4443E-03	2.09
13	20.00 24.00	7.7165E-02	-0.000175714 -3.32432E-05			4.2843E-03	3.37
14	24.00	1.1103E-02	-3.32432E-05			4.2643E-04 2.6179E-05	4.58
15	26.00	2.6316E-03	-4.16842E-09			1.5830E-06	5.80
16	37.50		-1.88571E-09			6.6000E-08	7.18
17	45.00	4.2105E-02	-6.94737E-10			1.6500E-08	7.78
18	49.00	4.8485E-02	-1.33333E-10			2.7500E-09	8.56
19	50.00	1.5152E-07	-7.5758E-09	8.6963E-05	8.6963E-05	1.1499E-10	9.94
20	51.00	1.9803E-03	-7.5008E-09	3.7804E-06	1.9840E-03	5.0404E-12	11.30
21	60.00	1.8182E-02	-6.8871E-09	3.7878E-07	1.8182E-02	5.4999E-13	12.26
22							
23	14.00	7					
24	12.00						
25	12.00				•		
		-		5	-		
26	10.00	-		5	-		
26 27 28	10.00	-		- A	_		
25 26 27 28 29	10.00 H ^{8.00}	-			-		
26 27 28 29 30	10.00	-			-		
26 27 28 29 30 31	10.00 H ^{8.00}	-	<u>م</u>		-		
26 27 28 29 30 31 32	10.00 E ^{8.00} 6.00 4.00		م		-		
26 27 28 29 30 31 32 33	10.00 E ^{8.00} 6.00		مر		-		
26 27 28 29 30 31 32 33 33 34	10.00 E 8.00 6.00 4.00 2.00				•		
26 27 28 29 30 31 32 33 34 35	10.00 E 8.00 6.00 4.00 2.00 0.00						
26 27 28 29 30 31 32 33 34 35 36	10.00 E 8.00 6.00 4.00 2.00 0.00	.00 10.00 20		0.00 50.00	60.00 7	0.00	
26 27 28 29 30 31 32 33 34 35 36 37	10.00 E 8.00 6.00 4.00 2.00 0.00	.00 10.00 20	0.00 30.00 40 Volume NaC		60.00 7	0.00	
26 27 28 29 30 31 32 33 34 35 36 37 38	10.00 E 8.00 6.00 4.00 2.00 0.00	.00 10.00 20			60.00 7	0.00	
26 27 28 29 30 31 32 33 34 35 36 37 38 39	10.00 E 8.00 6.00 4.00 2.00 0.00 0				60.00 7	0.00	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	10.00 E 8.00 6.00 4.00 2.00 0.00 0 Spreadsheet	Documentation	Volume NaC		60.00 7	0.00	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	10.00 E 8.00 6.00 4.00 2.00 0.00 0 Spreadsheet Cell B10=\$B\$4	Documentation *A10/(\$B\$2+A10)+	Volume NaC \$B\$5	DH, mL	60.00 7		
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	10.00 E 8.00 6.00 4.00 2.00 0.00 0 Spreadsheet Cell B10=\$B\$4 Cell C10=-\$B\$5	*A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4	Volume NaC \$B\$5 4*A10)/(\$B\$2+A10	DH, mL	60.00 7	0.00	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	10.00 E 8.00 6.00 4.00 2.00 0.00 0 Spreadsheet Cell B10=\$B\$4 Cell C10=-\$B\$5 Cell F10=(-B10	*A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4 +\$QRT(B10^2-4*C	Volume NaC \$B\$5 4*A10)/(\$B\$2+A10	DH, mL	60.00 7		
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	10.00 E 8.00 6.00 4.00 2.00 0.00 0 Spreadsheet Cell B10=\$B\$4 Cell C10=-\$B\$5 Cell F10=(-B10 Cell G10=-LOG	*A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4 +\$QRT(B10^2-4*C 6(F10)	Volume NaC \$B\$5 4*A10)/(\$B\$2+A1(10))/2	0 H, mL			
26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 37 38 39 40 41 42 43 44	10.00 E 8.00 6.00 4.00 2.00 0.00 0 Spreadsheet Cell B10=\$B\$4 Cell C10=-\$B\$5 Cell F10=(-B10 Cell G10=-LOG Cell F14=SQRT	Documentation *A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4 +\$QRT(B10^2-4*C 6(F10) T((\$B\$6*\$B\$3*\$B\$2	Volume NaC \$B\$5 4*A10)/(\$B\$2+A10 10))/2 //(\$B\$2+A14)+\$B\$	0) 57)/(1+\$B\$3*\$			
26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 39 40 41 42 43 44 45 46	10.00 E 8.00 6.00 4.00 2.00 0.00 0 Spreadsheet Cell B10=\$B\$4 Cell C10=-\$B\$5 Cell F10=(-B10 Cell G10=-LOG Cell F14=\$QRT Cell B15=(\$B\$4	*A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4 +\$QRT(B10^2-4*C 6(F10)	Volume NaC \$B\$5 4*A10)/(\$B\$2+A10 10))/2 /(\$B\$2+A14)+\$B\$ /(\$B\$2+A15)+\$B\$	DH, mL			
26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 39 40 41 42 43 44 45 46 47	10.00 E 10.00 5,00 4.00 2.00 0.00 0.00 0 5,00 0.00 0 5,00 0.00 0 5,00 0.00 0 0 5,00 0.00 0 0 0 0 0 0 0 0 0 0 0 0	Documentation *A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4 +\$QRT(B10^2-4*C 6(F10) T((\$B\$6*\$B\$3*\$B\$2) 4*A15-\$B\$3*\$B\$2)	Volume NaC \$B\$5 4*A10)/(\$B\$2+A10 10))/2 2/(\$B\$2+A14)+\$B\$ /(\$B\$2+A15)+\$B\$ 1\$4*A15)/(\$B\$2+A	DH, mL			
26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 39 40 41 42 43 44 45 46 47 48	10.00 E 10.00 E 8.00 6.00 4.00 2.00 0.00 0 0 0 0 0 0 0 0 0 0 0 0	Documentation *A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4 +\$QRT(B10^2-4*C 6(F10) 7((\$B\$6*\$B\$3*\$B\$2)) 6*(2*\$B\$3*\$B\$2-\$B	Volume NaC \$B\$5 4*A10)/(\$B\$2+A10 10))/2 2/(\$B\$2+A14)+\$B\$ /(\$B\$2+A15)+\$B\$ 1\$4*A15)/(\$B\$2+A 15))/2	DH, mL D) 67)/(1+\$B\$3*\$ 6 .15)			
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	10.00 E 8.00 6.00 4.00 2.00 0.00 0 5preadsheet Cell B10=\$B\$4 Cell C10=-\$B\$5 Cell F10=(-B10 Cell G10=-LOG Cell F10=(-B15 Cell B15=(\$B\$- Cell B15=(\$C\$- Cell B1	Documentation *A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4 +\$QRT(B10^2-4*C 6(F10) 7((\$B\$6*\$B\$3*\$B\$2)) 6*(2*\$B\$3*\$B\$2) 6*(2*\$B\$3*\$B\$2-\$B +\$QRT(B15^2-4*C	Volume NaC \$B\$5 4*A10)/(\$B\$2+A10 10))/2 2/(\$B\$2+A14)+\$B\$ /(\$B\$2+A15)+\$B\$ 1\$4*A15)/(\$B\$2+A 15))/2 2)/(\$B\$2+A19)+\$E	DH, mL D) 67)/(1+\$B\$3*\$ 6 .15)			
26 27 28 29 30 31 32 33 4 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	10.00 E 8.00 6.00 4.00 2.00 0.00 0 5preadsheet Cell B10=\$B\$4 Cell C10=-\$B\$5 Cell F10=(-B10 Cell G10=-LOG Cell F10=(-B15 Cell B15=(\$B\$- Cell C15=-\$B\$- Cell C15=-\$B\$- Cell C15=-\$B\$- Cell C15=-\$B\$- Cell C15=-\$B\$- Cell C15=-\$B\$- Cell C15=-\$B\$- Cell C15=-\$B\$- Cell C15=-\$B\$- Cell C15=-\$C\$- Cell C1	Documentation *A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4 ++\$QRT(B10^2-4*C 6(F10) r((\$B\$6*\$B\$3*\$B\$2)) 6*(2*\$B\$3*\$B\$2-\$B ++\$QRT(B15^2-4*C 4*A19-2*\$B\$3*\$B\$2	Volume NaC \$B\$5 4*A10)/(\$B\$2+A10 10))/2 2/(\$B\$2+A14)+\$B\$ (\$B\$2+A15)+\$B\$ (\$B\$2+A15)/(\$B\$2+A 15))/2 2)/(\$B\$2+A19)+\$E 3*(\$B\$2+A19))	DH, mL D) 67)/(1+\$B\$3*\$ 6 .15)			
26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	10.00 E 10.00 10.00 5.00 4.00 2.00 0.00 0.00 0 5.00 0.00 0 5.00 0.00 0 5.00 0.00 0 5.00 0 0 0 0 0 0 0 0 0	Documentation *A10/(\$B\$2+A10)+ 5*(\$B\$3*\$B\$2-\$B\$4 ++\$QRT(B10^2-4*C 6(F10) T((\$B\$6*\$B\$3*\$B\$2)) 6*(2*\$B\$3*\$B\$2) 6*(2*\$B\$3*\$B\$2-\$B ++\$QRT(B15^2-4*C 4*A19-2*\$B\$3*\$B\$2/(\$B\$6	Volume NaC \$B\$5 4*A10)/(\$B\$2+A10 10))/2 2/(\$B\$2+A14)+\$B\$ (\$B\$2+A15)+\$B\$ (\$B\$2+A15)+\$B\$ (\$B\$2+A15)/(\$B\$2+A 15))/2 2)/(\$B\$2+A19)+\$E 3*(\$B\$2+A19)) 19))/2	DH, mL D) 67)/(1+\$B\$3*\$ 6 115) 3\$7/\$B\$6			

-	A	В	C	D	E	F	G
1	Pb 15-29(b)						
2	V1H2NC2H4NH2	50.00					
3	c1H2NC2H4NH2	0.1000					
4	c ₁ HCI	0.2000					
-							
5	Ka1 for H2NC2H4NH3						
6	Ka2 for H2NC2H4NH3						
7	K _w	1.00E-14					
8							
9	V _{HCI} , mL	b in quadrati	c in quadratic	[H ₂ NC ₂ H ₄ NH ₂]	[OH]	[H ₃ O ⁺]	pH
10	0.00	8.4746E-05	-8.4746E-06		2.8690E-03	3.4855E-12	11.46
11	12.50	4.0085E-02	-3.3898E-06		8.4389E-05	1.1850E-10	9.93
12	20.00	5.7228E-02	-1.2107E-06		2.1147E-05	4.7287E-10	9.33
13	24.00	6.4950E-02	-2.2904E-07		3.5263E-06	2.8359E-09	8.55
14	25.00					4.0960E-09	8.39
15	26.00	2.6316E-03	-4.4477E-09		1.6890E-06	5.9206E-09	8.23
16	37.50	2.8571E-02	-2.0121E-09		7.0422E-08	1.4200E-07	6.85
17	45.00	4.2105E-02	-7.4129E-10		1.7606E-08	5.6800E-07	6.25
18	49.00	4.8485E-02	-1.4227E-10		2.9343E-09	3.4080E-06	5.47
19	50.00	1.4200E-07	-7.1000E-09	8.4191E-05		8.4191E-05	4.07
20	51.00	1.9803E-03	-7.0297E-09	3.5434E-06		1.9837E-03	2.70
21	60.00	1.8182E-02	-6.4545E-09	3.5499E-07		1.8182E-02	1.74
22							
23	14.00						
24							
25	12.00						
25 26		-					
25 26 27	12.00 -	-	~				
25 26 27 28	10.00 - 8.00 -	-	-				
25 26 27 28 29	10.00 - 8.00 -		N 0	— .			
25 26 27 28 29 30	10.00 -		80				
25 26 27 28 29 30 31	10.00 - E 8.00 - E 6.00 -	***	**				
25 26 27 28 29 30 31 32	10.00 - 8.00 -	***	**	n a g			
25 26 27 28 29 30 31 32 33	10.00 - E 8.00 - 6.00 - 4.00 -	*	100				
25 26 27 28 29 30 31 32 33 33 34	10.00 - E 8.00 - E 6.00 -	*	100	- a a	•		
25 26 27 28 29 30 31 32 33 33 34 35	10.00 - E 8.00 - 6.00 - 4.00 -	-••	***		•		
25 26 27 28 29 30 31 32 33 34 35 36	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00 -	10.00 20.00	0 30.00	40.00 50.00	60.00	70.00	
25 26 27 28 29 30 31 32 33 34 35 36 37	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00 -	10.00 20.00			60.00	70.00	
25 26 27 28 29 30 31 32 33 34 35 36 37 38	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00 -	, , , , , , , , , , , , , , , , , , ,	0 30.00 Volume He		60.00	70.00	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00 -				60.00	70.00	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00 - 0.00 - Spreadsheet Docur	nentation	Volume H		60.00	70.00	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00 - 0.00 - 0.00 - 0.00 - 5preadsheet Docur Cell B10=\$B\$4*A10	nentation /(\$B\$2+A10)	Volume H +\$B\$7/\$B\$6	Cl, mL	60.00	70.00	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00	nentation /(\$B\$2+A10) \$6*(\$B\$3*\$B	Volume H +\$B\$7/\$B\$6 \$2-\$B\$4*A10)	Cl, mL	60.00	70.00	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00	mentation /(\$B\$2+A10) \$6*(\$B\$3*\$B RT(B10^2-4*	Volume H +\$B\$7/\$B\$6 \$2-\$B\$4*A10)	Cl, mL	60.00	70.00	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00	mentation /(\$B\$2+A10) 56*(\$B\$3*\$B RT(B10^2-4*	Volume H +\$B\$7/\$B\$6 \$2-\$B\$4*A10)	Cl, mL	60.00	70.00	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	10.00 - 8.00 - 6.00 - 4.00 - 2.00 - 0.00	mentation /(\$B\$2+A10) 56*(\$B\$3*\$B RT(B10^2-4*)	Volume H +\$B\$7/\$B\$6 \$2-\$B\$4*A10) C10))/2	C l, mL /(\$B\$2+A10)			
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	10.00 8.00 6.00 4.00 2.00 0.00 0.00 0.00 5 5 5 5 5 5 5 5 5 5 5 5 5	mentation /(\$B\$2+A10) \$6*(\$B\$3*\$B RT(B10^2-4*) \$6*\$B\$2*\$B	Volume He +\$B\$7/\$B\$6 \$2-\$B\$4*A10) C10))/2 \$3/(\$B\$2+A14	Cl, mL /(\$B\$2+A10))+\$B\$7)/(1+\$E			5))
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	10.00 8.00 6.00 4.00 2.00 0.00 0.00 0.00 5 5 5 5 5 5 5 5 5 5 5 5 5	mentation /(\$B\$2+A10) \$6*(\$B\$3*\$B RT(B10^2-4*) \$6*\$B\$2*\$B 9-2*\$B\$3*\$B	Volume He +\$B\$7/\$B\$6 \$2-\$B\$4*A10) C10))/2 \$3/(\$B\$2+A14 \$2)/(\$B\$2+A14	Cl, mL /(\$B\$2+A10))+\$B\$7)/(1+\$E			5))
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	10.00 8.00 6.00 4.00 2.00 0.00 0.00 5 5 5 5 5 5 5 5 5 5 5 5 5	mentation /(\$B\$2+A10) \$6*(\$B\$3*\$B RT(B10^2-4*) \$6*\$B\$2*\$B 9-2*\$B\$3*\$B \$3*\$B\$2/(\$B	Volume H +\$B\$7/\$B\$6 \$2-\$B\$4*A10) C10))/2 \$3/(\$B\$2+A14 \$2)/(\$B\$2+A14 \$2)/(\$B\$2+A19)	Cl, mL /(\$B\$2+A10))+\$B\$7)/(1+\$E			5))
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	10.00 8.00 6.00 4.00 2.00 0.00 0.00 0.00 5 5 5 5 5 5 5 5 5 5 5 5 5	mentation /(\$B\$2+A10) \$6*(\$B\$3*\$B RT(B10^2-4*) \$6*\$B\$2*\$B 9-2*\$B\$3*\$B \$3*\$B\$2/(\$B RT(B19^2-4*	Volume H +\$B\$7/\$B\$6 \$2-\$B\$4*A10) C10))/2 \$3/(\$B\$2+A14 \$2)/(\$B\$2+A14 \$2)/(\$B\$2+A19) C19))/2	C l, mL /(\$B\$2+A10))+\$B\$7)/(1+\$E 9)+\$B\$5			5))

2 1 3 6 4 6 5 <i>H</i> 6 <i>H</i> 7 <i>H</i> 9 1 10 11 12 13	Pb15-29(c) V ₁ H ₂ SO ₄ c ₁ H ₂ SO ₄ c ₁ NaOH K _{s1} for H ₂ SO ₄ K _{s2} for H ₂ SO ₄ K _w V _{NaOH} , mL	50.00 0.1000 0.2000 1.02E-02					
3 0 4 0 5 <i>H</i> 6 <i>H</i> 7 <i>H</i> 9 1 10 11 12 13	с ₁ H ₂ SO ₄ с ₁ NaOH К _{а1} for H ₂ SO ₄ К _{а2} for H ₂ SO ₄ К _w V _{NaOH} , mL	0.1000 0.2000 1.02E-02					
4 0 5 / 6 / 7 / 9 1 10 11 12 13	с ₁ NaOH K _{a1} for H ₂ SO ₄ K _{s2} for H ₂ SO ₄ K _w V _{NaOH} , mL	0.2000 1.02E-02					
4 0 5 / 6 / 7 / 9 1 10 11 12 13	с ₁ NaOH K _{a1} for H ₂ SO ₄ K _{s2} for H ₂ SO ₄ K _w V _{NaOH} , mL	0.2000 1.02E-02					
5 / 6 / 7 / 9 \ 0 1 2 3	K _{a1} for H ₂ SO ₄ K _{a2} for H ₂ SO ₄ K _w V _{NaOH} , mL	1.02E-02					
6 / 7 / 9 \ 0 1 2 3	К _{а2} for H ₂ SO ₄ К _w V _{NaOH} , mL						
7 / 9 1 10 11 12 13	K _w V _{NaOH} , mL		-				
9 1 10 11 12 13	V _{NaOH} , mL						
10 11 12 13		1.00E-14					
11 12 13			c in quadratic	[SO ₃ ²]	[OH ⁻]	[H₃O⁺]	pН
12 13		-8.9800E-02	-2.0400E-03			1.0859E-01	0.96
13	12.50		-8.1600E-04			5.2926E-02	1.28
-	20.00	2.4486E-02	-7.2857E-04			3.1682E-02	1.50
	24.00	1.2903E-02 1.0200E-02	-6.8919E-04 -6.8000E-04			2.3285E-02 2.1471E-02	1.63
14 15	25.00 26.00	1.2832E-02	-6.4421E-04			1.9764E-02	1.70
16	37.50	3.8771E-02	-2.9143E-04			6.4452E-02	2.19
17	45.00		-1.0737E-04			1.9779E-03	2.19
18	49.00		-2.0606E-05			3.4905E-04	3.46
19	50.00	9.8039E-13	-4.9020E-14	2.21403E-07	2.2140E-07	4.5166E-08	7.35
20	51.00	1.9802E-03	-4.8534E-14	2.45098E-11		5.0500E-12	11.30
21	60.00	1.8182E-02	-4.4563E-14	2.45098E-12		5.5000E-12	12.26
22							
23							
24	14.00						
25							
26	12.00 -				-		
27					r		
28	10.00 -				1		
29							
30	8.00 -						
31	표				¢	-	
32	6.00 -					_	
33							
34	4.00 -				1	-	
				9	á		
35	-			-		-	
36	-					-	
36 37	2.00 -		-0-000	-0			
36 37 38	2.00 -	8	0-000				
36 37 38 39	2.00 - 8	8	-8-600				
36 37 38 39 40	2.00 -	10.00	20.00 30.00		0.00 60.00	70.00	
36 37 38 39 40 41	2.00 - 8	10.00		40.00 50 NaOH, mL	0.00 60.00	70.00	
36 37 38 39 40 41 42	2.00 - 0.00 - 0.00		Volume		0.00 60.00	70.00	
36 37 38 39 40 41 42 43	2.00 - 0.00 - 0.00	t Documentat	Volume		0.00 60.00	70.00	
36 37 38 39 40 41 42 43 43 44	2.00 -	t Documentat iB\$6	Volume		0.00 60.00	70.00	
36 37 38 39 40 41 42 43 44 45 6	2.00 - 0.00 - 0.00 Spreadsheet CellB10=-B3+\$ CellC10=-\$B\$6	t Documentat iB\$6 i*2*B3	Volume	NaOH, mL	0.00 60.00	70.00	
36 37 38 39 40 41 42 43 44 45 45 46 46	2.00 - 0.00 - 0.00 - Spreadsheet CellB10=-B3+\$ CellC10=-\$B\$6 CellB11=(\$B\$2	t Documentat iB\$6 i*2*B3	Volume tion \11)/(\$B\$2+A11	NaOH, mL	0.00 60.00	70.00	
36 37 38 39 40 41 42 43 44 45 46 47	2.00 - 0.00 - 0.00 - Spreadsheet CellB10=-B3+\$ CellC10=-\$B\$6 CellB11=(\$B\$2 CellC11=-\$B\$6	t Documentat 88\$6 8*2*83 2*\$8\$3-\$8\$4*A **(\$8\$3*\$8\$2)/	Volume tion (\$8\$2+A11)/(\$8\$2+A11)	NaOH, mL			
36 37 38 38 39 40 41 42 43 5 44 0 445 0 446 0 448 0	2.00 - 0.00 - 0.00 - Spreadsheet CellB10=-B3+\$ CellC10=-\$B\$6 CellB11=(\$B\$2 CellC11=-\$B\$6	t Documentat 58\$6 3*2*B3 2*\$B\$3-\$B\$4*A 3*(\$B\$3*\$B\$2)/ +\$QRT(B10*2	Volume tion (\$8\$2+A11)/(\$8\$2+A11)	NaOH, mL)+\$B\$6			
86 37 38 39 40 41 42 44 43 5 44 0 45 0 46 0 47 0 48 0 49 0	2.00 - 0.00 - 0.	t Documentat 58\$6 3*2*B3 2*\$B\$3-\$B\$4*A 3*(\$B\$3*\$B\$2)/ 0+\$QRT(B10*2 3(F10) 4*A14-\$B\$2*\$E	Volume tion (11)/(\$B\$2+A11 ((\$B\$2+A11) -4*C10))/2+(\$B\$ B\$3)/(\$B\$2+A14	NaOH, mL)+\$B\$6 \$2*\$B\$3-\$B\$4*/ 4)+\$B\$6			
36 37 38 39 40 41 42 44 43 5 444 0 445 0 446 0 447 0 448 0 449 0	2.00 - 0.00 - 0.	t Documentat 58\$6 3*2*B3 2*\$B\$3-\$B\$4*A 3*(\$B\$3*\$B\$2)/ 0+\$QRT(B10*2 3(F10) 4*A14-\$B\$2*\$E	Volume tion (11)/(\$B\$2+A11 (\$B\$2+A11) -4*C10))/2+(\$B\$	NaOH, mL)+\$B\$6 \$2*\$B\$3-\$B\$4*/ 4)+\$B\$6			
36 37 38 39 40 41 42 43 44 45 446 447 448 449 450 60 51 652	2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	t Documentat B\$6 **2*B3 **\$B\$3-\$B\$4*A **(\$B\$3*\$B\$2)/ 0+\$QRT(B10*2 G(F10) 4*A14-\$B\$2*\$E 6*(2*\$B\$2*\$B\$ +\$QRT(B14*2	Volume tion (\$11)/(\$B\$2+A11 (\$B\$2+A11) -4*C10))/2+(\$B\$ B\$3)/(\$B\$2+A14) (\$B\$2+A14)/(\$ -4*C14))/2	NaOH, mL)+\$B\$6 \$2*\$B\$3-\$B\$4*/ 4)+\$B\$6 \$B\$2+A14)	410)/(\$B\$2+A		
36 37 38 39 40 41 42 43 44 45 6 44 6 44 6 44 6 44 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8	2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	t Documentat 58\$6 **\$8\$3-\$8\$4*A **(\$8\$3*\$8\$2)/ 0+\$QRT(810^2- 6(F10) 4*A14-\$8\$2*\$8 6*(2*\$8\$2*\$8\$ 1+\$QRT(814^2- 4*A19-2*\$8\$3*	Volume tion (\$11)/(\$B\$2+A11) (\$B\$2+A11) -4*C10))/2+(\$B\$ B\$3)/(\$B\$2+A14) (\$B\$3)/(\$B\$2+A14)/(\$ -4*C14))/2 *\$B\$2)/(\$B\$2+A	NaOH, mL)+\$B\$6 \$2*\$B\$3-\$B\$4*/ 4)+\$B\$6 ;B\$2+A14) x19)+\$B\$7/\$B\$6	410)/(\$B\$2+A		
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	t Documentat B\$6 **2*B3 **\$B\$3-\$B\$4*A **(\$B\$3*\$B\$2)/ +*\$QRT(B10^2: \$0(F10) 4*A14-\$B\$2*\$B\$ 6*(2*\$B\$2*\$B\$ 4*A19-2*\$B\$3* 4*A19-2*\$B\$3* 7*\$B\$3*\$B\$2/(Volume tion (\$11)/(\$B\$2+A11 (\$B\$2+A11) -4*C10))/2+(\$B\$ B\$3)/(\$B\$2+A14)/(\$ -4*C14))/2 (\$B\$2)/(\$B\$2+A \$B\$6*(\$B\$2+A14)/(\$	NaOH, mL)+\$B\$6 \$2*\$B\$3-\$B\$4*/ 4)+\$B\$6 ;B\$2+A14) x19)+\$B\$7/\$B\$6	410)/(\$B\$2+A		
36 37 38 39 40 41 42 43 44 45 60 444 60 447 448 449 551 652 654 655	2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	t Documentat B\$6 **2*B3 **\$B\$3-\$B\$4*A **(\$B\$3*\$B\$2)/ +\$QRT(B10*2 G(F10) 4*A14-\$B\$2*\$E 6*(2*\$B\$2*\$B\$ 4*A19-2*\$B\$3* 4*A19-2*\$B\$3* 7*\$B\$3*\$B\$2/(9+\$QRT(B19*2)	Volume tion (\$11)/(\$B\$2+A11 (\$B\$2+A11) -4*C10))/2+(\$B\$ B\$3)/(\$B\$2+A14)/(\$ -4*C14))/2 *\$B\$2)/(\$B\$2+A \$B\$6*(\$B\$2+A1 \$B\$6*(\$B\$2+A1 -4*C19))/2	NaOH, mL)+\$B\$6 \$2*\$B\$3-\$B\$4*/ 4)+\$B\$6 \$B\$2+A14) \$19)+\$B\$7/\$B\$6 [9))	410)/(\$B\$2+A		
36 37 38 39 40 41 42 43 44 45 46 47 48 49 40 44 45 46 47 48 49 60 61 62 633 64 655	2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	t Documentat B\$6 **2*B3 **\$B\$3-\$B\$4*A **(\$B\$3*\$B\$2)/ +\$QRT(B10*2 G(F10) 4*A14-\$B\$2*\$E 6*(2*\$B\$2*\$B\$ 4*A19-2*\$B\$3* 4*A19-2*\$B\$3* 7*\$B\$3*\$B\$2/(9+\$QRT(B19*2)	Volume tion (\$11)/(\$B\$2+A11 (\$B\$2+A11) -4*C10))/2+(\$B\$ B\$3)/(\$B\$2+A14)/(\$ -4*C14))/2 (\$B\$2)/(\$B\$2+A \$B\$6*(\$B\$2+A14)/(\$	NaOH, mL)+\$B\$6 \$2*\$B\$3-\$B\$4*/ 4)+\$B\$6 \$B\$2+A14) \$19)+\$B\$7/\$B\$6 [9))	410)/(\$B\$2+A		

15-30. For **Problems 15-30 and 15-31** we set up spreadsheets that will solve a quadratic equation to determine $[H_3O^+]$ or $[OH^-]$, as needed (See approach taken for Problems 14-41 through 43). As an example consider the titration of a volume of a mixture (V_{iMix}) of a strong (SA) and weak (HA) acid with a strong base (B).

Before the 1st equivalence point:
$$[HA] = \frac{(c_{i HA}V_{iMix})}{(V_{i Mix} + V_B)} - [A^-]$$

and
$$[H_3O^+] = \frac{(V_{iMix}c_{SA} - c_{iB}V_B)}{(V_{iMix} + V_B)} + [A^-]$$

Substituting these expressions into the equilibrium expression for HA and rearranging gives

$$[\mathbf{A}^{-}]^{2} + \left(\frac{\left(V_{iMix}c_{SA} - c_{iB}V_{B}\right)}{\left(V_{iMix} + V_{B}\right)} + K_{a}\right)[\mathbf{A}^{-}] + \frac{-K_{a}\left(c_{iHA}V_{iMix}\right)}{\left(V_{iMix} + V_{B}\right)} = 0$$

From which $[A^-]$ is determined and $[H_3O^+]$ can be calculated.

From the 1st equivalence to before the 2nd equivalence point:

and

$$[HA] = \frac{\left(c_{i HA}V_{i Mix} - (c_{iB}V_{B} - V_{iMix}c_{iSA})\right)}{\left(V_{i Mix} + V_{B}\right)} - [H_{3}O^{+}]$$
$$[A^{-}] = \frac{\left(c_{i B}V_{B} - c_{iSA}V_{iMix}\right)}{\left(V_{i Mix} + V_{B}\right)} + [H_{3}O^{+}]$$

Substituting these expressions into the equilibrium expression for HA and rearranging gives

$$[H_{3}O^{+}]^{2} + \left(\frac{\left(c_{iB}V_{B} - c_{iSA}V_{iMix}\right)}{\left(V_{iMix} + V_{B}\right)} + K_{a}\right)[H_{3}O^{+}] + \frac{-K_{a}\left(c_{iHA}V_{iMix} - \left(c_{iB}V_{B} - V_{iMix}c_{iSA}\right)\right)}{\left(V_{iMix} + V_{B}\right)} = 0$$

From which $[H_3O^+]$ is directly determined by solving the quadratic.

At and after the 2nd equivalence point: $[A^-] = \frac{(c_{i HA}V_{iMix})}{(V_{i Mix} + V_B)} - [HA]$

and $[OH^{-}] = \frac{\left(c_{iB}V_{B} - c_{iHA}V_{iMix} - c_{iSA}V_{iMix}\right)}{\left(V_{iMix} + V_{B}\right)} + [HA]$

Substituting these expressions into the equilibrium expression for A⁻ and rearranging gives

$$[\mathrm{HA}]^{2} + \left(\frac{\left(c_{\mathrm{i}B}V_{\mathrm{B}} - c_{\mathrm{i}HA}V_{\mathrm{iMix}} - c_{\mathrm{i}SA}V_{\mathrm{iMix}}\right)}{\left(V_{\mathrm{i}Mix} + V_{\mathrm{B}}\right)} + \frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}\right)[\mathrm{HA}] + \frac{-K_{\mathrm{w}}\left(c_{\mathrm{i}HA}V_{\mathrm{iMix}}\right)}{K_{\mathrm{a}}\left(V_{\mathrm{i}Mix} + V_{\mathrm{B}}\right)} = 0$$

From which [HA] can be determined by solving the quadratic. Having [HA], allows $[OH^-]$ and $[H_3O^+]$ to be calculated. A similar approach is taken for the titration of a mixture of a strong and weak base with a strong acid.

Chapter 15

	A	В	С	D	E	F	G
1	Pb 15-30						
2	V ₁ Mixture	50.00					
3	c ₁ NaOH	0.1000					
4	C ₁ H ₂ NNH ₂	0.0800					
5	c ₁ HClO₄	0.2000					
6	K _a for H ₂ NNH ₂	1.05E-08			-		
7	Kw	1.00E-14					
8	Vol HClO4, mL	b in quadratic	c in quadratic	[OH]	[H₃O ⁺]	pH	
9	0.00	1.0000E-01				13.00	
10	10.00	5.0001E-02				12.70	
11	20.00	1.4287E-02				12.16	
12	24.00	2.7037E-03				11.43	
13	25.00	9.5238E-07				10.35	
14	26.00	2.6325E-03				9.25	
15	35.00	2.3530E-02				7.98	
16	44.00	4.0426E-02				6.70	
17	45.00	1.0500E-08		3.01242.00	2.1021E-05	4.68	
18	46.00	2.0833E-03			2.0835E-03	2.68	
19	50.00	1.0000E-02			1.0000E-02	2.00	
20	50.00	1.00002 02	4.20001 10		1.00002 02	2.00	
21	14.00 -						
22	-		1.41. 19				
23	12.00 -						
24	10.00		7				
25	10.00 -		T				
26	8.00 -			-			
27	I				1		
28	6.00 -)		
29							
30	4.00 -						
31	2.00 -				1		
32	2.00 -				-		
33	0.00						
34	0.0	00 10.00	20.00 30	.00 40.00	50.00	60.00	
35				10000000	20.00		
36			Volume H	HOO_4 , mL			
37							
	Spreadsheet Do	ocumentation					
	Cell B9=(\$B\$2*		(\$B\$2+A9)+\$B	\$7/\$8\$6			
	Cell C9=-(\$B\$7/						
41					(\$B\$2+A9)		
	Cell E9=\$B\$7/D)).2 (0002 00		(0002 710)		
	Cell F9=-LOG(E						
	Cell B13=(\$B\$5		3)/(\$B\$2+A13)-	+(\$8\$7/\$8\$6			
	Cell C13=-(\$B\$)					3)	
	Cell D13=(-B13-		and a local sector of the sect				
				(\$B\$2+417)+	\$B\$6		
	Cell H17=05H55						
47	Cell B17=(\$B\$5 Cell C17=-(\$B\$			(0002.7717).	4040		

1	A	B	C	D	E	F	G
1	Pb15-31		_	_	_		
2	V ₁ Mixture	50.00					
3	c1HCIO4	0.1000					
4	c ₁ HCOOH	0.0800					
5	c ₁ KOH	0.2000					
6	K _a for HCOOH	1.80E-04					
7	Kw	1.00E-14					
8	VKOH, ML	b in quadratic	c in quadratic	[OH]	[H₃O ⁺]	pH	
9	0.00	1.0018E-01	-1.4400E-05		1.0014E-01	1.00	
10	10.00	5.0180E-02			5.0238E-02	1.30	
11	20.00	1.4466E-02			1.4965E-02	1.82	
12	24.00	2.8827E-03			4.6975E-03	2.33	
13	25.00	1.8000E-04			3.0097E-03	2.52	
14	26.00	2.8116E-03			1.9073E-03	2.72	
15	35.00	2.3709E-02			1.7731E-04	3.75	
16	44.00	4.0606E-02	-3.8298E-07		9.4295E-06	5.03	
17	45.00	5.5556E-11		1.5294E-06		8.18	
18	46.00	2.0833E-03				11.32	
19	50.00	1.0000E-02				12.00	
20							
21	14.00						
22	10100000					-	
1							
	12.00 -				-	-	
23					ſ	-	
23 24	12.00 -				ſ	-	
23 24 25	10.00 -				ſ		
23 24 25 26	10.00 - 				ſ		
23 24 25 26 27	10.00 -				ſ		
23 24 25 26 27 28	10.00 - 표 ^{8.00 -} 6.00 -				5		
23 24 25 26 27 28 29	10.00 - 				5		
23 24 25 26 27 28 29 30	10.00 - 표 ^{8.00 -} 6.00 - 4.00 -				5		
23 24 25 26 27 28 29 30 31	10.00 - 표 ^{8.00 -} 6.00 -				5		
23 24 25 26 27 28 29 30 31 32	10.00 - 표 ^{8.00} - 6.00 - 4.00 - 2.00 -				5		
23 24 25 26 27 28 29 30 31 32 33	10.00 - E 8.00 - 6.00 - 4.00 - 2.00 - 0.00 -	0 10.00	20.00 30.	00 40.00	50.00	60.00	
23 24 25 26 27 28 29 30 31 32 33 34	10.00 - 표 ^{8.00} - 6.00 - 4.00 - 2.00 -	0 10.00	States and States		50.00	60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35	10.00 - E 8.00 - 6.00 - 4.00 - 2.00 - 0.00 -	0 10.00	20.00 30. Volume		50.00	60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36	10.00 - E 8.00 - 6.00 - 4.00 - 2.00 - 0.00 -	0 10.00	States and States		50.00	60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	10.00 - E 8.00 - 6.00 - 4.00 - 2.00 - 0.00 - 0.00		States and States		50.00	60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	10.00 - E 8.00 - 6.00 - 4.00 - 2.00 - 0.00 - 0.00 - 0.00 - 0.00 -	ocumentaion	Volume I	KOH, mL	50.00	60.00	
23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 39	10.00 - E 8.00 - 6.00 - 4.00 - 2.00 - 0.00 - 0.00 0.00 Spreadsheet D Cell B9=(\$B\$2	ocumentaion *\$B\$3-\$B\$5*A9	Volume	KOH, mL	50.00	60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	10.00 - E 8.00 - 6.00 - 4.00 - 2.00 - 0.00 - 0.0	ocumentaion \$8\$3-\$8\$5*A9 *(\$8\$4*\$8\$2)/(Volume)/(\$B\$2+A9)+\$ \$B\$2+A9)	KOH, mL B\$6		60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	10.00 - E. 8.00 - 6.00 - 4.00 - 2.00 - 0.00 - 0.	ocumentaion *\$B\$3-\$B\$5*A9 *(\$B\$4*\$B\$2)/(\$QRT(B9^2-4*C	Volume)/(\$B\$2+A9)+\$ \$B\$2+A9)	KOH, mL B\$6		60.00	
23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 39 40 41 42	10.00 - E 8.00 - 6.00 - 4.00 - 2.00 - 0.00 - 0.0	ocumentaion *\$B\$3-\$B\$5*A9 *(\$B\$4*\$B\$2)/(3QRT(B9^2-4*C E9)	Volume 0)/(\$B\$2+A9)+\$ \$B\$2+A9) \$9))/2+(\$B\$2*\$E	KOH, mL B\$6 3\$3-\$B\$5*A9		60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	10.00 - E 8.00 - 6.00 - 4.00 - 2.00 - 0.00 - 0.0	ocumentaion *\$B\$3-\$B\$5*A9 *(\$B\$4*\$B\$2)/(3QRT(B9^2-4*C E9) 5*A13-\$B\$2*\$E	Volume)/(\$B\$2+A9)+\$ \$B\$2+A9) \$9))/2+(\$B\$2*\$E 3\$3)/(\$B\$2+A13	KOH, mL B\$6 3\$3-\$B\$5*A9)+\$B\$6	V(\$B\$2+A9)	60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 36 37 38 39 40 41 42 43 44	10.00 - E 8.00 - E 6.00 - 4.00 - 2.00 - 0.00 - 0.0	ocumentaion *\$B\$3-\$B\$5*A9 *(\$B\$4*\$B\$2)/(\$QRT(B9^2-4*C E9) 5*A13-\$B\$2*\$E 6*(\$B\$4*\$B\$2-	Volume 1)/(\$B\$2+A9)+\$1 \$B\$2+A9) :9))/2+(\$B\$2*\$E 3\$3)/(\$B\$2+A13 (\$B\$5*A13-\$B\$	KOH, mL B\$6 3\$3-\$B\$5*A9)+\$B\$6	V(\$B\$2+A9)	60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	10.00 - E 8.00 - E 6.00 - 4.00 - 2.00 - 0.00 - 0.0	ocumentaion \$B\$3-\$B\$5*A9 *(\$B\$4*\$B\$2)/(\$QRT(B9^2-4*C E9) 5*A13-\$B\$2*\$E 6*(\$B\$4*\$B\$2- +\$QRT(B13^2-	Volume 1)/(\$B\$2+A9)+\$1 \$B\$2+A9) :9))/2+(\$B\$2*\$E 3\$3)/(\$B\$2+A13 (\$B\$5*A13-\$B\$ -4*C13))/2	KOH, mL B\$6 3\$3-\$B\$5*A9 3)+\$B\$6 62*\$B\$3))/(\$B	V(\$B\$2+A9) \$2+A13)	60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 39 40 41 42 43 44 45 46	10.00 - E 8.00 - E 6.00 - 4.00 - 2.00 - 0.00 - 0.0	ocumentaion \$B\$3-\$B\$5*A9 *(\$B\$4*\$B\$2)/(QRT(B9^2-4*C E9) 5*A13-\$B\$2*\$E 6*(\$B\$4*\$B\$2- +\$QRT(B13^2- 5*A17-\$B\$3*\$E	Volume 1 9)/(\$B\$2+A9)+\$1 \$B\$2+A9) 9))/2+(\$B\$2*\$E 3\$3)/(\$B\$2+A13 (\$B\$5*A13-\$B\$ -4*C13))/2 3\$2-\$B\$2*\$B\$4	KOH, mL B\$6 3\$3-\$B\$5*A9 3)+\$B\$6 52*\$B\$3))/(\$B)/(\$B\$2+A17)	V(\$B\$2+A9) \$2+A13)	60.00	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	10.00 - E 8.00 - E 6.00 - 4.00 - 2.00 - 0.00 - 0.0	ocumentaion \$B\$3-\$B\$5*A9 *(\$B\$4*\$B\$2)/(QRT(B9^2-4*C E9) 5*A13-\$B\$2*\$E 6*(\$B\$4*\$B\$2- 8+SQRT(B13^2- 5*A17-\$B\$3*\$E 67/\$B\$6)*(\$B\$4	Volume 1 9)/(\$B\$2+A9)+\$1 \$B\$2+A9) (\$9))/2+(\$B\$2*\$E 1\$3)/(\$B\$2+A13 (\$B\$5*A13-\$B\$ 4*C13))/2 1\$2-\$B\$2*\$B\$4 *\$B\$2)/(\$B\$2+	KOH, mL B\$6 3\$3-\$B\$5*A9 9)+\$B\$6 52*\$B\$3))/(\$E)/(\$B\$2+A17) A17)	/(\$B\$2+A9) \$2+A13) +\$B\$7/\$B\$6		22+ 417

15-32. (a)
$$2H_2AsO_4^- \rightleftharpoons H_3AsO_4 + HAsO_4^{2-}$$

 $K_{a1} = \frac{[H_3O^+][H_2AsO_4^-]}{[H_3AsO_4]} = 5.8 \times 10^{-3}$ (1)
 $K_{a2} = \frac{[H_3O^+][HAsO_4^{2-}]}{[H_2AsO_4^-]} = 1.1 \times 10^{-7}$ (2)

$$K_{a3} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{AsO}_{4}^{3-}]}{[\mathrm{HAsO}_{4}^{2^{-}}]} = 3.2 \times 10^{-12}$$
(3)

Dividing Equation (2) by Equation (1) leads to

$$\frac{K_{a2}}{K_{a1}} = \frac{[H_3AsO_4][HAsO_4^{2-}]}{[H_2AsO_4^{-}]^2} = 1.9 \times 10^{-5}$$

which is the desired equilibrium constant expression.

(**b**)
$$2\text{HAsO}_4^{2-} \rightleftharpoons \text{AsO}_4^{3-} + \text{H}_2\text{AsO}_4^{-}$$

Here we divide Equation (3) by Equation (2)

$$\frac{K_{a3}}{K_{a2}} = \frac{[\text{AsO}_4^{3^-}][\text{H}_2\text{AsO}_4^{-}]}{[\text{HAsO}_4^{2^-}]^2} = 2.9 \times 10^{-5}$$

15-33. $HOAc + H_2O \rightleftharpoons H_3O^+ + OAc^ K_{HOAc} = 1.75 \times 10^{-5}$

$$\mathrm{NH_4^+} + \mathrm{H_2O} \rightleftharpoons \mathrm{H_3O^+} + \mathrm{NH_3}$$
 $K_{\mathrm{NH_4^+}} = 5.70 \times 10^{-10}$

Subtracting the first reaction from the second and rearranging gives

$$NH_4^+ + OAc^- \rightleftharpoons NH_3 + HOAc \qquad K = K_{NH_4^+}/K_{HOAc}$$

$$\frac{[\text{NH}_3][\text{HOAc}]}{[\text{NH}_4^+][\text{OAc}^-]} = \frac{5.70 \times 10^{-10}}{1.75 \times 10^{-5}} = 3.26 \times 10^{-5}$$

1			C	D	E	F	G	H	L. L.	J	K
	Pb15-34										
2	Part/Acid	pH	[H ₃ O ⁺]	Kat	K _{a2}	K _{a3}	a o	α1	<i>a</i> ₂	<i>a</i> 3	Alpha sum
3	(a)	2.00	1.00E-02	1.12E-03	3.91E-06		0.899	0.101	3.94E-05		1.0000000
4	phthallic	6.00	1.00E-06				1.82E-04	0.204	7.96E-01		1.0000000
5		10.00	1.00E-10				2.28E-12	2.56E-05	1.00E+00		1.0000000
6	(b)	2.00	1.00E-02	7.11E-03	6.32E-08	4.50E-13	0.584	0.416	2.63E-06	1.18E-16	1.0000000
7	phosphoric	6.00	1.00E-06				1.32E-04	0.940	5.94E-02	2.67E-08	1.0000000
8	1 Cr -	10.00	1.00E-10				2.21E-11	1.57E-03	9.94E-01	4.47E-03	1.0000000
9	(c)	2.00	1.00E-02	7.45E-04	1.73E-05	4.02E-07	0.931	6.93E-02	1.20E-04	4.82E-09	1.0000000
10		6.00	1.00E-06				5.31E-05	3.96E-02	6.85E-01	2.75E-01	1.0000000
11		10.00	1.00E-10				1.93E-16	1.44E-09	2.49E-04	1.000	1.0000000
12	(d)	2.00	1.00E-02	5.80E-03	1.10E-07	3.20E-12	0.633	0.367	4.04E-06	1.29E-15	1.0000000
13		6.00	1.00E-06				1.55E-04	0.901	9.91E-02	3.17E-07	1.0000000
14		10.00	1.00E-10				1.52E-11	8.80E-04	9.68E-01	3.10E-02	1.0000000
15	(e)	2.00	1.00E-02	3.0E-02	1.62E-07		0.250	0.750	1.21E-05		1.0000000
16	phosphorous	6.00	1.00E-06				2.87E-05	0.861	1.39E-01		1.0000000
17		10.00	1.00E-10				2.06E-12	6.17E-04	0.999		1.0000000
18	(f)	2.00	1.00E-02	5.60E-02	5.42E-05		0.151	0.845	4.58E-03		1.0000000
19	oxalic	6.00	1.00E-06				3.23E-07	0.018	9.82E-01		1.0000000
20		10.00	1.00E-10				3.29E-15	1.85E-06	1.000		1.0000000
21											
22	Spreadsheet	Docume	ntation								
23	Cell C3=10^(-E	B3)									
24	Cell G3=\$C3^	2/(\$C3^2+	\$D\$3*\$C3+\$	\$D\$3*\$E\$3)							
25	Cell H3=\$C3*	\$D\$3/(\$C3	3^2+\$D\$3*\$C	C3+\$D\$3*\$E	E\$3)						
26	Cell I3=\$D\$3*		3^2+\$D\$3*\$(C3+\$D\$3*\$E	E\$3)						
27											
	Cell G6=\$C6^										
29	Cell H6=\$D\$6	*\$C6^2/(\$	C6^3+\$D\$6*	\$C6^2+\$D\$	6*\$E\$6*\$C	6+\$D\$6*\$E	\$6*\$F\$6)				
30	Cell I6=\$D\$6*	\$E\$6*\$C6	/(\$C6^3+\$D	\$6*\$C6^2+\$	D\$6*\$E\$6*	\$C6+\$D\$6*	\$E\$6*\$F\$6	j)			
31	Cell J6=\$D\$6*	\$E\$6*\$F\$	6/(\$C6^3+\$	D\$6*\$C6^2+	-\$D\$6*\$E\$6	5*\$C6+\$D\$	6*\$E\$6*\$F\$	\$6)			

15-35. Let $H_3A = H_3AsO_4$. We can then write

$$K_{a1} = \frac{[H_{3}O^{+}][H_{2}A^{-}]}{[H_{3}A]} (1) \qquad K_{a2} = \frac{[H_{3}O^{+}][HA^{2-}]}{[H_{2}A^{-}]} \qquad K_{a3} = \frac{[H_{3}O^{+}][A^{3-}]}{[HA^{-}]} \\ K_{a1}K_{a2} = \frac{[H_{3}O^{+}]^{2}[HA^{2-}]}{[H_{3}A]} (2) \qquad K_{a1}K_{a2}K_{a3} = \frac{[H_{3}O^{+}]^{3}[A^{3-}]}{[H_{3}A]} (3)$$

By definition

$$\alpha_0 = \frac{[H_3A]}{c_T} \qquad \alpha_1 = \frac{[H_2A^-]}{c_T} \qquad \alpha_2 = \frac{[HA^{2-}]}{c_T} \qquad \alpha_3 = \frac{[A^{3-}]}{c_T}$$

where $c_{\rm T} = [{\rm H}_3{\rm A}] + [{\rm H}_2{\rm A}^-] + [{\rm H}{\rm A}^{2-}] + [{\rm A}^{3-}]$ (4)

Substituting Equations (1), (2), and (3) into (4) yields

$$c_{\rm T} = [{\rm H}_{3}{\rm A}] + \frac{K_{\rm a1}[{\rm H}_{3}{\rm A}]}{[{\rm H}_{3}{\rm O}^{+}]} + \frac{K_{\rm a1}K_{\rm a2}[{\rm H}_{3}{\rm A}]}{[{\rm H}_{3}{\rm O}^{+}]^{2}} + \frac{K_{\rm a1}K_{\rm a2}K_{\rm a3}[{\rm H}_{3}{\rm A}]}{[{\rm H}_{3}{\rm O}^{+}]^{3}}$$
$$\frac{c_{\rm T}}{[{\rm H}_{3}{\rm A}]} = 1 + \frac{K_{\rm a1}}{[{\rm H}_{3}{\rm O}^{+}]} + \frac{K_{\rm a1}K_{\rm a2}}{[{\rm H}_{3}{\rm O}^{+}]^{2}} + \frac{K_{\rm a1}K_{\rm a2}K_{\rm a3}}{[{\rm H}_{3}{\rm O}^{+}]^{3}}$$

Multiplying the numerator and denominator of the right side of this equation by $[H_3O^+]^3$ gives

$$\frac{c_{\rm T}}{[{\rm H}_{3}{\rm A}]} = \frac{[{\rm H}_{3}{\rm O}^{+}]^{3} + K_{\rm a1}[{\rm H}_{3}{\rm O}^{+}]^{2} + K_{\rm a1}K_{\rm a2}[{\rm H}_{3}{\rm O}^{+}] + K_{\rm a1}K_{\rm a2}K_{\rm a3}}{[{\rm H}_{3}{\rm O}^{+}]^{3}}$$

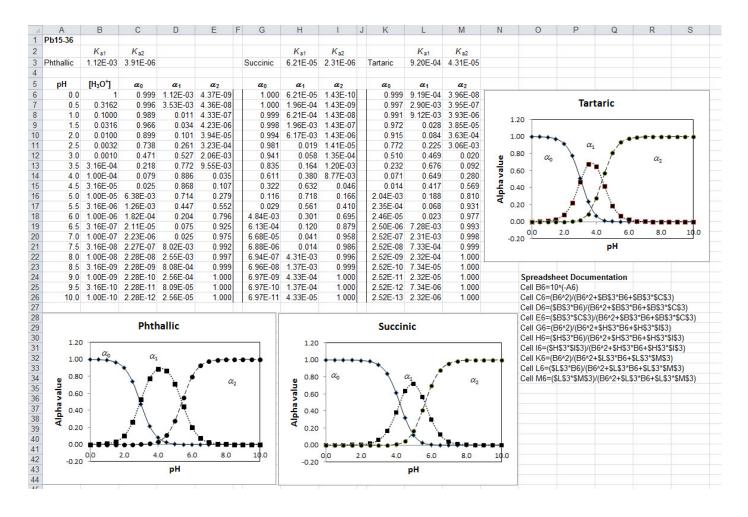
Letting $D = [H_3O^+]^3 + K_{a1}[H_3O^+]^2 + K_{a1}K_{a2}[H_3O^+] + K_{a1}K_{a2}K_{a3}$ (5)

Gives

$$\frac{c_{\rm T}}{[{\rm H}_{3}{\rm A}]} = \frac{D}{[{\rm H}_{3}{\rm O}^{+}]^{3}}$$
$$\frac{[{\rm H}_{3}{\rm A}]}{c_{\rm T}} = \frac{[{\rm H}_{3}{\rm O}^{+}]^{3}}{D} = \alpha_{0} \qquad (6)$$

Substitutation Equation (1) into (6) gives

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}_{2}\mathrm{A}^{-}]}{K_{\mathrm{al}}c_{\mathrm{T}}} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{3}}{D}$$
$$\frac{[\mathrm{H}_{2}\mathrm{A}^{-}]}{c_{\mathrm{T}}} = \frac{K_{\mathrm{a2}}[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}}{D} = \alpha_{1}$$


In the same way, substituting Equation (2) into (6) gives after rearrangement

$$\frac{[\text{HA}^{2-}]}{c_{\text{T}}} = \frac{K_{a1}K_{a2}[\text{H}_{3}\text{O}^{+}]}{D} = \alpha_{2}$$

Likewise, substituting Equation (3) into (6) yields

Chapter 15

$$\frac{[A^{3-}]}{c_{\rm T}} = \frac{K_{\rm a1}K_{\rm a2}K_{\rm a3}}{D} = \alpha_3$$

15-37.

2	Pb15-37 Citric	K _{a1}	K _{a2}															
3 C 4 5 6 7	Citric		V															
4 5 6 7	Citric		A a2	K _{a3}				Kat	Ka2	K _{a3}								
5 6 7		7.45E-04	1.73E-05	4.02E-07			Arsenic	5.80E-03	1.10E-07	3.20E-12								
6 7																		
7	pH	[H₃O ⁺]	a	α1	α2	α3	a	α1	α2	α3								
	0.0	1.000	0.999	7.44E-04	1.29E-08	5.18E-15	0.994	5.77E-03	6.34E-10	2.03E-21								
0	0.5	0.316	0.998	2.35E-03	1.29E-07	1.63E-13	0.982	0.018	6.27E-09	6.34E-20								
0	1.0	0.100	0.993	7.39E-03	1.28E-06	5.14E-12	0.945	0.055	6.03E-08	1.93E-18								
9	1.5	0.032	0.977	0.023	1.26E-05	1.60E-10	0.845	0.155	5.39E-07	5.46E-17	Spreadsh	eet Docur	mentation					
10	2.0	0.010	0.931	0.069	1.20E-04	4.82E-09	0.633				Cell B6=1							
11	2.5	0.003	0.808		1.04E-03		0.353						+\$B\$3*B6/	2+\$B\$3*\$	C\$3*B6+\$E	3\$3*\$C\$3*	\$D\$3)	
12	3.0	0.001	0.569	0.424	7.33E-03	2.95E-06	0.147	0.853	9.38E-05	3.00E-13	Cell D6=\$	B\$3*B6^2	/(B6^3+\$B	63*B6^2+\$	B\$3*\$C\$3*	B6+\$B\$3*	\$C\$3*\$D\$3	5)
13	3.5	3.16E-04	0.287	0.676		4.70E-05	0.052										\$3*\$C\$3*\$	
14		1.00E-04	0.103	0.765		5.32E-04	0.017										\$B\$3*\$C\$3	
15		3.16E-05	0.027	0.626		4.36E-03	5.40E-03								3*B6+\$I\$3			
16		1.00E-05		0.355		0.025	1.70E-03								*\$J\$3*B6+			
17		3.16E-06		0.139		0.097	5.27E-04								\$I\$3*\$J\$3*			
18		1.00E-06		0.040		0.275	1.55E-04										3*\$J\$3*\$K\$	(3)
19		3.16E-07				0.555	4.04E-05			2.61E-06					2.0100.000	0 00 010		0)
20		1.00E-07				0.800	8.21E-06			1.68E-05								
21		3.16E-08			0.073	0.927	1.22E-06			7.86E-05								
22		1.00E-08			0.024	0.976	1.44E-07			2.93E-04								
23		3.16E-09				0.992	1.52E-08			9.83E-04								
24		1.00E-09				0.998		8.98E-03		3.16E-03								
25		3.16E-10				0.999		2.84E-03		9.99E-03								
26		1.00E-10				1.000		8.80E-04	0.968									
20		3.16E-11				1.000		2.61E-04	0.908									
28		1.00E-11				1.000		6.89E-05	0.758									
29		3.16E-12				1.000		1.43E-05	0.758	0.242								
30		1.00E-12				1.000		2.16E-06	0.497									
31		3.16E-13				1.000		2.10E-00 2.59E-07	0.238	0.762								
32		1.00E-13				1.000		2.59E-07 2.75E-08	0.090									
33		3.16E-14				1.000		2.81E-08										
34																		
	14.0	1.00E-14	1.93E-28	1.44E-17	2.49E-08	1.000	4.88E-22	2.83E-10	3.12E-03	0.997			-					
35				C14-1	_										_			
36				Citri	C						Ars	enic						
37	1.20)						1	.20									
38		ao							04						_			
39	1.00	++++	 α₁ 					1	.00	·		0 68		α3				
40	\$		• •··	Cl2				s		\		 A 	- · · ·	1				
41	0.80 values) -	1 . A	-		α_3		Alpha values	.80 -	∇T	Ch	`∎ ¥	05	X 🖌 🗌				
42	B 0.60		\ ₽	1.4	/				60	_ \	001	$\sqrt{1}$		7./				
43	0.60	-	V	V 14					.60 -	V		V		V.				
44	eude 0.40		■ \	A A				5	.40 -	A		Ā		7				
45	ح		1	A 1	`			A				11		1				
46	0.20) -	▲ \		4			0	.20 -			A 🗎		• ×				
47			- X						-	₹ ₹.		¥``	-	١.				
48	0.00		****	****					.00 + **	****	****	••••	1++f+					
49		0.0	2.0 4.0	6.0	8.0	10.0	12.0 14.	D	0.0	2.0	4.0 6	.0 8.0) 10.0	12.0	14.0		_	
50					рН							pH						
51					·													
52																		

Chapter 16

- **16-1**. Nitric acid is seldom used as a standard because it is an oxidizing agent and thus will react with reducible species in titration mixtures.
- **16-2.** Primary standard Na₂CO₃ can be obtained by heating primary standard grade NaHCO₃ for about an hour at 270°C to 300°C. The reaction is

$$2\text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{H}_2\text{O}(g) + \text{CO}_2(g)$$

- **16-3.** Carbon dioxide is not strongly bonded by water molecules, and thus is readily volatilized from aqueous solution by briefly boiling. On the other hand, HCl molecules are fully dissociated into H_3O^+ and Cl^- when dissolved in water. Neither the H_3O^+ nor the Cl^- species is volatile.
- 16-4. Near the equivalence point in the titration of Na₂CO₃, the solution contains a buffer made up of a high concentration of H₂CO₃ and a small amount of Na₂CO₃. Boiling removes the H₂CO₃ as CO₂, which causes the pH of the solution to rise sharply (see Figure 16-1). Then the change in pH, when titration is resumed, is much greater than it would otherwise be. Thus, a sharper end point results.
- 16-5. Let us consider the standardization of 40 mL of 0.010 M NaOH using KH(IO₃)₂,

 $\frac{0.010 \text{ mmol NaOH}}{\text{mL}} \times 40 \text{ mL NaOH} \times \frac{1 \text{ mmol KH}(\text{IO}_3)_2}{1 \text{ mmol NaOH}} \times \frac{390 \text{ g KH}(\text{IO}_3)_2}{1000 \text{ mmol}} = 0.16 \text{ g KH}(\text{IO}_3)_2$ Now using benzoic acid,

 $\frac{0.010 \text{ mmol NaOH}}{\text{mL}} \times 40 \text{ mL NaOH} \times \frac{1 \text{ mmol } C_6 \text{H}_5 \text{COOH}}{1 \text{ mmol NaOH}} \times \frac{122 \text{ g } C_6 \text{H}_5 \text{COOH}}{1000 \text{ mmol}} = 0.049 \text{ g } C_6 \text{H}_5 \text{COOH}$

The primary standard KH(IO₃)₂ is preferable because the relative mass measurement

error would be less with a 0.16 g sample of $KH(IO_3)_2$ as opposed to 0.049 g sample of benzoic acid. A second reason for preferring $KH(IO_3)_2$ is because it is a strong acid and benzoic acid is not. A smaller titration error occurs when using a strong acid as a primary standard and the choice of indicator is not critical.

- **16-6.** Unless a reducing agent is introduced into the H_2SO_4 prior to digestion, nitro-, azo- and azoxy- groups will be partially converted to N_2 or nitrogen oxides that are then lost by volatilization. Heterocyclic compounds containing nitrogen also yield low results in many instances because these compounds tend to be incompletely decomposed under the usual digestion procedure.
- **16-7.** If the sodium hydroxide solution is to be used for titrations with an acid-range indicator, the carbonate in the base solution will consume two analyte hydronium ions just as would the two hydroxides lost in the formation of Na₂CO₃.

16-8. (a)

 $\frac{0.200 \text{ mmol } \text{H}_2\text{SO}_4}{\text{mL}} \times 500.0 \text{ mL} \times \frac{98.08 \text{ g } \text{H}_2\text{SO}_4}{1000 \text{ mmol}} \times \frac{\text{mL reagent}}{1.1539 \text{ g reagent}} \times \frac{100 \text{ g reagent}}{21.8 \text{ g } \text{H}_2\text{SO}_4}$ = 39.0 mL reagent

Dilute 39.0 mL reagent to 500.0 mL total volume.

(b)

$$\frac{0.250 \text{ mmol NaOH}}{\text{mL}} \times 500.0 \text{ mL} \times \frac{39.997 \text{ g NaOH}}{1000 \text{ mmol}} = 5.0 \text{ g NaOH}$$

Dissolve 5.0 g NaOH in water and dilute to 500.0 mL total volume

(c)

$$\frac{0.07500 \text{ mmol } \text{Na}_2\text{CO}_3}{\text{mL}} \times 500.0 \text{ mL} \times \frac{105.989 \text{ g } \text{Na}_2\text{CO}_3}{1000 \text{ mmol}} = 3.97 \text{ g } \text{Na}_2\text{CO}_3$$

Dissolve 3.97 g Na₂CO₃ in water and dilute to 500.0 mL total volume.

16-9. (a)

$$\frac{0.10 \text{ mole KOH}}{L} \times 2.00 \text{ L} \times \frac{56.106 \text{ g KOH}}{\text{mole}} = 11 \text{ g KOH}$$

Dissolve 11 g KOH in water and dilute to 2.00 L total volume.

(b)

$$\frac{0.010 \text{ mole } Ba(OH)_2 \cdot 8H_2O}{L} \times 2.00 \text{ L} \times \frac{315.46 \text{ g } Ba(OH)_2 \cdot 8H_2O}{\text{mole}} = 6.3 \text{ g } Ba(OH)_2 \cdot 8H_2O$$

Dissolve $6.3 \text{ g Ba}(\text{OH})_2 \cdot 8\text{H}_2\text{O}$ in water and dilute to 2.00 L total volume.

```
(c)
```

$$\frac{0.150 \text{ mole HCl}}{L} \times 2.00 \text{ L} \times \frac{36.461 \text{ g HCl}}{\text{mole}} \times \frac{\text{mL reagent}}{1.0579 \text{ g reagent}} \times \frac{100 \text{ g reagent}}{11.50 \text{ g HCl}} = 90 \text{ mL reagent}$$

Dilute 90 mL reagent to 2.00 L total volume.

16-10. For the first data set

 $c_{\text{sample 1}} = \frac{0.7987 \text{ g KHP} \times \frac{1000 \text{ mmol KHP}}{204.224 \text{ g}} \times \frac{1 \text{ mmol NaOH}}{1 \text{ mmol KHP}}}{38.29 \text{ mL NaOH}} = 0.10214 \text{ M NaOH}$

The results in the following table were calculated in the same way.

	Sample	$c_{\text{sample i}}, M$	$c_{\text{sample i}}^{2}$
	1	0.10214	1.0433×10^{-2}
	2	0.10250	1.0506×10^{-2}
	3	0.10305	1.0619×10^{-2}
	4	0.10281	1.0570×10^{-2}
		$\sum c_{\text{sample i}} = 0.4105$	$\sum c_{\text{sample i}}^{2} = 4.2128 \times 10^{-2}$
(a)	$\overline{c}_{\text{sample i}} = \frac{0.4105}{4}$	= 0.1026 M NaOH	

Chapter 16

(b)

$$s = \sqrt{\frac{(4.2128 \times 10^{-2}) - (0.4105)^2 / 4}{3}} = \sqrt{\frac{4.657 \times 10^{-7}}{3}} = 3.9 \times 10^{-4}$$
$$CV = \frac{3.9 \times 10^{-4}}{0.1026} \times 100\% = 0.38\%$$

(c) Spread,
$$w = 0.10305 - 0.10214 = 0.00091$$

16-11. For the first data set,

$$c_{\text{sample 1}} = \frac{0.2068 \text{ g } \text{Na}_{2}\text{CO}_{3} \times \frac{1000 \text{ mmol } \text{Na}_{2}\text{CO}_{3}}{105.99 \text{ g}} \times \frac{2 \text{ mmol } \text{HClO}_{4}}{1 \text{ mmol } \text{Na}_{2}\text{CO}_{3}}}{36.31 \text{ mL } \text{HClO}_{4}} = 0.10747 \text{ M } \text{HClO}_{4}$$

The results in the accompanying table were calculated in the same way.

Sample	$c_{\text{sample i}}, M$	$c_{\text{sample i}}^{2}$
1	0.10747	1.15499×10^{-2}
2	0.10733	1.15196×10^{-2}
3	0.10862	1.17987×10^{-2}
4	0.10742	1.15385×10^{-2}
	$\sum c_{\text{sample i}} = 0.43084$	$\sum c_{\text{sample i}}^{2} = 4.64069 \times 10^{-2}$

(a)
$$\overline{c}_{\text{sample i}} = \frac{0.43084}{4} = 0.1077 \text{ M HClO}_4$$

$$s = \sqrt{\frac{(4.64069 \times 10^{-2}) - (0.43084)^2 / 4}{3}} = \sqrt{\frac{1.11420 \times 10^{-6}}{3}} = 6.1 \times 10^{-4}$$
$$CV = \frac{6.1 \times 10^{-4}}{0.1077} \times 100\% = 0.57\%$$

(c)

 $Q = \frac{0.10862 - 0.10747}{0.10862 - 0.10733} = 0.89$ $Q_{crit} = 0.829 \text{ at the 95\% confidence level}$ $Q_{crit} = 0.926 \text{ at the 99\% confidence level}$ Thus, 0.10862 could be rejected at 95% level but must be retained at 99% level.

16-12. (a) With phenolphthalein, the CO_3^{2-} consumes 1 mmol H_3O^+ per mmol CO_2 . Thus,

the effective amount of NaOH is lowered by 11.2 mmol, and

$$c_{\text{base}} = \frac{\left(\frac{0.1500 \text{ mmol NaOH}}{\text{mL}} \times 1000 \text{ mL}\right) - \left(11.2 \text{ mmol CO}_2 \times \frac{1 \text{ mmol NaOH}}{1 \text{ mmol CO}_2}\right)}{1000 \text{ mL}}$$

=0.1388 M NaOH

(b) When bromocresol green is the indicator,

$$\text{CO}_3^{2-} + 2\text{H}_3\text{O}^+ \rightarrow \text{H}_2\text{CO}_3 + 2\text{H}_2\text{O}$$

and the effective concentration of the base is unchanged. Thus,

 $c_{\text{base}} = 0.1500 \text{ M}$

16-13. As in part (a) of problem 16-23,

$$c_{\text{base}} = \frac{\left(\frac{0.1019 \text{ mmol NaOH}}{\text{mL}} \times 500 \text{ mL}\right) - \left(0.652 \text{ g CO}_2 \times \frac{1000 \text{ mmol CO}_2}{44.01 \text{ g}} \times \frac{1 \text{ mmol NaOH}}{1 \text{ mmol CO}_2}\right)}{500 \text{ mL}}$$
$$= 0.07227 \text{ M NaOH}$$
relative carbonate error =
$$\frac{0.07227 - 0.1019}{0.1019} \times 100\% = -29\%$$

Chapter 16

16-14. (a)

$$\frac{0.5902 \text{ g AgCl} \times \frac{1000 \text{ mmol AgCl}}{143.32 \text{ g}} \times \frac{1 \text{ mmol HCl}}{1 \text{ mmol AgCl}}}{50.00 \text{ mL HCl}} = 0.08236 \text{ M HCl}$$

(b)

$$\frac{\frac{0.03970 \text{ mmol Ba(OH)}_2}{\text{mL}} \times 25.00 \text{ mL Ba(OH)}_2 \times \frac{2 \text{ mmol HCl}}{1 \text{ mmol Ba(OH)}_2}}{17.93 \text{ mL HCl}} = 0.1107 \text{ M HCl}$$

(c)

$$\frac{0.2459 \text{ g } \text{Na}_2 \text{CO}_3 \times \frac{1000 \text{ mmol } \text{Na}_2 \text{CO}_3}{105.99 \text{ g}} \times \frac{2 \text{ mmol } \text{HCl}}{1 \text{ mmol } \text{Na}_2 \text{CO}_3}}{36.52 \text{ mL } \text{HCl}} = 0.1271 \text{ M } \text{HCl}$$

16-15. (a)

$$\frac{0.1791 \text{ g BaSO}_4 \times \frac{1000 \text{ mmol BaSO}_4}{233.39 \text{ g}} \times \frac{1 \text{ mmol Ba(OH)}_2}{1 \text{ mmol BaSO}_4}}{50.00 \text{ mL Ba(OH)}_2} = 0.01535 \text{ M Ba(OH)}_2$$

(b)

$$\frac{0.4512 \text{ g KHP} \times \frac{1000 \text{ mmol KHP}}{204.224 \text{ g}} \times \frac{1 \text{ mmol Ba(OH)}_2}{2 \text{ mmol KHP}}}{26.46 \text{ mL Ba(OH)}_2} = 0.04175 \text{ M Ba(OH)}_2$$

(c)

$$amnt C_{6}H_{5}COOH = 0.3912 \text{ g } C_{6}H_{5}COOH \times \frac{1000 \text{ mmol } C_{6}H_{5}COOH}{122.123 \text{ g}} = 3.2033 \text{ mmol}$$
$$amnt \text{ HCl} = \frac{0.05317 \text{ mmol } \text{HCl}}{\text{mL}} \times 4.67 \text{ mL} \text{ HCl} = 0.2483 \text{ mmol}$$
$$total \text{ amnt } acid = 3.2034 + 0.2483 = 3.4516 \text{ mmol}$$

$$\frac{3.4516 \text{ mmol acid} \times \frac{1 \text{ mmol Ba}(\text{OH})_2}{2 \text{ mmol acid}}}{50.00 \text{ mL Ba}(\text{OH})_2} = 0.03452 \text{ M Ba}(\text{OH})_2$$

16-16. (a) For 35 mL,

 $\frac{0.175 \text{ mmol HClO}_4}{\text{mL}} \times 35 \text{ mL HClO}_4 \times \frac{1 \text{ mmol Na}_2\text{CO}_3}{2 \text{ mmol HClO}_4} \times \frac{105.989 \text{ g Na}_2\text{CO}_3}{1000 \text{ mmol}} = 0.32 \text{ g Na}_2\text{CO}_3$

Substituting 45 mL in the equation above gives 0.42 g Na₂CO₃.

Proceeding as in part (a), we obtain

- **(b)** 0.20 to 0.26 g $Na_2C_2O_4$
- (c) 0.64 to 0.82 g benzoic acid
- (**d**) 1.36 to 1.75 g KH(IO₃)₂
- (e) 0.32 to 0.41 g TRIS
- (f) 0.67 to 0.86 g $Na_2B_4O_7 \cdot 10H_2O$

16-17. In Example 16-1, we found that 20.00 mL of 0.0200 M HCl requires 0.048 g TRIS, 0.021 g Na₂CO₃ and 0.08 g Na₂B₄O₇·10H₂O. In each case, the absolute standard deviation in computed molar concentration of 0.0200 M HCl is

TRIS:
$$s_c = \frac{0.0001}{0.048} \times 0.0200 \text{ M} = 4 \times 10^{-5} \text{ M}$$

Na₂CO₃: $s_c = \frac{0.0001}{0.021} \times 0.0200 \text{ M} = 1 \times 10^{-4} \text{ M}$

Na₂B₄O₇·10H₂O:
$$s_c = \frac{0.0001}{0.076} \times 0.0200 \text{ M} = 2.5 \times 10^{-5} \text{ M} \approx 3.0 \times 10^{-5} \text{ M}$$

Proceeding as above, we calculate the relative standard deviation in the computed molar concentrations of 30.00 mL, 40.00 mL and 50.00 mL of 0.0200 M HCl and the results are shown in the table that follows.

V _{0.0200 M HCl} (mL)	Calculated masses	s _c (0.0200 M
30.00		
TRIS	0.073	3×10^{-5}
Na ₂ CO ₃	0.032	6×10^{-5}
$Na_2B_4O_7 \cdot 10H_2O$	0.11	2×10^{-5}
40.00		
TRIS	0.097	2×10^{-5}
Na ₂ CO ₃	0.042	$5 imes 10^{-5}$
$Na_2B_4O_7 \cdot 10H_2O$	0.15	1×10^{-5}
50.00		
TRIS	0.12	2×10^{-5}
Na ₂ CO ₃	0.053	4×10^{-5}
$Na_2B_4O_7 \cdot 10H_2O$	0.19	1×10^{-5}

16-18. (a) In each case

 $\operatorname{amnt} \operatorname{NaOH} = \frac{0.0400 \operatorname{mmol} \operatorname{NaOH}}{\operatorname{mL}} \times 30.00 \operatorname{mL} = 1.20 \operatorname{mmol}$ For KHP: $1.20 \operatorname{mmol} \operatorname{NaOH} \times \frac{1 \operatorname{mmol} \operatorname{KHP}}{1 \operatorname{mmol} \operatorname{NaOH}} \times \frac{204.224 \operatorname{g} \operatorname{KHP}}{1000 \operatorname{mmol}} = 0.245 \operatorname{g}$ For KH(IO₃)₂: $1.20 \operatorname{mmol} \operatorname{NaOH} \times \frac{1 \operatorname{mmol} \operatorname{KH}(\operatorname{IO}_3)_2}{1 \operatorname{mmol} \operatorname{NaOH}} \times \frac{389.912 \operatorname{g} \operatorname{KH}(\operatorname{IO}_3)_2}{1000 \operatorname{mmol}} = 0.468 \operatorname{g}$

For benzoic acid:

$$1.20 \text{ mmol } C_6H_5COOH \times \frac{1 \text{ mmol } C_6H_5COOH}{1 \text{ mmol } \text{NaOH}} \times \frac{122.123 \text{ g } C_6H_5COOH}{1000 \text{ mmol}} = 0.147 \text{ g}$$

For KHP: RSD = $\frac{0.002 \text{ g}}{0.245 \text{ g}} \times 100\% = 0.82\%$ For KH(IO₃)₂: RSD = $\frac{0.002 \text{ g}}{0.468 \text{ g}} \times 100\% = 0.43\%$ For benzoic acid: RSD = $\frac{0.002 \text{ g}}{0.147 \text{ g}} \times 100\% = 1.4\%$

16-19.

$$amnt NaOH = \frac{0.03291 \text{ mmol NaOH}}{mL} \times 24.57 \text{ mL NaOH} = 0.80860 \text{ mol NaOH}}{\left(\frac{0.80860 \text{ mol NaOH} \times \frac{1 \text{ mmol H}_2C_4H_4O_6}{2 \text{ mmol NaOH}} \times \frac{150.09 \text{ g H}_2C_4H_4O_6}{1000 \text{ mmol}} \right)}{50.00 \text{ mL}} \times 100 \text{ mL}} \times 100 \text{ mL}}$$
$$= 0.1214 \text{ g H}_2C_4H_4O_6 \text{ per 100 mL}}$$

16-20.

$$\frac{\left(\frac{0.08960 \text{ mmol NaOH}}{\text{mL}} \times 35.23 \text{ mL NaOH} \times \frac{1 \text{ mmol HOAc}}{1 \text{ mmol NaOH}} \times \frac{60.053 \text{ g HOAc}}{1000 \text{ mmol}}\right)}{\left(\frac{50.0 \text{ mL}}{250 \text{ mL}} \times 25.00 \text{ mL}\right)} \times 100\%$$

$$= 3.79\% (w/v) \text{ HOAc}$$

16-21. For each part, we can write

 $\frac{\frac{0.1129 \text{ mmol HCl}}{\text{mL}} \times 30.79 \text{ mL HCl}}{0.7513 \text{ g sample}} = 4.6269 \frac{\text{mmol HCl}}{\text{g sample}}$

Chapter 16

(a)

$$4.6269 \frac{\text{mmol HCl}}{\text{g sample}} \times \frac{1 \text{ mmol Na}_2 \text{B}_4 \text{O}_7}{2 \text{ mmol HCl}} \times \frac{201.222 \text{ g Na}_2 \text{B}_4 \text{O}_7}{1000 \text{ mmol}} \times 100\% = 46.55\% \text{ Na}_2 \text{B}_4 \text{O}_7$$

Proceeding in the same way

$$4.6269 \frac{\text{mmol HCl}}{\text{g sample}} \times \frac{1 \text{ mmol Na}_2 \text{B}_4 \text{O}_7 \cdot 10 \text{H}_2 \text{O}}{2 \text{ mmol HCl}} \times \frac{381.372 \text{ g Na}_2 \text{B}_4 \text{O}_7 \cdot 10 \text{H}_2 \text{O}}{1000 \text{ mmol}} \times 100\%$$
$$= 88.23\% \text{ Na}_2 \text{B}_4 \text{O}_7 \cdot 10 \text{H}_2 \text{O}$$

(c)

4.6269
$$\frac{\text{mmol HCl}}{\text{g sample}} \times \frac{1 \text{ mmol B}_2\text{O}_3}{1 \text{ mmol HCl}} \times \frac{69.620 \text{ g B}_2\text{O}_3}{1000 \text{ mmol}} \times 100\% = 32.21\% \text{ B}_2\text{O}_3$$

(**d**)

$$4.6269 \frac{\text{mmol HCl}}{\text{g sample}} \times \frac{2 \text{ mmol B}}{1 \text{ mmol HCl}} \times \frac{10.811 \text{ g B}}{1000 \text{ mmol}} \times 100\% = 10.00\% \text{ B}$$

16-22.

$$\frac{\left(\frac{0.1092 \text{ mmol HCl}}{\text{mL}} \times 40.39 \text{ mL HCl} \times \frac{1 \text{ mmol OH}^{-}}{1 \text{ mmol HCl}} \times \frac{1 \text{ mmol HgO}}{2 \text{ mmol OH}^{-}} \times \frac{216.589 \text{ g HgO}}{1000 \text{ mmol}}\right)}{0.6915 \text{ g sample}} \times 100\%$$

= 69.07% HgO

16-23.

$$\operatorname{amnt}\operatorname{NaOH}\operatorname{consumed} = \left(\frac{0.0959 \text{ mmol} \text{ NaOH}}{\text{mL}} \times 50.0 \text{ mL} \text{ NaOH}\right) - \left(\frac{0.05370 \text{ mmol} \text{ H}_2\text{SO}_4}{\text{mL}} \times 22.71 \text{ mL} \text{ H}_2\text{SO}_4 \times \frac{2 \text{ mmol} \text{ NaOH}}{1 \text{ mmol} \text{ H}_2\text{SO}_4}\right) = 2.356 \text{ mmol}$$
$$\frac{2.356 \text{ mmol} \text{ NaOH} \times \frac{1 \text{ mmol} \text{ HCHO}}{1 \text{ mmol} \text{ NaOH}} \times \frac{30.026 \text{ g} \text{ HCHO}}{1000 \text{ mmol}} \times 100\% = 23.7\% \text{ HCHO}}{0.2985 \text{ g sample}}$$

16-24.

$$\frac{\left(\frac{0.0501 \text{ mmol NaOH}}{\text{mL}} \times 12.91 \text{ mL NaOH} \times \frac{1 \text{ mmol NaO}_2\text{CC}_6\text{H}_5}{1 \text{ mmol NaOH}} \times \frac{144.10 \text{ g NaO}_2\text{CC}_6\text{H}_5}{1000 \text{ mmol}}\right)}{97.2 \text{ g sample}} \times 100\%$$

$$= 0.096\% \text{ NaO}_2\text{CC}_6\text{H}_5$$

16-25. Tetraethylthiuram disulfide, TS₄

1 mmol $TS_4 \equiv 4 \text{ mmol } SO_2 \equiv 4 \text{ mmol } H_2SO_4 \equiv 8 \text{ mmol } NaOH$

 $\frac{\left(\frac{0.04216 \text{ mmol NaOH}}{\text{mL}} \times 19.25 \text{ mL NaOH} \times \frac{1 \text{ mmol TS}_4}{8 \text{ mmol NaOH}} \times \frac{296.54 \text{ g TS}_4}{1000 \text{ mmol}}\right)}{0.4169 \text{ g sample}} \times 100\%$ $= 7.216\% \text{ TS}_4$

16-26.

$$\frac{\left(\frac{0.1943 \text{ mmol HCl}}{\text{mL}} \times 41.27 \text{ mL HCl} \times \frac{1 \text{ mmol NH}_3}{1 \text{ mmol HCl}} \times \frac{17.031 \text{ g NH}_3}{1000 \text{ mmol}}\right)}{\left(\frac{50.00 \text{ mL}}{250.0 \text{ mL}} \times 25.00 \text{ mL}\right)} \times 100\%$$

$$= 2.731\% \text{ (w/v) NH}_3$$

16-27.

amnt HCl = mmol NaOH - 2 × mmol CO₃²⁻
amnt CO₃²⁻ =
$$\frac{\left(\frac{0.1140 \text{ mmol HCl}}{\text{mL}} \times 50.00 \text{ mL HCl}\right) - \left(\frac{0.09802 \text{ mmol NaOH}}{\text{mL}} \times 24.21 \text{ mL NaOH}\right)}{2}$$
=1.6635 mmol CO₃²⁻
molar mass carbonate salt =
$$\frac{0.1401 \text{ g salt}}{1.6635 \text{ mmol CO}_3^{2-}} \times \frac{1000 \text{ mmol}}{\text{mole}} = 84.22 \frac{\text{g salt}}{\text{mole CO}_3^{2-}}$$

molar mass of carbonate salt cation =
$$\left(84.22 \frac{\text{g salt}}{\text{mole CO}_3^{2-}} \times \frac{1 \text{ mole CO}_3^{2-}}{1 \text{ mole salt}}\right) - 60.01 \frac{\text{g CO}_3^{2-}}{\text{mole}}$$

$$= 24.21 \frac{\text{g cation}}{\text{mole}}$$

 $MgCO_3$ with a molar mass of 84.31 g/mole appears to be a likely candidate

16-28.

$$\operatorname{amnt} \operatorname{NaA} = \frac{0.1084 \operatorname{mmol} \operatorname{NaOH}}{\operatorname{mL}} \times 28.62 \operatorname{mL} \operatorname{NaOH} \times \frac{1 \operatorname{mmol} \operatorname{NaA}}{1 \operatorname{mmol} \operatorname{NaOH}} = 3.1024 \operatorname{mmol}$$
$$\operatorname{molar} \operatorname{mass} \operatorname{NaA} = \frac{0.2110 \operatorname{g} \operatorname{NaA}}{3.1024 \operatorname{mmol} \operatorname{NaA}} \times \frac{1000 \operatorname{mmol}}{\operatorname{mole}} = 68.01 \frac{\operatorname{g} \operatorname{NaA}}{\operatorname{mole}}$$
$$\operatorname{molar} \operatorname{mass} \operatorname{HA} = \operatorname{equivalent} \operatorname{mass} = \operatorname{molar} \operatorname{mass} \operatorname{NaA} - \operatorname{atomic} \operatorname{mass} \operatorname{Na} + \operatorname{atomic} \operatorname{mass} \operatorname{HA}$$
$$= 68.01 - 22.99 + 1.008 = 46.03 \frac{\operatorname{g} \operatorname{HA}}{\operatorname{mole}}$$

3.00 L

16-29.

$$\operatorname{amnt} \operatorname{Ba}(\operatorname{OH})_{2} = \operatorname{mmol} \operatorname{CO}_{2} + \frac{\operatorname{mmol} \operatorname{HCl}}{2}$$
$$\operatorname{amnt} \operatorname{CO}_{2} = \left(\frac{0.0116 \operatorname{mmol} \operatorname{Ba}(\operatorname{OH})_{2}}{\operatorname{mL}} \times 50.0 \operatorname{mL} \operatorname{Ba}(\operatorname{OH})_{2}\right) - \left(\frac{\frac{0.0108 \operatorname{mmol} \operatorname{HCl}}{\operatorname{mL}} \times 23.6 \operatorname{mL} \operatorname{HCl}}{2}{2}\right)$$
$$= 4.526 \times 10^{-1} \operatorname{mmol}$$
$$\frac{0.4526 \operatorname{mmol} \operatorname{CO}_{2} \times \frac{44.01 \operatorname{g} \operatorname{CO}_{2}}{1000 \operatorname{mmol}}}{3.00 \operatorname{L}} \times \frac{1 \operatorname{LCO}_{2}}{1.98 \operatorname{g} \operatorname{CO}_{2}} \times 10^{6} \operatorname{ppm} = 3.35 \times 10^{3} \operatorname{ppm} \operatorname{CO}_{2}$$

16-30.

$$\frac{0.00197 \text{ mmol NaOH}}{\text{mL}} \times 11.70 \text{ mL NaOH} \times \frac{1 \text{ mmol SO}_2}{2 \text{ mmol NaOH}} \times \frac{64.06 \text{ g SO}_2}{1000 \text{ mmol}} = 7.383 \times 10^{-4} \text{ g SO}_4$$

$$7.383 \times 10^{-4} \text{ g SO}_4 \times \frac{1 \text{ min}}{30.0 \text{ L sample}} \times \frac{1}{10.0 \text{ min}} \times \frac{1.00 \text{ L SO}_2}{2.85 \text{ g SO}_2} \times 10^6 \text{ ppm} = 0.863 \text{ ppm SO}_2$$

16-31.
$$(NH_4)_3PO_4 \cdot 12MoO_3(s) + 26OH^- \rightarrow HPO_4^{2-} + 12MoO_4^{2-} + 14H_2O + 3NH_3(g)$$

amnt NaOH consumed =
$$\left(\frac{0.2000 \text{ mmol NaOH}}{\text{mL}} \times 50.00 \text{ mL NaOH}\right)$$

 $\left(\frac{0.1741 \text{ mmol HCl}}{\text{mL}} \times 14.17 \text{ mL HCl}\right) = 7.533 \text{ mmol}$
amnt P = 7.533 mmol NaOH $\times \frac{1 \text{ mmol }(\text{NH}_4)_3 \text{PO}_4 \cdot 12 \text{MoO}_3}{26 \text{ mmol NaOH}} \times \frac{1 \text{ mmol }(\text{NH}_4)_3 \text{PO}_4 \cdot 12 \text{MoO}_3}{26 \text{ mmol NaOH}} \times \frac{1 \text{ mmol }(\text{NH}_4)_3 \text{PO}_4 \cdot 12 \text{MoO}_3}{26 \text{ mmol NaOH}} = 2.897 \times 10^{-1} \text{ mmol}$
 $\frac{2.897 \times 10^{-1} \text{ mmol P} \times \frac{30.974 \text{ g P}}{1000 \text{ mmol}}}{0.1417 \text{ g sample}} \times 100\% = 6.333\% \text{ P}$

16-32. $C_6H_4(COOCH_3)_2 + 2OH^- \rightarrow C_6H_4(COO)_2^{2-} + 2CH_3OH$

$$C_{6}H_{4}(\text{COOCH}_{3})_{2} = \text{DMP}$$
amnt NaOH consumed = $\left(\frac{0.1215 \text{ mmol NaOH}}{\text{mL}} \times 50.00 \text{ mL NaOH}\right) - \left(\frac{0.1644 \text{ mmol HCl}}{\text{mL}} \times 24.27 \text{ mL HCl}\right) = 2.0850 \text{ mmol}$
mmol DMP = 2.0850 mmol NaOH × $\frac{1 \text{ mmol DMP}}{2 \text{ mmol NaOH}} = 1.0425 \text{ mmol DMP}$

$$\frac{1.0425 \text{ mmol DMP} \times \frac{194.19 \text{ g DMP}}{1000 \text{ mmol}}}{0.9471 \text{ g sample}} \times 100\% = 21.38\% \text{ DMP}$$

16-33.

Neohetramine,
$$C_{16}H_{21}ON_4 = RN_4$$

1 mmol $RN_4 \equiv 3 \text{ mmol } NH_3 \equiv 4 \text{ mmol } HCl$

$$\frac{0.01477 \text{ mmol } HCl}{mL} \times 26.13 \text{ mL } HCl \times \frac{1 \text{ mmol } RN_4}{4 \text{ mmol } HCl} \times \frac{285.37 \text{ g } RN_4}{1000 \text{ mmol}} \times 100\% = 22.08\% \text{ RN}_4$$

$$0.1247 \text{ g sample}$$

16-34. (a)

$$\operatorname{amnt} \operatorname{HCl} \operatorname{consumed} = \left(\frac{0.1750 \operatorname{mmol} \operatorname{HCl}}{\operatorname{mL}} \times 100.0 \operatorname{mL} \operatorname{HCl}\right) - \left(\frac{0.1080 \operatorname{mmol} \operatorname{NaOH}}{\operatorname{mL}} \times 11.37 \operatorname{mL} \operatorname{NaOH}\right) = 16.272 \operatorname{mmol}$$

$$\frac{16.272 \operatorname{mmol} \operatorname{HCl} \times \frac{1 \operatorname{mmol} \operatorname{CH}_5 \operatorname{N}_3}{3 \operatorname{mmol} \operatorname{HCl}} \times \frac{59.07 \operatorname{mg} \operatorname{CH}_5 \operatorname{N}_3}{\operatorname{mmol}}}{4 \operatorname{tablets}} = 80.10 \operatorname{mg/tablet}$$

$$\operatorname{no. tablets} = \frac{10 \operatorname{mg} \operatorname{CH}_5 \operatorname{N}_3}{\operatorname{kg}} \times 100 \operatorname{lb} \times \frac{4.536 \times 10^{-1} \operatorname{kg}}{\operatorname{lb}} \times \frac{1 \operatorname{tablet}}{80.10 \operatorname{mg}} = 5.68 \operatorname{ or} 6 \operatorname{tablets}$$

Proceeding in the same way as part (a), we find the results for parts (b) and (c) in the spreadsheet that follows.

	A	В	С	D
1	Problem 16-34			
2				
3	Conc. HCI	0.1750		
4	Vol. HCI	100.0		
5	Conc. NaOH	0.1080		
6	Vol. NaOH	11.37		
7	No. Tablets	4		
8				
9	mg CH ₅ N ₃ /tablet	80.0991169		
10				
11		Patient Wt., Ib.	Proper dose	No. Tablets
12	(a)	100	5.675468315	6
13	(b)	150	8.513202472	9
14	(c)	275	15.60753787	16
15				
16	Spreadsheet Do	cumentation		
17	Cell B9=((B3*B4-B	B5*B6)*1/3*59.07)/	B7	
18	Cell C12=10*B12*	0.4546*(1/\$B\$9)		
19	Cell D12=ROUND	(C12,0)		

16-35.

$$\%N = \frac{\left(\frac{0.1249 \text{ mmol HCl}}{\text{mL}} \times 20.59 \text{ mL HCl}\right) \times \frac{1 \text{ mmol N}}{\text{mmol HCl}} \times \frac{14.007 \text{ g N}}{1000 \text{ mmol}}}{0.917 \text{ g sample}} \times 100\% = 3.93\% \text{ N}$$

16-36. Multiplication factor for meat is 6.25 protein/N (FAC9, p. 388).

 $3.9282 \% \text{ N} \times \frac{6.25 \text{ protein}}{\text{N}} = 24.55\% \text{ protein}$ $\frac{6.50 \text{ oz tuna}}{\text{can}} \times \frac{28.3 \text{ g}}{\text{oz}} \times \frac{24.55 \text{ g protein}}{100 \text{ g tuna}} = 45.2 \text{ g protein/can}$

16-37.

	A	В	С	D	E	F	
1	Problem 16-37						
2	Mass sample, g	0.5843					
3	Vol. HCI, mL	50.00					
4	Conc. HCI, M	0.1062					
5	Vol. NaOH, mL	11.89					
6	Conc. NaOH, M	0.0925					
7							
8	amnt HCI/g, mmol/g	7.20550231	amnt HCI/g = (mr	mol HCI - n	nmol NaOH)/sample ma	ISS
9		Molar masses	Percentages				
10	(a) N	14.007	10.09				
11	(b) urea	60.06	21.64				
12	(c) (NH ₄) ₂ SO ₄	132.141	47.61				
13	(d) (NH ₄) ₃ PO ₄	149.09	35.81				
14	Spreadsheet Docur	nentation					
15	Cell B8=(B3*B4-B5*E	36)/B2	The percentages	are calcula	ated in Cells	s C10:C13	
16	Cell C10=\$B\$8*1*B1	0/1000*100	from the no. of m				I
17	Cell C11=\$B\$8*1/2*E	811/1000*100	of the compound/	mmol HCI	times the n	nolar mass	
18	Cell C12=\$B\$8*1/2*E	312/1000*100	of the compound	divided by	1000 (mmd	olar mass).	
19	Cell C13=\$B\$8*1/3*E	813/1000*100					
20							

16-38.

$$amnt \text{ HCl consumed} = \left(\frac{0.05063 \text{ mmol}}{\text{mL}} \times 50.00 \text{ mL}\right) - \left(\frac{0.04829 \text{ mmol}}{\text{mL}} \times 7.73 \text{ mL}\right) = 2.158 \text{ mmol}}{\text{mL}}\right) = 2.158 \text{ mmol}$$

$$\% \text{N} = \frac{2.158 \text{ mmol HCl} \times \frac{1 \text{ mmol N}}{1 \text{ mmol HCl}} \times \frac{14.007 \text{ g}}{1000 \text{ mmol}}}{0.9325 \text{ g}} \times 100\% = 3.242\% \text{ N}$$

protein percentage = $3.242\% \times 5.7 = 18.5\%$

16-39. In the first titration,

amnt HCl consumed =
$$\left(\frac{0.08421 \text{ mmol HCl}}{\text{mL}} \times 30.00 \text{ mL}\right) - \left(\frac{0.08802 \text{ mmol NaOH}}{\text{mL}} \times 10.17 \text{ mL}\right) = 1.63114 \text{ mmol}$$

and

1.63114 mmol HCl = mmol
$$NH_4NO_3 + (2 \times mmol (NH_4)_2SO_4)$$

The amounts of the two species in the original sample are

mmol NH₄NO₃ + $(2 \times \text{mmol} (\text{NH}_4)_2 \text{SO}_4) = 1.63114 \text{ mmol} \times \frac{200 \text{ mL}}{50 \text{ mL}} = 6.5246 \text{ mmol} (1)$

In the second titration,

amnt HCl consumed =
$$\left(\frac{0.08421 \text{ mmol HCl}}{\text{mL}} \times 30.00 \text{ mL}\right)$$
 - $\left(\frac{0.08802 \text{ mmol NaOH}}{\text{mL}} \times 14.16 \text{ mL}\right)$ = 1.27994 mmol HCl

and

1.27994 mmol HCl =
$$(2 \times \text{mmol NH}_4\text{NO}_3) + (2 \times \text{mmol (NH}_4)_2\text{SO}_4)$$

The amounts of the two species in the original sample are

$$(2 \times \text{mmol NH}_4\text{NO}_3) + (2 \times \text{mmol (NH}_4)_2\text{SO}_4) = 1.27994 \text{ mmol} \times \frac{200 \text{ mL}}{25 \text{ mL}} = 10.2395 \text{ mmol}$$
(2)

Subtracting equation (1) from equation (2) gives

amnt NH₄NO₃ = 10.2395 mmol - 6.52455 mmol = 3.7149 mmol
amnt (NH₄)₂SO₄ =
$$\frac{10.2395 \text{ mmol} - (2 \times 3.7149 \text{ mmol})}{2}$$
 = 1.4048 mmol
percentage NH₄NO₃ = $\frac{3.7149 \text{ mmol NH}_4 \text{NO}_3 \times \frac{80.04 \text{ g NH}_4 \text{NO}_3}{1000 \text{ mmol}} \times 100\%$ =24.39%
1.219 g sample
percentage (NH₄)₂SO₄ = $\frac{1.4048 \text{ mmol (NH}_4)_2 \text{SO}_4 \times \frac{132.14 \text{ g (NH}_4)_2 \text{SO}_4}{1000 \text{ mmol}} \times 100\%$
= 15.23%

Chapter 16

Chapter 16

16-40. For the first aliquot,

amnt HCl consumed = mmol NaOH + mmol KOH + (2 × mmol K₂CO₃)
mmol KOH + (2 × mmol K₂CO₃) =
$$\left(\frac{0.05304 \text{ mmol HCL}}{\text{mL}} \times 40.00 \text{ mL HCl}\right) - \left(\frac{0.04983 \text{ mmol NaOH}}{\text{mL}} \times 4.74 \text{ mL NaOH}\right) = 1.8854 \text{ mmol}$$

For the second aliquot,

amnt HCl = mmol KOH = $\frac{0.05304 \text{ mmol HCl}}{\text{mL}} \times 28.56 \text{ mL HCl} = 1.5148 \text{ mmol HCl}(\text{KOH})$ amnt K₂CO₃ = $\frac{1.8854 \text{ mmol} - 1.5148}{2} = 0.1853 \text{ mmol}$

$$percentage \text{ KOH} = \frac{1.5148 \text{ mmol KOH} \times \frac{56.11 \text{ g KOH}}{1000 \text{ mmol}}}{\left(1.217 \text{ g} \times \frac{50 \text{ mL}}{500 \text{ mL}}\right)} \times 100\% = 69.84\%$$

$$percentage \text{ K}_2\text{CO}_3 = \frac{0.18530 \text{ mmol K}_2\text{CO}_3 \times \frac{138.21 \text{ g K}_2\text{CO}_3}{1000 \text{ mmol}}}{\left(1.217 \text{ g} \times \frac{50 \text{ mL}}{500 \text{ mL}}\right)} \times 100\% = 21.04\%$$

100% - (69.84% + 21.04%) = 9.12% H₂O

16-41. For the first aliquot,

amnt HCl = mmol NaOH + mmol NaHCO₃ + (2 × mmol Na₂CO₃)
mmol NaHCO₃ + (2 × mmol Na₂CO₃) =
$$\left(\frac{0.01255 \text{ mmol HCl}}{\text{mL}} \times 50.00 \text{ mL HCl}\right) - \left(\frac{0.01063 \text{ mmol NaOH}}{\text{mL}} \times 2.34 \text{ mL NaOH}\right) = 0.6026 \text{ mmol}$$

For the second aliquot,

amnt NaHCO₃ = mmol NaOH – mmol HCl
=
$$\left(\frac{0.01063 \text{ mmol NaOH}}{\text{mL}} \times 25.00 \text{ mL NaOH}\right) - \left(\frac{0.01255 \text{ mmol HCl}}{\text{mL}} \times 7.63 \text{ mL HCl}\right)$$

= 0.1700 mmol

percentage NaHCO₃ =
$$\frac{0.1700 \text{ mmol NaHCO}_3 \times \frac{84.01 \text{ g NaHCO}_3}{1000 \text{ mmol}}}{\left(0.5000 \text{ g} \times \frac{25.00 \text{ g}}{250.0 \text{ g}}\right)} \times 100\% = 28.56\%$$
percentage Na₂CO₃ =
$$\frac{0.2163 \text{ mmol Na}_2\text{CO}_3 \times \frac{105.99 \text{ g Na}_2\text{CO}_3}{1000 \text{ mmol}}}{\left(0.5000 \text{ g} \times \frac{25.00 \text{ mL}}{250.0 \text{ mL}}\right)} \times 100\% = 45.85\%$$

 $100\% - (28.56\% + 45.85\%) = 25.59\% H_2O$

16-42.

	A	В	С	D	E
1	Problem 16-42	1			
2	Conc. HCI, M	0.06122			
3	Conc. Na ₃ PO ₄ , M	0.05555			CHARLES AND AND A
4	(a)		Vol. Na ₃ PO ₄ , mL	Amnt base, mmol	Vol. HCI, mL
5	Add one proton		10.00	0.55550	9.07
6	to thymolphthalein		15.00	0.83325	13.61
7	end point		25.00	1.38875	22.68
8			40.00	2.22200	36.30
9	(b)		Vol. Na ₃ PO ₄ , mL	Amnt base, mmol	Vol. HCI, mL
10			10.00	1.11100	18.15
11			15.00	1.66650	27.22
12			20.00	2.22200	36.30
13			25.00	2.77750	45.37
14					
15	(c)		Vol. Na ₃ PO ₄ , mL	Amnt base, mmol	Vol. HCI, mL
16	Conc. Na ₃ PO ₄ , M	0.02102	20.00	1.17180	19.14
17	Conc. Na ₂ HPO ₄ , M	0.01655	25.00	1.46475	23.93
18	Add 2 protons to		30.00	1.75770	28.71
19	phosphate and one		40.00	2.34360	38.28
20	to mono-hydrogen				
21	phosphate				entre transmission
22	(d)		Vol. Na ₃ PO ₄ , mL	Amnt base, mmol	Vol. HCI, mL
23	Conc. NaOH, M	0.01655	15.00	0.56355	9.21
24			20.00	0.75140	12.27
25			35.00	1.31495	21.48
26			40.00	1.50280	24.55
27		nentation			
	Cell D5=C5*\$B\$3				
	Cell E5=D5/\$B\$2				
	Cell D10=C10*\$B\$3*	2			
	Cell E10=D10/\$B\$2				
	Cell D16=\$B\$16*2*C	16+\$B\$17	°C16		
	Cell E16=D16/\$B\$2				-
	Cell D23=C23*\$B\$10	5+C23*\$B\$	23		
35	Cell E23=D23/\$B\$2				

16-43.

	A	В	С	D	E
1	Problem 16-43				
2	Conc. NaOH, M	0.07731			
3	(a) and (b)				
4	Conc. HCI, M	0.03000			
5	Conc. H ₃ PO ₄ , M	0.01000			
6	(a)		Vol. solution, mL	Amnt. acid, mmol	Vol. NaOH, mL
7	React with 1 proton		25.00	1.0000	12.93
8	to bromocresol green				
9	end point				
10	(b)		Vol. solution, mL	Amnt. acid, mmol	Vol. NaOH, mL
11			25.00	1.2500	16.17
	to thymolphtalein				
13	end point				
14	(c)		Vol. solution, mL	Amnt. acid, mmol	Vol. NaOH, mL
15	Conc. NaH ₂ PO ₄ , M	0.06407	10.00	0.6407	8.29
16			20.00	1.2814	16.57
17			30.00	1.9221	24.86
18			40.00	2.5628	
19	• •		Vol. solution, mL	Amnt. acid, mmol	Vol. NaOH, mL
20	Conc. H ₃ PO ₄ , M	0.02000	20.00	1.4000	18.11
21	Conc. NaH ₂ PO ₄ , M	0.03000	25.00	1.7500	22.64
22	React with 2 protons		30.00	2.1000	27.16
23	from H ₃ PO ₄ and 1				
24	proton from NaH ₂ PO ₄				
25					
26	Spreadsheet Docum	entation			
27	Cell D7=C7*\$B\$4+C7*\$B\$5				
28	Cell E7=D7/\$B\$2				
29	Cell D11=C11*\$B\$4+2	2*C11*\$B\$	5		
30	Cell E11=D11/\$B\$2				
31	Cell D15=\$B\$15*C15				
	Cell E15=D15/\$B\$2				
	Cell D20=2*\$B\$20*C2	0+\$B\$21*	C20		
34	Cell E20=D20/\$B\$2				

16-44.

	А	В	С	D	E	F
1	Problem 16-44			Vol. to phenol, mL	Vol. to BCG, mL	
2	Conc. HCI, M	0.08601	(a)	0.00	18.15	
3	Vol. solution, mL	25.00	(b)	21.00	28.15	
4	M NaOH	39.997	(c)	19.80	39.61	
5	M Na₃AsO₄	207.89	(d)	18.04	18.03	
6	M Na₂HAsO₄	185.91	(e)	16.00	37.37	
7	We use the meth	od of Problem 16-44. Table 16-2	gives the volume relationship	s in similar mixtures		
8	(a) Since V _{phth} =	0, we have only Na ₂ HAsO ₄ prese	nt, which gains 1 proton.			
9		Amnt Na ₂ HAsO ₄ , mmol	Conc. Na2HAsO4, mg/mL			
10		1.5611	11.61			
11	(b) Now V _{phth} > 1	∕₂ V _{bcg} , so we have a mixture of N	aOH and Na₃AsO₄.			
12		Amnt Na ₃ AsO ₄ + NaOH, mmol	Amnt Na ₃ AsO ₄ , mmol	Amnt NaOH, mmol	Conc. Na ₃ AsO ₄ , mg/mL	Conc. NaOH, mg/mL
13		1.80621	0.6150	1.1912	5.114	1.906
14	(c) Since V _{phth} =	ce $V_{\text{phth}} = \frac{1}{2} V_{\text{bog}}$, we have only Na ₃ AsO ₄ present.				
15		Amnt Na ₃ AsO ₄ , mmol	Conc. Na ₃ AsO ₄ , mg/mL			
16		1.7030	14.16			
17	(d) Since essenti	ally the same volume is used for	each end point, there is only	NaOH present. We use t	the	
18	average volume to	calculate the concentration of Na	aOH in mg/mL.			
19		Amnt NaOH, mmol	Conc. NaOH, mg/mL			
20		1.5512	2.482			
21	(e) Since V _{phth} <	1⁄₂V _{bcg} , only Na₃AsO₄ and Na₂HA	AsO ₄ are present.			
22		Amnt Na ₃ AsO ₄ , mmol	Amnt total, mmol	Amnt Na ₂ HAsO ₄ , mmol	Conc. Na ₃ AsO ₄ , mg/mL	Conc. Na ₂ HAsO ₄ , mg/mL
23		1.3762	3.2142	0.4619	11.44	3.435
24	Spreadsheet Do	cumentation				
25	Cell B10=\$E\$2*\$	3\$2	Cell C16=B16*\$B\$5/\$B\$3			
26	Cell C10=B10*1*\$B\$6/\$B\$3		Cell B20=((D5+E5)/2)*\$B\$2			
27	Cell B13=D3*\$B\$2		Cell C20=B20*\$B\$4/\$B\$3			
	Cell C13=(\$E\$3-\$D\$3)*\$B\$2		Cell B23=\$D\$6*\$B\$2			
	Cell D13=B13-C1		Cell C23=\$E\$6*\$B\$2			
	Cell E13=C13*\$B		Cell D23=C23-2*B23			
	Cell F13=D13*\$B\$4/\$B\$3		Cell E23=B23*\$B\$5/\$B\$3			
32	Cell B16=\$D\$4*\$	3\$2	Cell F23=D23*\$B\$6/\$B\$3			

16-45.

	Α	В	С	D	E	F	
1	Problem 16-45			Vol. to phenol, mL	Vol. to BCG, mL		
2	Conc. HCI, M	0.1202	(a)	22.42	22.44		
3	Vol. solution, mL	25.00	(b)	15.67	42.13		
4	M NaOH	39.997	(c)	29.64	36.42		
5	\mathcal{M} Na ₂ CO ₃	105.989	(d)	16.12	32.23		
6	M NaHCO₃	84.007	(e)	0.00	33.33		
7	Table 16-2 gives t	he volume relationships in titra	tions of these mixtures				
9	(a) Since essenti	ally the same volue is used for	both end points, there is	only NaOH			
10	present. We use	the average volume to calculate	te the concentration of Na	aOH in mg/mL.			
11		Amnt NaOH, mmol	conc. NaOH, mg/mL				
12		2.6961	4.313				
13	(b) Since V _{phth} < ½V _{bog} , only carbonate and bicarbonate are present.						
14		Amnt carbonate, mmol	Amnt total, mmol	Amnt bicarbonate, mmol	Conc. bicarb., mg/mL	Conc. carb., mg/mL	
15		1.8835	5.0640	1.2970	7.985	4.358	
16	(c) Now V phth > 1/2	low $V_{phth} > \frac{1}{2}V_{bog}$, so we have a mixture of NaOH and Na ₂ CO ₃					
17		Amnt carb. + NaOH, mmol	Amnt carb., mmol	Amnt NaOH, mmol	Conc. Na2CO3, mg/mL	Conc. NaOH, mg/mL	
18		3.5627	0.8150	2.7478	3.455	4.396	
19	(d) Since V _{phth} :	= 1/2 V bcg, we have only Na2CC	03 present.				
20		Ammt carbonate, mmol	Conc. Na2CO3, mg/mL				
21		1.9376	8.215				
22	(e) Since V _{phth} =) Since V _{phth} = 0, we have only NaHCO ₃ present which gains one proton.					
23		Amnt NaHCO ₃ , mmol	Conc. NaHCO ₃ , mg/mL	-			
24		4.0063	13.462				
25	Spreadsheet Do	cumentation					
26	Cell B12=((D2+E2	2)/2)*\$B\$2	Cdll C18=(\$E\$4-\$D\$4)*\$	iB\$2			
27	Cell C12=B12*1*9	B\$4/\$B\$3	Cell D18=B18-C18				
28	Cell B15=D3*\$B\$2		Cell E18=C18*\$B\$5/\$B\$3				
29	Cell C15=E3*\$B\$2		Cell F18=D18*\$B\$4/\$B\$3				
		Cell D15=C15-2*B15		Cell B21=\$D\$5*\$B\$2			
		Cell E15=B15*\$B\$5/\$B\$3		B\$3			
32		Cell F15=D15*\$B\$6/\$B\$3		Cell B24=E6*\$B\$2			
33	Cell B18=D4*\$B\$	2	Cell C24=B24*1*\$B\$6/\$	B\$3			

16-46. (a) The equivalent mass of an acid is that mass of the pure material that contains one

mole of titratable protons in a specified reaction.

(b) The equivalent mass of a base is that mass of the pure material that consumes one

mole of protons in a specified reaction.

16-47. (a) With bromocresol green, only one of the two protons in the oxalic acid will react.

Therefore, the equivalent mass is the molar mass, or 126.066 g.

(b) When phenolphthalein is the indicator, two of the protons are consumed. Therefore,

the equivalent mass of oxalic acid is one-half the molar mass, or 63.03 g.

16-48. (a)

$\frac{0.1008 \text{ mmol NaOH}}{\text{mL}} \times 45.62$		mmol NaOH	= 0.4598 M CH ₃ COOH	
10	0.00 mL		= 0.4598 M CH ₃ COOH	
(b)				
$\frac{0.4598 \text{ mmol CH}_3\text{COOH}}{\text{mL}} \times \frac{60.05}{\text{mL}}$	3 mg CH ₃ COOH mmol	$\times \frac{1\text{g}}{1000\text{mg}} \times \frac{1}{2}$	$\frac{\text{mL CH}_{3}\text{COOH}}{1.004 \text{ g}} \times 100\%$	

= 2.75% CH₃COOH

Chapter 17

17-1. (a) A *ligand* is a species that contains one or more electron pair donor groups that tend to form bonds with metal ions.

(b). A *chelate* is a cyclic complex consisting of metal ion and a reagent that contains two or more electron donor groups located in such a position that they can bond with the metal ion to form a heterocyclic ring structure.

(c). A *tetradentate chelating agent* is a molecule that contains four pairs of donor electron located in such positions that they all can bond to a metal ion, thus forming two rings.

(d). An *adsorption indicator* is an organic compound that adsorbs onto the surface of the solid in a precipitation titration. Adsorption or desorption of the indicator occurs near the equivalence point and results in a color change and transfer of color from the solution to the solid or vice versa.

(e). *Argentometric titrations* are titrations based on the formation of precipitates with standard solutions of silver nitrate. An example is the titration of a halide ion with silver nitrate to form the isoluble silver halide.

(**f**). A *conditional formation constant* is an equilibrium constant for the reaction between a metal ion and a complexing agent that applies only when the pH and/or the concentration of other complexing ions are carefully specified.

(g). In an *EDTA displacement titration*, an unmeasured excess of a solution containing the magnesium or zinc complex of EDTA is introduced into the solution of an analyte that forms a more stable complex that that of magnesium or zinc. The liberated

magnesium or zinc ions are then titrated with a standard solution of EDTA. Displacement titrations are used for the determination of cations for which no good indicator exists.

(h). *Water hardness* is the concentration of calcium carbonate that is equivalent to the total concentration of all of the multivalent metal carbonates in the water.

- **17-2.** Multidentate ligands offer the advantage that they usually form more stable complexes than do unidentate ligands. Furthermore, they often form but a single complex with the cation, which simplifies their titration curves and makes end-point detection easier.
- 17-3. Three general methods for performing EDTA titrations are (1) direct titration, (2) back titration, and (3) displacement titration. Method (1) is simple, rapid, but requires one standard reagent. Method (2) is advantageous for those metals that react so slowly with EDTA as to make direct titration inconvenient. In addition, this procedure is useful for cations for which satisfactory indicators are not available. Finally, it is useful for analyzing samples that contain anions that form sparingly soluble precipitates with the analyte under analytical conditions. Method (3) is particularly useful in situations where no satisfactory indicators are available for direct titration.

$$Ag^{+} + S_2O_3^{2-} \rightleftharpoons Ag(S_2O_3)^{-}$$
 $K_1 = \frac{[Ag(S_2O_3)^{-}]}{[Ag^{+}][S_2O_3^{2-}]}$

$$Ag(S_2O_3)^{-} + S_2O_3^{2-} \rightleftharpoons Ag(S_2O_3)_2^{3-} \qquad K_2 = \frac{[Ag(S_2O_3)_2^{3-}]}{[Ag(S_2O_3)^{-}][S_2O_3^{2-}]}$$

Chapter 17

(b) $Ni^{2+} + CN^{-} \rightleftharpoons Ni(CN)^{+} \qquad K_{1} = \frac{[Ni(CN)^{+}]}{[Ni^{2+}][CN^{-}]}$ $Ni(CN)^{+} + CN^{-} \rightleftharpoons Ni(CN)_{2} \qquad K_{2} = \frac{[Ni(CN)_{2}]}{[Ni(CN)^{+}][CN^{-}]}$ $Ni(CN)_{2} + CN^{-} \rightleftharpoons Ni(CN)_{3}^{-} \qquad K_{3} = \frac{[Ni(CN)_{3}^{-}]}{[Ni(CN)_{2}][CN^{-}]}$ $Ni(CN)_{3}^{-} + CN^{-} \rightleftharpoons Ni(CN)_{4}^{2-} \qquad K_{4} = \frac{[Ni(CN)_{4}^{2-}]}{[Ni(CN)_{3}^{-}][CN^{-}]}$

(c)

$$Cd^{2+} + SCN^{-} \rightleftharpoons Cd(SCN)^{+}$$

 $K_1 = \frac{[Cd(SCN)^{+}]}{[Cd^{2+}][SCN^{-}]}$

$$Cd(SCN)^{+} + SCN^{-} \rightleftharpoons Cd(SCN)_{2}$$
 $K_{2} = \frac{[Cd(SCN)_{2}]}{[Cd(SCN)^{+}][SCN^{-}]}$

$$Cd(SCN)_2 + SCN^- \rightleftharpoons Cd(SCN)_3^ K_3 = \frac{[Cd(SCN)_3^-]}{[Cd(SCN)_2][SCN^-]}$$

17-5. The overall formation constant β_n is equal to the product of the individual stepwise constants. Thus, the overall constant for formation of Ag(S₂O₃)₂³⁻ in Problem 17-4 (a) is

$$\beta_2 = K_1 K_2 = \frac{[Ag(S_2O_3)_2^{3-}}{[Ag^+][S_2O_3^{2-}]^2}$$

17-6. (a) hexaaminezinc(II),
$$Zn(NH_3)_6^2$$

- **(b)** dichloroargentate, $Ag(Cl)_2$
- (c) disulfatocuprate(II), $Cu(SO_4)_2^{2-}$

- (d) trioxalotoferrate(III), $Fe(C_2O_4)_3^{3-}$
- (e) hexacyanoferrate(II), $Fe(CN)_6^{4-}$
- **17-7.** The Fajans determination of chloride involves a direct titration, while a Volhard titration requires two standard solutions and a flitration step to remove AgCl before back titration of the excess SCN⁻.
- **17-8.** The solubility of the silver salt of the analyte with respect to AgSCN in the acidic environment needed to keep the iron(III) indicator in solution determines whether a filtration step is needed.

(a) The solubility of AgCl is unaffected by the acidity. Filtration is nevertheless required because AgCl is more soluble than AgSCN.

(b) The solubility of AgCN is less than that for AgSCN in a neutral or nearly neutral solution, but is appreciable in an acidic solution because CN⁻ is the conjugate base of the weak acid HCN. Filtration is required.

(c) Silver carbonate is more soluble than AgSCN and its solubility increases in acidic solution. Filtration is required for both reasons.

- **17-9.** The ions that are preferentially absorbed on the surface of an ionic solid are generally lattice ions. Thus, in the beginning stages of a precipitation titration, one of the lattice ions is in excess and its charge determines the sign of the charge of the particles. After the equivalence point, the ion of the opposite charge is present in excess and determines the sign of the charge on the particle. Thus, in the equivalence-point region, the charge shift from positive to negative, or the reverse.
- **17-10.** Potassium is determined by precipitation with an excess of a standard solution of sodium tetraphenylborate. An excess of standard AgNO₃ is then added, which precipites the

excess tetraphenylborate ion. The excess $AgNO_3$ is then titrated with a standard solution of SCN^- . The reactions are

$$K^{+} + B(C_{6}H_{5})_{4}^{-} \rightleftharpoons KB(C_{6}H_{5})_{4}(s)$$
 [measured excess $B(C_{6}H_{5})_{4}^{-}$]
Ag⁺ + B(C_{6}H_{5})_{4}^{-} \rightleftharpoons AgB(C_{6}H_{5})_{4}(s) [measured excess AgNO₃]

The excess AgNO₃ is then determined by a Volhard titration with KSCN.

17-11. (a) Acetate (OAc⁻)

$$HOAc \rightleftharpoons OAc^- + H^+$$
 $K_a = \frac{[OAc^-][H^+]}{[HOAc]}$

$$c_{\mathrm{T}} = [\mathrm{HOAc}] + [\mathrm{OAc}^{-}]$$

$$= \frac{[\mathrm{OAc}^{-}][\mathrm{H}^{+}]}{K_{\mathrm{a}}} + [\mathrm{OAc}^{-}] = [\mathrm{OAc}^{-}] \left\{ \frac{[\mathrm{H}^{+}]}{K_{\mathrm{a}}} + 1 \right\} = [\mathrm{OAc}^{-}] \left\{ \frac{[\mathrm{H}^{+}] + K_{\mathrm{a}}}{K_{\mathrm{a}}} \right\}$$

$$\alpha_{1} = \frac{[\mathrm{OAc}^{-}]}{c_{\mathrm{T}}} = \frac{K_{\mathrm{a}}}{[\mathrm{H}^{+}] + K_{\mathrm{a}}}$$
(b) Tartrate (T²⁻)
$$H_{2}\mathrm{T} \rightleftharpoons \mathrm{HT}^{-} + \mathrm{H}^{+} \qquad \qquad K_{\mathrm{a}1} = \frac{[\mathrm{HT}^{-}][\mathrm{H}^{+}]}{[\mathrm{H}_{2}\mathrm{T}]}$$

$$\mathrm{HT}^{-} \rightleftharpoons \mathrm{T}^{2-} + \mathrm{H}^{+} \qquad \qquad K_{\mathrm{a2}} = \frac{[\mathrm{T}^{2-}][\mathrm{H}^{+}]}{[\mathrm{HT}^{-}]}$$

$$c_{\rm T} = [{\rm H}_2{\rm T}] + [{\rm H}{\rm T}^-] + [{\rm T}^{2-}]$$
$$= \frac{[{\rm H}{\rm T}^-][{\rm H}^+]}{K_{\rm a1}} + \frac{[{\rm T}^{2-}][{\rm H}^+]}{K_{\rm a2}} + [{\rm T}^{2-}] = \frac{[{\rm T}^{2-}][{\rm H}^+]^2}{K_{\rm a1}K_{\rm a2}} + \frac{[{\rm T}^{2-}][{\rm H}^+]}{K_{\rm a2}} + [{\rm T}^{2-}]$$

$$= [\mathbf{T}^{2^{-}}] \left\{ \frac{[\mathbf{H}^{+}]^{2}}{K_{a1}K_{a2}} + \frac{[\mathbf{H}^{+}]}{K_{a2}} + 1 \right\} = [\mathbf{T}^{2^{-}}] \left\{ \frac{[\mathbf{H}^{+}]^{2} + K_{a1}[\mathbf{H}^{+}] + K_{a1}K_{a2}}{K_{a1}K_{a2}} \right\}$$
$$\alpha_{2} = \frac{[\mathbf{T}^{2^{-}}]}{c_{\mathrm{T}}} = \frac{K_{a1}K_{a2}}{[\mathbf{H}^{+}]^{2} + K_{a1}[\mathbf{H}^{+}] + K_{a1}K_{a2}}$$

(c) Phosphate

$$H_{3}PO_{4} \rightleftharpoons H_{2}PO_{4}^{-} + H^{+} \qquad \qquad K_{a1} = \frac{[H_{2}PO_{4}^{-}][H^{+}]}{[H_{3}PO_{4}]}$$

$$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$$
 $K_{a2} = \frac{[HPO_4^{2-}][H^+]}{[H_2PO_4^{-}]}$

$$HPO_4^{2-} \rightleftharpoons PO_4^{3-} + H^+$$
 $K_{a3} = \frac{[PO_4^{3-}][H^+]}{[HPO_4^{2-}]}$

$$c_{\rm T} = [{\rm H}_3{\rm PO}_4] + [{\rm H}_2{\rm PO}_4^-] + [{\rm HPO}_4^{2-}] + [{\rm PO}_4^{3-}]$$

Proceeding as in the preceeding problem, we obtain

$$c_{\rm T} = [{\rm PO_4}^{3-}] \left\{ \frac{[{\rm H^+}]^3 + K_{\rm a1}[{\rm H^+}]^2 + K_{\rm a1}K_{\rm a2}[{\rm H^+}] + K_{\rm a1}K_{\rm a2}K_{\rm a3}}{K_{\rm a1}K_{\rm a2}K_{\rm a3}} \right\}$$
$$\alpha_3 = \frac{[{\rm PO_4}^{3-}]}{c_{\rm T}} = \frac{K_{\rm a1}K_{\rm a2}K_{\rm a3}}{[{\rm H^+}]^3 + K_{\rm a1}[{\rm H^+}]^2 + K_{\rm a1}K_{\rm a2}[{\rm H^+}] + K_{\rm a1}K_{\rm a2}K_{\rm a3}}$$

17-12. (a)

$$\operatorname{Fe}^{3+} + \operatorname{OAc}^{-} \rightleftharpoons \operatorname{Fe}(\operatorname{OAc})^{2+} \qquad \qquad K_1 = \frac{[\operatorname{Fe}(\operatorname{OAc})^{2+}]}{[\operatorname{Fe}^{3+}][\operatorname{OAc}^{-}]} = \frac{[\operatorname{Fe}(\operatorname{OAc})^{2+}]}{[\operatorname{Fe}^{3+}]\alpha_1 c_{\mathrm{T}}}$$

$$K_1' = \alpha_1 K_1 = \frac{[\text{Fe}(\text{OAc})^+]}{[\text{Fe}^{3+}]c_{\text{T}}}$$

Chapter 17

Chapter 17

$$Fe^{3+} + T^{2-} \rightleftharpoons FeT^{+} \qquad K_{1} = \frac{[FeT^{+}]}{[Fe^{3+}](T^{2-}]} = \frac{[FeT^{+}]}{[Fe^{3+}]\alpha_{2}c_{T}}$$

$$K_{1}' = \alpha_{2}K_{1} = \frac{[FeT^{+}]}{[Fe^{3+}]c_{T}}$$
(c)
$$Fe^{3+} + PO_{4}^{3-} \rightleftharpoons FePO_{4} \qquad K_{1} = \frac{[FePO_{4}]}{[Fe^{3+}](PO_{4}^{3-}]} = \frac{[FePO_{4}]}{[Fe^{3+}]\alpha_{3}c_{T}}$$

$$K'_1 = \alpha_3 K_1 = \frac{[\text{FePO}_4]}{[\text{Fe}^{3+}]c_{\text{T}}}$$

17-13.

$$Fe^{3+} + 3Ox^{2-} \rightleftharpoons Fe(Ox)_3^{3-}$$
 $\beta_3 = \frac{[Fe(Ox)_3^{3-}]}{[Fe^{3+}][Ox^{2-}]^3}$

$$\alpha_2 = \frac{[Ox^{2-}]}{c_T}$$
 so $[Ox^{2-}] = \alpha_2 c_T$

$$\beta_3 = \frac{[\text{Fe}(\text{Ox})_3^{3^-}]}{[\text{Fe}^{3^+}][\text{Ox}^{2^-}]^3} = \frac{[\text{Fe}(\text{Ox})_3^{3^-}]}{[\text{Fe}^{3^+}](\alpha_2 c_T)^3}$$

$$\beta'_3 = (\alpha_2)^3 \beta_3 = \frac{[\text{Fe}(\text{Ox})_3^{3^-}]}{[\text{Fe}^{3^+}](c_T)^3}$$

17-14. Titrate the three ions in an aliquot of the sample that has been buffered to a pH of about 10. Buffer a second aliquot to a pH of about 4 and titrate the zinc and indium ions. Finally, titrate an aliquot that has been brought to a pH of about 1.5. Only the indium is complexed under these conditions.

17-15.

$$\beta_n = \frac{[\mathrm{ML}_n]}{[\mathrm{M}][\mathrm{L}]^n}$$

Taking the logarithm of both sides of the above equation yields

$$\log \beta_n = \log[ML_n] - \log[M] - n\log[L]$$

Now write the right hand side of the equation as a *p* function (i.e. pM = -log[M]).

 $\log \beta_n = pM + npL - pML_n$

17-16. The MgY^{2-} is added to assure a sufficient analytical concentration of Mg^{2+} to provide a sharp end point with Eriochrome Black T indicator.

17-17.

$$\frac{3.426 \text{ g reagent}}{100 \text{ g reagent}} \times \frac{99.7 \text{ g Na}_2 \text{H}_2 \text{Y} \cdot 2\text{H}_2 \text{O}}{100 \text{ g reagent}} \times \frac{1 \text{ mole EDTA}}{372.24 \text{ g Na}_2 \text{H}_2 \text{Y} \cdot 2\text{H}_2 \text{O}} = 0.00918 \text{ M EDTA}$$

$$1.000 \text{ L}$$

17-18.
$$\frac{50.00 \text{ mL} \times \frac{0.004423 \text{ mmol-Mg}^{2+}}{\text{mL}} \times \frac{1 \text{ mmol EDTA}}{\text{mmol-Mg}^{2+}}}{30.27 \text{ mL}} = 0.00731 \text{ M EDTA}$$

17-19. First calculate the $CoSO_4$ concentration

$$\frac{1.569 \text{ pag}}{\text{mL}} \times \frac{1 \text{ mmol } \text{CoSO}_4}{155.0 \text{ pag}} = 0.010123 \text{ M}$$

In each part 25.00 mL of this solution is taken, so

amount $\text{CoSO}_4 = 25.00 \text{ mL} \times \frac{0.010123 \text{ mmol}}{\text{mL}} = 0.25306 \text{ mmol}$

Chapter 17

(a)

Vol. EDTA = 0.25306 mmol·
$$\cos O_4 \times \frac{1 \text{ mmol} \text{EDTA}}{\text{mmol} \cdot \cos O_4} \times \frac{1 \text{ mL}}{0.007840 \text{ mmol} \cdot \text{EDTA}} = 32.28 \text{ mL}$$

(b)

amnt excess EDTA =
$$\left(\frac{0.007840 \text{ mmol}}{\text{mL}} \times 50.00 \text{ mL}\right)$$

- $\left(0.25306 \text{ mmol } \text{CoSO}_4 \times \frac{1 \text{ mmol}}{\text{mmol } \text{CoSO}_4}\right) = 0.1389 \text{ mmol}$

Vol.
$$Zn^{2+} = 0.1389 \text{ mmol} \text{EDTA} \times \frac{1 \text{ mmol} Zn^{2+}}{\text{mmol} \text{EDTA}} \times \frac{1 \text{ mL}}{0.009275 \text{ mmol} Zn^{2+}} = 14.98 \text{ mL}$$

(c)

Vol. EDTA = 0.25306 mmol·CoSO₄ ×
$$\frac{1 \text{ mmol} \text{Zn}^{2+}}{\text{mmol} \text{CoSO}_{4}}$$
 × $\frac{1 \text{ mmol} \text{EDTA}}{\text{mmol} \text{Zn}^{2+}}$ × $\frac{1 \text{ mmol} \text{EDTA}}{0.007840 \text{ mmol} \text{EDTA}}$
= 32.28 mL

17-20. (a)

$$Vol. EDTA = \frac{0.0598 \text{ mmol Mg(NO_3)}_2}{\text{mL}} \times 29.13 \text{ mL} \times \frac{1 \text{ mmol EDTA}}{\text{mmol Mg(NO_3)}_2} \times \frac{\text{mL}}{0.0500 \text{ mmol EDTA}}$$
$$= 34.84 \text{ mL}$$

(b)

Vol. EDTA = 0.1598
$$\not g \times \frac{1000 \text{ mmol-} \text{CaCO}_3}{100.09 \not g} \times \frac{1 \text{ mmol-} \text{EDTA}}{\text{mmol-} \text{CaCO}_3} \times \frac{1 \text{ mL}}{0.0500 \text{ mmol-} \text{EDTA}}$$

= 31.93 mL

Chapter 17

(c)

Amnt. CaHPO₄ · 2H₂O = 0.4861 g ×
$$\frac{81.4 \text{ g} \text{ CaHPO_4} \cdot 2\text{H}_2\text{O}}{100 \text{ g}}$$
 × $\frac{1000 \text{ mmol}}{172.09 \text{ g} \text{ CaHPO_4} \cdot 2\text{H}_2\text{O}}$
= 2.2993 mmol
Vol. EDTA = 2.2993 mmol CaHPO₄ · 2H₂O × $\frac{1 \text{ mmol} \cdot \text{EDTA}}{\text{mmol} \cdot \text{CaHPO}_4 \cdot 2\text{H}_2\text{O}}$ × $\frac{1 \text{ mmol} \cdot \text{EDTA}}{0.0500 \text{ mmol} \cdot \text{EDTA}}$
= 45.99 mL

(**d**)

Vol. EDTA = 0.1795 g ×
$$\frac{1000 \text{ mmol-hydro}}{365.3 \text{ g}}$$
 × $\frac{4 \text{ mmol-EDTA}}{\text{mmol-hydro}}$ × $\frac{1 \text{ mL}}{0.0500 \text{ mmol-EDTA}}$
= 38.32 mL
(e)

Vol. EDTA = 0.1612 g ×
$$\frac{92.5 \text{ g}}{100 \text{ g}}$$
 × $\frac{1000 \text{ mmol dolo}}{184.4 \text{ g}}$ × $\frac{2 \text{ mmol EDTA}}{\text{mmol dolo}}$ × $\frac{1 \text{ mL}}{0.0500 \text{ mmol EDTA}}$
= 32.34 mL

17-21.

Wt. Zn =
$$\frac{0.01639 \text{ mmol EDTA}}{\text{ml}} \times 22.57 \text{ mL} \times \frac{1 \text{ mmol Zn}^{2+}}{\text{mmol EDTA}} \times \frac{65.39 \text{ g}}{1000 \text{ mmol Zn}^{2+}} = 0.024189 \text{ g}$$

Percentage Zn = $\frac{0.024189 \text{ g Zn}}{0.7457 \text{ g sample}} \times 100\% = 3.244\%$

17-22.

EDTA added =
$$\left(\frac{0.01768 \text{ mmol}}{\text{ml} \text{EDTA}} \times 15.00 \text{ mL} \text{EDTA}\right)$$

 $-\left(\frac{0.008120 \text{ mmot} \text{Cu}^{2+}}{\text{mL}} \times 4.30 \text{ mL} \times \frac{1 \text{ mmol} \text{EDTA}}{\text{mmot} \text{Cu}^{2+}}\right) = 0.2303 \text{ mmol} \text{EDTA}$
Wt. Cr/cm² = $\left(\frac{0.2303 \text{ mmol} \text{EDTA} \times \frac{1 \text{ mmot} \text{Cr}}{\text{mmol} \text{EDTA}} \times \frac{51.996 \text{ mg}}{\text{mmot} \text{Cr}}}{(3.00 \times 4.00) \text{ cm}^2}\right) = 0.998 \frac{\text{mg}}{\text{cm}^2}$
17-23. Conc. AgNO₃ = $\frac{14.77 \text{ g}}{\text{L}} \times \frac{1 \text{ mol} \text{AgNO}_3}{169.873 \text{ g}} = 0.08695 \text{ M}$

(a)

Vol. AgNO₃ = 0.2631 g ×
$$\frac{\text{mmol-NaCl}}{0.05833 \text{ g}}$$
 × $\frac{1 \text{ mmol-AgNO}_3}{\text{mmol-NaCl}}$ × $\frac{1 \text{ mL AgNO}_3}{0.08695 \text{ mmol-AgNO}_3}$ = 51.78 mL (b)

$$V_{AgNO_{3}} = 0.1788 \text{ g} \times \frac{1 \text{ mmol Na}_{2}\text{CrO}_{4}}{0.16973 \text{ g}} \times \frac{2 \text{ mmol AgNO}_{3}}{\text{mmol Na}_{2}\text{CrO}_{4}} \times \frac{1 \text{ mL}}{0.08695 \text{ mmol AgNO}_{3}} = 25.55 \text{ mL}$$
(c)

$$V_{\text{AgNO}_3} = 64.13 \text{ mg} \times \frac{\text{mmol Na}_3 \text{AsO}_4}{207.89 \text{ mg}} \times \frac{3 \text{ mmol AgNO}_3}{\text{mmol Na}_3 \text{AsO}_4} \times \frac{1 \text{ mL}}{0.08695 \text{ mmol AgNO}_3} = 10.64 \text{ mL}$$

(**d**)

$$V_{\text{AgNO}_{3}} = 381.1 \text{ mg} \times \frac{\text{mmol BaCl}_{2} \cdot 2\text{H}_{2}\text{O}}{244.26 \text{ mg}} \times \frac{2 \text{ mmol AgNO}_{3}}{\text{mmol BaCl}_{2} \cdot 2\text{H}_{2}\text{O}} \times \frac{1 \text{ mL}}{0.08695 \text{ mmol AgNO}_{3}} = 35.89 \text{ mL}$$
(e)

$$V_{\text{AgNO}_3} = 25.00 \text{ mL} \times \frac{0.05361 \text{ mmol-Na}_3 \text{PO}_4}{\text{mL}} \times \frac{3 \text{ mmol-AgNO}_3}{\text{mmol-Na}_3 \text{PO}_4} \times \frac{1 \text{ mL}}{0.08695 \text{ mmol-AgNO}_3} = 46.24 \text{ mL}$$

(f)

$$V_{\text{AgNO}_3} = 50.00 \text{ mL} \times \frac{0.01808 \text{ mmoH}_2\text{S}}{\text{mL}} \times \frac{2 \text{ mmoH}_2\text{S} \text{MO}_3}{\text{mmoH}_2\text{S}} \times \frac{1 \text{ mL}}{0.08695 \text{ mmoH}_3\text{RNO}_3} = 20.79 \text{ mL}$$

17-24.

(a)

Amnt NaCl = 0.2631
$$\not g \times \frac{\text{mmol NaCl}}{0.05844 \not g} = 4.50205 \text{ mmol}$$

Conc. AgNO₃ = $\frac{4.50205 \text{ mmol NaCl} \times \frac{1 \text{ mmol AgNO}_3}{\text{mmol NaCl}}}{25.00 \text{ mL}} = 0.1801 \text{ M}$
(b) As in part (a)

$$\frac{0.1799 \text{ g}}{25.00 \text{ mL}} \times \frac{\text{mmol Na}_2 \text{ CrO}_4}{0.1617 \text{ g}} \times \frac{2 \text{ mmol AgNO}_3}{\text{mmol Na}_2 \text{ CrO}_4} = 0.08886 \text{ M AgNO}_3$$

$$\frac{64.13 \text{ mg}}{25.00 \text{ mL}} \times \frac{\text{mmol Na}_3 \text{AsO}_4}{207.888 \text{ mg}} \times \frac{3 \text{ mmol AgNO}_3}{\text{mmol Na}_3 \text{AsO}_4} = 0.03702 \text{ M AgNO}_3$$

(**d**) As in part (a)

$$\frac{38.11 \text{ mg}}{25.00 \text{ mL}} \times \frac{\text{mmol BaCl}_2 \cdot 2\text{H}_2\text{O}}{244.26 \text{ mg}} \times \frac{2 \text{ mmol AgNO}_3}{\text{mmol BaCl}_2 \cdot 2\text{H}_2\text{O}} = 0.01248 \text{ M AgNO}_3$$

(e) As in part (a)

$$\frac{25.00 \text{ mL}}{25.00 \text{ mL}} \times \frac{0.05361 \text{ mmol-Na}_{3}PO_{4}}{\text{mL}} \times \frac{3 \text{ mmol-AgNO}_{3}}{\text{mmol-Na}_{3}PO_{4}} = 0.1608 \text{ M AgNO}_{3}$$

(f) As in part (a)

$$\frac{50.00 \text{ mL}}{25.00 \text{ mL}} \times \frac{0.01808 \text{ mmoH}_{2}\text{S}}{\text{mL}} \times \frac{2 \text{ mmol AgNO}_{3}}{\text{mmoH}_{2}\text{S}} = 0.07232 \text{ M AgNO}_{3}$$

17-25. (a) An excess is assured if the calculation is based on a pure sample.

Vol. AgNO₃ = 0.2513 g ×
$$\frac{1 \text{ mmol NaCl}}{0.05844 \text{ g}}$$
 × $\frac{1 \text{ mmol AgNO}_3}{\text{ mmol NaCl}}$ × $\frac{1 \text{ mL}}{0.09621 \text{ mmol AgNO}_3}$ = 44.70 mL (b)

Vol. AgNO₃ = 0.3462
$$g \times \frac{0.7452 \text{ g.ZnCl}_2}{g} \times \frac{1 \text{ mmol-ZnCl}_2}{0.1363 \text{ g.ZnCl}_2} \times \frac{2 \text{ mmol-AgNO}_3}{\text{ mmol-ZnCl}_2} \times \frac{1 \text{ mL}}{0.09621 \text{ mmol-AgNO}_3} = 39.35 \text{ mL}$$

(c)

Vol.
$$AgNO_3 = 25.00 \text{ mL} \times \frac{0.01907 \text{ mmolAtCI}_3}{\text{mL}} \times \frac{3 \text{ mmolAgNO}_3}{\text{mmolAtCI}_3} \times \frac{1 \text{ mL}}{0.09621 \text{ mmolAgNO}_3} = 14.87 \text{ mL}$$

17-26. (a)

Percent Cl =
$$\frac{45.32 \text{ mL} \times 0.1046 \frac{\text{mmol-AgNO}_3}{\text{mL}} \times \frac{1 \text{ mmot Cl}^-}{\text{mmol-AgNO}_3} \times \frac{0.035453 \text{ g}}{\text{mmot Cl}^-}}{0.7908 \text{ g sample}} \times 100\% = 21.25\%$$
(b)

$$\frac{(45.32 \times 0.1046) \text{ mmol-AgNO}_3 \times \frac{1 \text{ mmol-BaCl}_2 \cdot 2\text{H}_2\text{O}}{2 \text{ mmol-AgNO}_3} \times \frac{0.24426 \text{ g/}}{\text{mmol-BaCl}_2 \cdot 2\text{H}_2\text{O}}}{0.7908 \text{ g/ sample}} \times 100\%$$

 $= 73.21\% \text{ BaCl}_2 \cdot 2\text{H}_2\text{O}$

(c)

$$\frac{(45.32 \times 0.1046) \text{ mmol-AgNO}_3 \times \frac{1 \text{ mmol-analyte}}{4 \text{ mmol-AgNO}_3} \times \frac{0.24328 \text{ g}}{\text{mmol-analyte}} \times 100\% = 36.46\% \text{ analyte}}{0.7908 \text{ g} \text{ sample}} \times 100\% = 36.46\% \text{ analyte}$$

Chapter 17

Chapter 17

17-27.

$$Percent Tl_2SO_4 = \frac{\left(\frac{0.03610 \text{ mmol} \text{EDTA}}{\text{ml}} \times 12.77 \text{ ml} \times \frac{1 \text{ mmol} \text{Fl}_2SO_4}{2 \text{ mmol} \text{EDTA}} \times \frac{504.8 \text{ g}}{\text{mmol} \text{Fl}_2SO_4}\right)}{9.57 \text{ g} \text{ sample}} \times 100\%$$
$$= 1.216\%$$

17-28. (a)

Conc. EDTA =
$$\frac{\left(\frac{0.7682 \text{ g}}{1000 \text{ mL MgCO}_3} \times \frac{1000 \text{ mmol-MgCO}_3}{84.314 \text{ g}} \times 50.0 \text{ mL MgCO}_3 \times \frac{1 \text{ mmol EDTA}}{\text{mmol-MgCO}_3}\right)}{42.35 \text{ mL}}$$
$$= 0.1076 \text{ M}$$

(b) Total Conc. =
$$\frac{\left(\frac{1.076 \times 10^{-2} \text{ mmol}}{\text{mL}} \times 18.81 \text{ mL}\right)}{25.00 \text{ mL}} = 8.094 \times 10^{-3} \text{ M}$$

Conc.
$$CaCO_{3} = \frac{mmol CaCO_{3}}{mL sample} = \frac{\left(\frac{1.076 \times 10^{-2} \text{ mmol EDTA}}{\text{mL}} \times 31.54 \text{ mL} \times \frac{1 \text{ mmol CaCO}_{3}}{\text{mmol EDTA}}\right)}{50.00 \text{ mL}}$$

= 6.786×10⁻³ M
Conc. $MgCO_{3} = \frac{mmol MgCO_{3}}{mL \text{ sample}} = 8.094 \times 10^{-3} \text{ M} - 6.786 \times 10^{-3} \text{ M} = 1.308 \times 10^{-3} \text{ M}$
Conc. $CaCO_{3} (\text{ppm}) = \frac{6.786 \times 10^{-3} \text{ mmol CaCO}_{3}}{\text{mL sample}} \times \frac{1000.09 \text{ g/s}}{1000 \text{ mmol CaCO}_{3}} \times \frac{1.000 \text{ mL sample}}{\text{g sample}} \times 10^{6} \text{ ppm}$
= 679.2 ppm
(c)

Conc. MgCO₃(ppm) =
$$\frac{1.308 \times 10^{-3} \text{ mmol-MgCO}_3}{\text{mL sample}} \times \frac{84.314 \text{ g}}{1000 \text{ mmol-MgCO}_3} \times \frac{1.000 \text{ mL sample}}{\text{g} \text{ sample}} \times 10^6 \text{ ppm}$$
$$= 110.3 \text{ ppm}$$

17-29.

Amnt
$$\operatorname{Fe}^{3+} = \frac{0.01500 \text{ mmol} \text{EDTA}}{\text{ml}} \times 10.98 \text{ mL} \times \frac{1 \text{ mmol} \operatorname{Fe}^{3+}}{\text{mmol} \cdot \operatorname{EDTA}} = 0.1647 \text{ mmol}$$

Amnt $\operatorname{Fe}^{2+} = \frac{0.01500 \text{ mmol} \cdot \operatorname{EDTA}}{\text{mL}} \times (23.70 - 10.98) \text{ mL} \times \frac{1 \text{ mmol} \operatorname{Fe}^{2+}}{\text{mmol} \cdot \operatorname{EDTA}} = 0.1908 \text{ mmol}$
Conc. $\operatorname{Fe}^{3+} = \frac{\left(0.1647 \text{ mmol} \cdot \operatorname{Fe}^{3+} \times \frac{55.847 \text{ mg}}{\text{mmol} \cdot \operatorname{Fe}^{3+}}\right)}{50.00 \text{ mL} \times \frac{1}{1000 \text{ mL}}} = 183.96 \text{ ppm} \approx 184.0 \text{ ppm}$
Conc. $\operatorname{Fe}^{2+} = \frac{\left(0.1908 \text{ mmol} \cdot \operatorname{Fe}^{2+} \times \frac{55.847 \text{ mg}}{\text{mmol} \cdot \operatorname{Fe}^{2+}}\right)}{50.00 \text{ mL} \times \frac{1}{1000 \text{ mL}}} = 213.1 \text{ ppm}$

17-30.

Amount Mg²⁺ + Ca²⁺ =

$$\frac{0.004590 \text{ mmol EDTA}}{\text{mL}} \times 23.57 \text{ mL EDTA} \times \frac{1 \text{ mmol } (\text{Mg}^{2+} + \text{Ca}^{2+})}{\text{mmol EDTA}} = 0.108186 \text{ mmol}$$
Amnt Ca²⁺ = $\frac{0.004590 \text{ mmol EDTA}}{\text{mL}} \times 10.53 \text{ mL EDTA} \times \frac{1 \text{ mmol Ca}^{2+}}{\text{mmol EDTA}} = 0.048333 \text{ mmol}$
Amnt Mg²⁺ = $0.108186 - 0.048333 = 0.059854 \text{ mmol}$

$$\left(0.048333 \text{ mmol Ca}^{2+} \times \frac{40.08 \text{ mg}}{\text{mmol EDTA}}\right)$$

$$\frac{\left(0.048333 \text{ minor Ca}^{2+}\right)}{10.00 \text{ mL} \times \frac{L}{1000 \text{ mL}} \times \frac{1}{2.000 \text{ L}}} = 387.4 \text{ ppm Ca}^{2+}$$
$$\frac{\left(0.059835 \text{ mmol Mg}^{2+} \times \frac{24.305 \text{ mg Mg}^{2+}}{\text{mmol}}\right)}{10.00 \text{ mL} \times \frac{L}{1000 \text{ mL}} \times \frac{1}{2.000 \text{ L}}} = 290.9 \text{ ppm Mg}^{2+}$$

Both fall within the normal ranges.

17-31.

Amount
$$Cd^{2+} + Pb^{2+} =$$

$$\frac{0.06950 \text{ mmol EDTA}}{\text{mL}} \times 28.89 \text{ mL EDTA} \times \frac{1 \text{ mmol } (Cd^{2+} + Pb^{2+})}{\text{mmol EDTA}} = 2.00786 \text{ mmol}$$
Amnt $Pb^{2+} = \frac{0.06950 \text{ mmol EDTA}}{\text{mL}} \times 11.56 \text{ mL EDTA} \times \frac{1 \text{ mmol } Pb^{2+}}{\text{mmol EDTA}} = 0.80342 \text{ mmol}$
Amnt $Cd^{2+} = 2.00786 \text{ mmol} - 0.80342 \text{ mmol} = 1.20444 \text{ mmol}$

$$\frac{\left(0.80342 \text{ mmol } Pb^{2+} \times \frac{207.2 \text{ g } Pb^{2+}}{1000 \text{ mmol}}\right)}{1.509 \text{ g sample} \times \frac{50.00 \text{ mL}}{250.0 \text{ mL}}} \times 100\% = 55.16\% \text{ Pb}^{2+}$$

$$\frac{\left(1.204 \text{ mmol } Cd^{2+} \times \frac{112.41 \text{ g } Cd^{2+}}{1000 \text{ mmol}}\right)}{1.509 \text{ g sample} \times \frac{50.00 \text{ mL}}{250.0 \text{ mL}}} \times 100\% = 44.86\% \text{ Cd}^{2+}$$

17-32.

Amount Ni²⁺ + Cu²⁺ =

$$\frac{0.05285 \text{ mmol EDTA}}{\text{mL}} \times 45.81 \text{ mL EDTA} \times \frac{1 \text{ mmol (Ni}^{2+} + \text{Cu}^{2+})}{\text{mmol EDTA}} = 2.42106 \text{ mmol}$$
Amnt Cu²⁺ = $\frac{0.07238 \text{ mmol Mg}^{2+}}{\text{mL}} \times 22.85 \text{ mL Mg}^{2+} \times \frac{1 \text{ mmol Cu}^{2+}}{\text{mmol Mg}^{2+}} = 1.65388 \text{ mmol}$
Amnt Ni²⁺ = 2.42106 mmol - 1.65388 mmol=0.76718 mmol
(0.76718 mmol Ni²⁺ $\times \frac{58.693 \text{ g}}{1000 \text{ mmol Ni}^{2+}}$)
 $0.6004 \text{ g sample} \times \frac{25.00 \text{ mL}}{100.0 \text{ mL}} \times 100\% = 30.00\% \text{ Ni}^{2+}$
 $\frac{(1.65388 \text{ mmol Cu}^{2+} \times \frac{63.546 \text{ g Cu}^{2+}}{1000 \text{ mmol}})}{0.6004 \text{ g sample} \times \frac{25.00 \text{ mL}}{100.0 \text{ mL}}} \times 100\% = 70.02\% \text{ Cu}^{2+}$

17-33.

$$\frac{\left(\frac{0.01133 \text{ mmol EDTA}}{\text{mL}} \times 38.37 \text{ mL EDTA} \times \frac{1 \text{ mmol ZnO}}{\text{mmol EDTA}} \times \frac{81.379 \text{ g ZnO}}{1000 \text{ mmol}}\right)}{1.056 \text{ g sample} \times \frac{10.00 \text{ mL}}{250.0 \text{ mL}}} \times 100\%$$

= 83.75% ZnO $\frac{\left(\frac{0.002647 \text{ mmol } \text{ZnY}^{2-}}{\text{mL}} \times 2.30 \text{ mL } \text{ZnY}^{2-} \times \frac{1 \text{ mmol } \text{Fe}_2\text{O}_3}{2 \text{ mmol } \text{ZnY}^{2-}} \times \frac{159.69 \text{ g } \text{Fe}_2\text{O}_3}{1000 \text{ mmol}}\right)}{1.056 \text{ g sample} \times \frac{50.00 \text{ mL}}{250.0 \text{ mL}}} \times 100\%$

 $= 0.230\% \text{ Fe}_2\text{O}_3$

17-34.

1 mmol EDTA = 1 mmol Ni²⁺ = 2 mmol NaBr = 2 mmol NaBrO₃

For the 10.00 mL aliquot,

$$\frac{\text{Amnt NaBr + amnt NaBrO}_{3}}{\text{mL sample solution}} = \frac{\left(\frac{0.02089 \text{ mmol EDTA}}{\text{mL}} \times 21.94 \text{ mL EDTA} \times \frac{2(\text{mmol NaBr+mmol NaBrO}_{3})}{\text{mmol EDTA}}\right)}{10.00 \text{ mL}} = 0.09166 \text{ M}$$

10.00 mL

For the 25.00 mL aliquot,

 $\frac{\frac{\text{Amnt NaBr}}{\text{mL sample solution}} = \frac{\left(\frac{0.02089 \text{ mmol EDTA}}{\text{mL}} \times 26.73 \text{ mL EDTA} \times \frac{2 \text{ mmol NaBr}}{\text{mmol EDTA}}\right)}{25.00 \text{ mL}} = 0.04467 \text{ M NaBr}$

 $\frac{\text{Amnt NaBrO}_3}{\text{mL sample solution}} = 0.09166 - 0.04467 = 0.04699 \text{ M NaBrO}_3$

$$\frac{\left(\frac{0.04467 \text{ mmol NaBr}}{\text{mL}} \times 250.0 \text{ mL} \times \frac{102.9 \text{ g NaBr}}{1000 \text{ mmol}}\right)}{3.650 \text{ g sample}} \times 100\% = 31.48\% \text{ NaBr}$$
$$\frac{\left(\frac{0.04699 \text{ mmol NaBrO}_3}{\text{mL}} \times 250.0 \text{ mL} \times \frac{150.9 \text{ g NaBrO}_3}{1000 \text{ mmol}}\right)}{3.650 \text{ g sample}} \times 100\% = 48.57\% \text{ NaBrO}_3$$

17-35.

1 mmol $Mg^{2+} \equiv 1$ mmol EDTA = ¹/₄ mmol $B(C_6H_5)_4^- \equiv ^{1}/_4 K^+$

$$\frac{\left(\frac{0.05581 \text{ mmol } \text{Mg}^{2+}}{\text{mL}} \times 29.64 \text{ mL } \text{Mg}^{2+} \times \frac{1 \text{ mmol } \text{K}^{+}}{4 \text{ mmol } \text{Mg}^{2+}} \times \frac{39.098 \text{ mg } \text{K}^{+}}{\text{mmol}}\right)}{250 \text{ mL} \times \frac{\text{L}}{1000 \text{ mL}}} = 64.68 \text{ ppm } \text{K}^{+}$$

17**-36**.

Amnt EDTA reacted in 50.00 mL =
$$\left(\frac{0.05173 \text{ mmol EDTA}}{\text{mL}} \times 50.00 \text{ mL EDTA}\right) - \left(\frac{0.06139 \text{ mmol Cu}^{2+}}{\text{mL}} \times 5.34 \text{ mL Cu}^{2+} \times \frac{1 \text{ mmol EDTA}}{\text{mmol Cu}^{2+}}\right) = 2.2587 \text{ mmol}$$

Amnt EDTA reacted in 250.0 mL = Amnt (Ni+ Fe+ Cr) = $\frac{2.2587 \text{ mmol}}{\left(\frac{50.00 \text{ mL}}{250.0 \text{ mL}}\right)} = 11.2934 \text{ mmol}$

Amnt (Ni + Fe) =
$$\frac{\left(\frac{0.05173 \text{ mmol EDTA}}{\text{mL}} \times 36.98 \text{ mL EDTA}\right)}{\frac{50.00 \text{ mL}}{250.0 \text{ mL}}} = 9.5649 \text{ mmol}$$

Amnt Cr = 11.2934 mmol - 9.5649 mmol = 1.7285 mmol(0.05173 mmol EDTA 24.52 M EDTA 1 mmol Ni)

Amnt Ni =
$$\frac{\left(\frac{0.05173 \text{ mmol EDTA}}{\text{mL}} \times 24.53 \text{ mL EDTA} \times \frac{1 \text{ mmol Ni}}{\text{mmol EDTA}}\right)}{\frac{50.00 \text{ mL}}{250.0 \text{ mL}}} = 6.3447 \text{ mmol}$$

Chapter 17

Amnt Fe =9.5649 mmol - 6.3447 mmol = 3.2202 mmol
%Cr =
$$\frac{1.7285 \text{ mmol Cr} \times \frac{51.996 \text{ g Cr}}{1000 \text{ mmol}}}{0.6553 \text{ g}} \times 100\% = 13.72\%$$

%Ni = $\frac{6.3447 \text{ mmol Ni} \times \frac{58.69 \text{ g Ni}}{1000 \text{ mmol}}}{0.6553 \text{ g}} \times 100\% = 56.82\%$
%Fe = $\frac{3.2202 \text{ mmol Fe} \times \frac{55.847 \text{ g Fe}}{1000 \text{ mmol}}}{0.6553 \text{ g}} \times 100\% = 27.44\%$

17-37.

Amnt EDTA (mmol) =Amnt (Pb+Zn+Cu) in mmol

$$\frac{\left(\frac{0.002700 \text{ mmol EDTA}}{\text{mL}} \times 34.78 \text{ mL EDTA}\right)}{\text{mL}} = 4.6953 \text{ mmol}$$

$$\frac{10.00 \text{ mL}}{500.0 \text{ mL}} = 4.6953 \text{ mmol}$$
Amnt (Pb+Zn) =
$$\frac{\left(\frac{0.002700 \text{ mmol EDTA}}{\text{mL}} \times 25.62 \text{ mL EDTA}\right)}{\frac{25.00 \text{ mL}}{500.0 \text{ mL}}} = 1.3835 \text{ mmol}$$
Amnt Cu = 4.6953 mmol - 1.3835 mmol = 3.3118 mmol
Amnt Pb=
$$\frac{\left(\frac{0.002700 \text{ EDTA}}{\text{mL}} \times 10.00 \text{ mL EDTA} \times \frac{1 \text{ mmol Pb}}{\text{mmol EDTA}}\right)}{\frac{100.0 \text{ mL}}{500.0 \text{ mL}}} = 0.1350 \text{ mmol Pb}$$
Amnt Zn = 1.3835 mmol - 0.1350 mmol = 1.2485 mmol Zn

%Cu =
$$\frac{3.3118 \text{ mmol Cu} \times \frac{63.55 \text{ g Cu}}{1000 \text{ mmol}}}{0.3304 \text{ g}} \times 100\% = 63.70\%$$

19

$$\%Pb = \frac{0.1350 \text{ mmol Pb} \times \frac{207.2 \text{ g Pb}}{1000 \text{ mmol}}}{0.3304 \text{ g}} \times 100\% = 8.47\%$$
$$\%Zn = \frac{1.2485 \text{ mmol Zn} \times \frac{65.39 \text{ g Zn}}{1000 \text{ mmol}}}{0.3304 \text{ g}} \times 100\% = 24.71\%$$
$$\%Sn = 100\% - (63.70 + 8.47 + 24.71)\% = 3.12\%$$

17**-38**.

-	A	В	С	D	E	F	G	Н	1	J	K
1	Pb 17-38 (Conditiona	l constant	s for the F	e ²⁺ -EDTA	complex					
2	Note: The conditional constant K'_{MY} is the product of α_4 and K_{MY} (Equation 17-25).										
3	The value of K _{MY} is found in Table 17-4.										
4	KMY	2.10E+14									
5	K ₁	1.02E-02									
6	K ₂	2.14E-03						1			1
7	K ₃	6.92E-07									
8	K4	5.50E-11									
9	рН	D	a ₄	K'MY				1	1		1
10	6.0	3.69E-17	2.25E-05	4.7E+09							
11	8.0	1.54E-19	5.39E-03	1.1E+12							
12	10.0	2.34E-21	3.55E-01	7.5E+13							
13	Spreadsheet Documentation										
14								\$7*\$B\$8			
15											
16	6 Cell D10=\$B\$4*C10										

17-39.

	A	В	С	D	E	F	G	Н	I	J	K
1	Pb 17-39 Conditional constants for Ba ²⁺ -EDTA complex										
2	Note: The conditional constant K'_{MY} is the product of α_4 and K_{MY} (Equation 17-25).										
3	The value of $K_{\rm MY}$ is found in Table 17-4.										
4	KMY	5.80E+07									
5	K ₁	1.02E-02									
6	K ₂	2.14E-03									
7	K ₃	6.92E-07									
8	K4	5.50E-11									
9	pН	D	α_4	K'MY							
10	5.0	2.34E-15	3.54E-07	2.1E+01		1					
11	7.0	1.73E-18	4.80E-04	2.8E+04							
12	9.0	1.60E-20	5.21E-02	3.0E+06							
13	11.0	9.82E-22	8.46E-01	4.9E+07							
14	Spreadsh	eet Docum	entation								
15											
16	Cell C10=5	B\$5*\$B\$6*	\$B\$7*\$B\$8	/B10							
17											

17-40.

	A	В	С	D	E	F	G	H	1	J
1	17-40 Titration of	50.00 mL o	of 0.01000	M Sr ²⁺ with 0.0	2000 M ED	ТА				
2	Note: The conditiona	al constant	K'MY is the	e product of α_4 a	and K _{MY} (E	quation 15-23))_			
3	The value of K_{MY} is	found in Ta	ble 15-5.	See Problem 15	-32 for calc	ulation of K'.				
4	KMY	4.30E+08	рН	D	a.4	K' _{MY}				
5	EDTA K1	1.02E-02	11.0	9.82E-22	8.46E-01	3.64E+08				
6	K ₂	2.14E-03								
7	K ₃	6.92E-07								
8	K4	5.50E-11								
9	Initial conc. Sr ²⁺	0.01000	Initial Vol.	50.00						
10	Initial conc. EDTA	0.02000								
11	Vol. EDTA, mL	C Sr2+	C SrY2-	CT	[Sr ²⁺]	[SrY ²]		pSr		
12	0.00	0.01000	0		0.01000			2.00		
13	10.00	0.00500	0.00333		0.00500			2.30		
14	24.00	0.00027	0.00649		0.00027			3.57		
15	24.90	0.00003	0.00665		0.00003			4.57		
16	25.00	0.00000	0.00667	0.00667	4.28E-06	0.00667		5.37		
17	25.10		0.00666	2.66E-05	6.87E-07	0.00666		6.16		
18	26.00		0.00658	2.63E-04	6.87E-08	0.00658		7.16		
19	30.00		0.00625	1.25E-03	1.37E-08	0.00625		7.86		
20	Documentation									
21	Cell B12=(\$B\$9*\$D\$	\$9-\$B\$10*/	12)/(\$D\$9	+A12) g	.00					
22	Cell C12=(\$B\$10*A*	12)/(\$D\$9+.	A12)		.00					
23	Cell C16=(\$B\$10*\$A	A\$16)/(\$D\$	9+A16)		.00	1				-
24	Cell D17=(\$B\$10*A*	17-\$D\$9*\$E	3\$9)/(\$D\$9	$+\Delta 17$					V	
25	Cell D16=(\$B\$10*\$A	A\$16)/(\$D\$	9+A16)		.00					
26	Cell E12=B12			10	.00				+	
27		6/\$F\$5)			.00	-				
28	Cell E17=C17/(D17*			3	.00					
	Cell F16=C16			2	.00	+				
30		12)		1	.00		-	·	1	-
31		,		0	.00					
32					0.00	5.00 10.0	0 15.	00 20.00	25.00	30.0
33							Vol. ED			
							VOI. ED	IA, IIIL		

17-41.

G H
pFe
1.82
2.12
3.39
4.40
6.50
8.61
9.61
10.30
al to Problem
¥ I
+
25.00 30.00

Chapter 17

17-42.

Amnt
$$Ca^{2+}$$
 + Amnt $Mg^{2+} = \left(\frac{0.01205 \text{ mmol EDTA}}{\text{mL}} \times 23.65 \text{ mL EDTA}\right) = 0.2850 \text{ mmol}$
Amnt $Ca^{2+} = \left(\frac{0.01205 \text{ mmol EDTA}}{\text{mL}} \times 14.53 \text{ mL EDTA} \times \frac{1 \text{ mmol } Ca^{2+}}{\text{mmol EDTA}}\right) = 0.1751 \text{ mmol}$
Amnt $Mg^{2+} = 0.2850 - 0.1751 = 0.1099 \text{ mmol}$

(a)

See discussion of water hardness in 17D-9.

Water hardness
$$\cong$$
 Conc. CaCO₃ in ppm \approx conc. Ca²⁺ + Mg²⁺ in ppm
= $\frac{0.2850 \text{ mmol} \times \frac{100.087 \text{ mg CaCO}_3}{\text{mmol}}}{50.00 \text{ mL} \times \frac{\text{L}}{1000 \text{ mL}}} = 570.5 \text{ ppm CaCO}_3$

(b)

$$\frac{\left(0.1751 \text{ mmol } \text{Ca}^{2+} \times \frac{1 \text{ mmol } \text{CaCO}_3}{\text{mmol } \text{Ca}^{2+}} \times \frac{100.08 \text{ mg } \text{CaCO}_3}{\text{mmol}}\right)}{50.00 \text{ mL} \times \frac{\text{L}}{1000 \text{ mL}}} = 350.5 \text{ ppm } \text{CaCO}_3$$

(c)

$$\frac{\left(0.1099 \text{ mmol } \text{Mg}^{2+} \times \frac{1 \text{ mmol } \text{MgCO}_3}{\text{mmol } \text{Mg}^{2+}} \times \frac{84.30 \text{ mg } \text{MgCO}_3}{\text{mmol}}\right)}{50.00 \text{ mL} \times \frac{\text{L}}{1000 \text{ mL}}} = 185.3 \text{ ppm } \text{MgCO}_3$$

Chapter 18

18-1. (a) Oxidation is a process in which a species loses one or more electrons.

(b) An *reducing agent* is an electron donor.

(c) A *salt bridge* provides electrical contact but prevents mixing of dissimilar solutions in an electrochemical cell.

(**d**) A *liquid junction* is the interface between dissimilar liquids. A potential develops across the interface.

(e) The *Nernst equation* relates the potential to the concentrations (strictly, activities) of the participants in an electrochemical reaction.

18-2. (a) The *electrode potential* is the potential of an electrochemical cell in which a standard hydrogen electrode acts as the reference electrode on the left and the half-cell of interest is on the right.

(**b**) The *formal potential* of a half-reaction if the potential of the system (measured against the standard hydrogen electrode) when the concentration of each solute participating in the half-reaction has a concentration of exactly one molar and the concentrations of all other constituents of the solution are carefully specified.

(c) The *standard electrode potential* is the potential of a cell consisting of the halfreaction of interest on the right and a standard hydrogen electrode on the left. The activities of all the participants in the half-reaction are specified as having a value of unity. The standard electrode potential is always a *reduction potential*.

(d) A *liquid-junction potential* is the potential that develops across the interface between two dissimilar solutions.

(e) An *oxidation potential* is the potential of an electrochemical cell in which the cathode is a standard hydrogen electrode and the half-cell of interest acts as anode.

18-3. (a) *Oxidation* is the process whereby a substance loses electrons; an *oxidizing agent* causes the loss of electrons.

(**b**) A *galvanic cell* is one in which a spontaneous electrochemical reaction occurs and is thus a source of energy. The reaction in an *electrolytic cell* is forced in a nonspontaneous direction through application of an external source of electrical energy.

(c) The *cathode* of a cell is the electrode at which reduction occurs. The *right-hand electrode* is the electrode on the right in the cell diagram.

(d) In a *reversible cell*, alteration of the direction of the current simply causes a reversal in the electrochemical process. In an *irreversible cell*, reversal of the current results in a different reaction at one or both of the electrodes.

(e) The *standard electrode potential* is the potential of a cell in which the standard hydrogen electrode acts as the reference electrode on the left and all participants in the right-hand electrode process have unit activity. The *formal potential* differs in that the molar *concentrations* of all the reactants and products are unity and the concentration of other species in the solution are carefully specified.

- **18-4.** The first standard potential is for a solution saturated with I_2 , which has an $I_2(aq)$ activity significantly less than one. The second potential is for a *hypothetical* half-cell in which the $I_2(aq)$ activity is unity.
- **18-5.** To keep the solution saturated with $H_2(g)$. Only then is the hydrogen activity constant and the electrode potential constant and reproducible.

18-6. The potential in the presence of base would be more negative because the nickel ion activity in this solution would be far less than 1 M. Consequently the driving force for the reduction if Ni (II) to the metallic state would also be far less, and the electrode potential would be significantly more negative. (In fact the standard electrode potential for the reaction Ni(OH)₂ + 2e⁻ \rightleftharpoons Ni(*s*) + 2OH⁻ has a value of -0.72 V, whereas the

standard electrode potential for Ni²⁺ + 2e⁻ \rightleftharpoons Ni(s) is -0.250 V.)

18-7. (a)
$$2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$$

(b) $Cr(s) + 3Ag^{+} \rightarrow Cr^{3+} + 3Ag(s)$
(c) $2NO_{3}^{-} + Cu(s) + 4H^{+} \rightarrow 2NO_{2}(g) + 2H_{2}O + Cu^{2+}$
(d) $2MnO_{4}^{-} + 5H_{2}SO_{3} \rightarrow 2Mn^{2+} + 5SO_{4}^{2-} + 4H^{+} + 3H_{2}O$
(e) $Ti^{3+} + Fe(CN)_{6}^{3-} + H_{2}O \rightarrow TiO^{2+} + Fe(CN)_{6}^{4-} + 2H^{+}$
(f) $H_{2}O_{2} + 2Ce^{4+} \rightarrow O_{2}(g) + 2Ce^{3+} + 2H^{+}$
(g) $2Ag(s) + 2\Gamma + Sn^{4+} \rightarrow 2AgI(s) + Sn^{2}$
(h) $UO_{2}^{2+} + Zn(s) + 4H^{+} \rightarrow U^{4+} + Zn^{2+} + 2H_{2}O$
(i) $5HNO_{2} + 2MnO_{4}^{-} + H^{+} \rightarrow 5NO_{3}^{-} + 2Mn^{2+} + 3H_{2}O$
(j) $H_{2}NNH_{2} + IO_{3}^{-} + 2H^{+} + 2CI^{-} \rightarrow N_{2}(g) + ICI_{2}^{-} + 3H_{2}O$

18-8. (a) Oxidizing agent
$$\operatorname{Fe}^{3+}$$
; $\operatorname{Fe}^{3+} + e^{-} \rightleftharpoons \operatorname{Fe}^{2-}$

Reducing agent Sn^{2+} ; $\operatorname{Sn}^{2+} \rightleftharpoons \operatorname{Sn}^{4+} + 2e^{-}$

(b) Oxidizing agent
$$Ag^+$$
; $Ag^+ + e^- \rightleftharpoons Ag(s)$

Reducing agent Cr; $Cr(s) \rightleftharpoons Cr^{3+} + 3e^{-}$

(c) Oxidizing agent NO₃⁻, NO₃⁻ + 2H⁺ + e⁻ \rightleftharpoons NO₂(g) + H₂O

Reducing agent Cu; $Cu(s) \rightleftharpoons Cu^{2+} + 2e^{-}$

(d) Oxidizing agent MnO₄⁻; MnO₄⁻ + 8H⁺ + 5e⁻ \rightleftharpoons Mn²⁺ + 4H₂O Reducing agent H₂SO₃; H₂SO₃ + H₂O \rightleftharpoons SO₄²⁻ + 4H⁺ + 2e⁻ (e) Oxidizing agent Fe(CN)₆³⁻; Fe(CN)₆³⁻ + e⁻ \rightleftharpoons Fe(CN)₆⁴⁻ Reducing agent Ti³⁺; Ti³⁺ + H₂O \rightleftharpoons TiO²⁺ +2H⁺ + e⁻

(f) Oxidizing agent Ce^{4+} ; $Ce^{4+} + e^{-} \rightleftharpoons Ce^{3+}$

Reducing agent H₂O₂; H₂O₂ \rightleftharpoons O₂(g) + 2H⁺ + 2e⁻

(g) Oxidizing agent Sn^{4+} ; $\operatorname{Sn}^{4+} + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}$

Reducing agent Ag; $Ag(s) + I^- \rightleftharpoons AgI(s) + e^-$

(h) Oxidizing agent $UO_2^{2^+}$; $UO_2^{2^+} + 4H^+ + 2e^- \rightleftharpoons U^{4+} + 2H_2O$ Reducing agent Zn; Zn(s) \rightleftharpoons Zn²⁺ + 2e⁻

(i) Oxidizing agent MnO_4^- ; $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$ Reducing agent HNO_2 $HNO_2 + H_2O \rightleftharpoons NO_3^- + 3H^+ + 2e^-$ (j)) Oxidizing agent IO_3^- ; $IO_3^- + 6H^+ + 2CI^- + 4e^- \rightleftharpoons ICl_2^- + 3H_2O$ Reducing agent H_2NNH_2 ; $H_2NNH_2 \rightleftharpoons N_2(g) + 4H^+ + 4e^-$

18-9. (a)
$$MnO_{4}^{-} + 5VO^{2+} + 11H_{2}O \rightarrow Mn^{2+} + 5V(OH)_{4}^{+} + 2H^{+}$$

(b) $I_{2} + H_{2}S(g) \rightarrow 2I^{-} + S(s) + 2H^{+}$
(c) $Cr_{2}O_{7}^{2-} + 3U^{4+} + 2H^{+} \rightarrow 2Cr^{3+} + 3UO_{2}^{2+} + H_{2}O$
(d) $2CI^{-} + MnO_{2}(s) + 4H^{+} \rightarrow Cl_{2}(g) + Mn^{2+} + 2H_{2}O$
(e) $IO_{3}^{-} + 5I^{-} + 6H^{+} \rightarrow 3I_{2} + 3H_{2}O$
(f) $IO_{3}^{-} + 2I^{-} + 6CI^{-} + 6H^{+} \rightarrow 3ICl_{2}^{-} + 3H_{2}O$
(g) $HPO_{3}^{2-} + 2MnO_{4}^{-} + 3OH^{-} \rightarrow PO_{4}^{3-} + 2MnO_{4}^{2-} + 2H_{2}O$
(h) $SCN^{-} + BrO_{3}^{-} + H_{2}O \rightarrow SO_{4}^{2-} + HCN + Br^{-} + H^{+}$
(i) $V^{2+} + 2V(OH)_{4}^{+} + 2H^{+} \rightarrow 3VO^{2+} + 5H_{2}O$
(j) $2MnO_{4}^{-} + 3Mn^{2+} + 4OH^{-} \rightarrow 5MnO_{2}(s) + 2H_{2}O$
18-10. (a) Oxidizing agent MnO_{4}^{-} ; $MnO_{4}^{-} + 8H^{+} + 5e^{-} \Longrightarrow Mn^{2+} + 4H_{2}O$

1

Reducing agent VO²⁺; VO²⁺ + $3H_2O \rightleftharpoons V(OH)_4^+ + 2H^+ + e^-$

(**b**) Oxidizing agent I₂; $I_2(aq) + 2e^- \rightleftharpoons 2I^-$

Reducing agent H₂S; H₂S(g) \rightleftharpoons S(s) + 2H⁺ + 2e⁻

(c) Oxidizing agent $\operatorname{Cr}_2\operatorname{O_7}^{2-}$; $\operatorname{Cr}_2\operatorname{O_7}^{2-} + 14\operatorname{H}^+ + 6\operatorname{e}^- \rightleftharpoons 2\operatorname{Cr}^{3+} + 7\operatorname{H}_2\operatorname{O}$ Reducing agent U⁴⁺; U⁴⁺ + 2H₂O \rightleftharpoons UO₂²⁺ + 4H⁺ + 2e⁻ (d) Oxidizing agent MnO₂; MnO₂(s) + 4H⁺ + 2e⁻ \rightleftharpoons Mn²⁺ + 2H₂O

Reducing agent Cl⁻; $2Cl^- \rightleftharpoons Cl_2(g) + 2e^-$

Chapter 18

(e) Oxidizing agent
$$IO_3^-$$
; $IO_3^- + 6H^+ + 5e^- \rightleftharpoons 1/2I_2 + 3 H_2O$
Reducing agent Γ ; $\Gamma \rightleftharpoons 1/2I_2 + e^-$
(f) Oxidizing agent IO_3^- ; $IO_3^- + 6H^+ + 2CI^- + 4e^- \rightleftharpoons ICI_2^- + 3H_2O$
Reducing agent Γ ; $\Gamma^- + 2CI^- \rightleftharpoons ICI_2^- + 2e^-$
(g) Oxidizing agent MnO_4^- ; $MnO_4^- + e^- \rightleftharpoons MnO_4^{-2-}$
Reducing agent HPO_3^{-2-} ; $HPO_3^{-2-} + 3OH^- \rightleftharpoons PO_4^{-3-} + 2H_2O + 2e^-$
(h) Oxidizing agent BrO_3^- ; $BrO_3^- + 6H^+ + 6e^- \rightleftharpoons Br^- + 3H_2O$
Reducing agent SCN^- ; $SCN^- + 4H_2O \rightleftharpoons SO_4^{-2-} + HCN + 7H^+ + 6e^-$
(i) Oxidizing agent $V(OH)_4^+$; $V(OH)_4^+ + 2H^+ + e^- \rightleftharpoons VO^{2+} + 3H_2O$
Reducing agent V^{2+} ; $V^{2+} + H_2O \rightleftharpoons VO^{2+} + 2H^+ + 2e^-$
(j) Oxidizing agent MnO_4^- ; $MnO_4^- + 4H^+ + 3e^- \rightleftharpoons MnO_2(s) + 2H_2O$
Reducing agent MnO_4^- ; $MnO_4^- + 4H^+ + 3e^- \rightleftharpoons MnO_2(s) + 2H_2O$
Reducing agent Mn^{2+} ; $Mn^{2+} + 2H_2O \rightleftharpoons MnO_2(s) + 4H^+ + 2e^-$
18-11. (a) AgBr(s) + $e^- \rightleftharpoons Ag(s) + Br^- V^{2+} \rightleftharpoons V^{3+} + e^-$

 $Ti^{3+} + 2e \rightarrow Ti^+$ $Fe(CN)^{4-}_6 \rightleftharpoons Fe(CN)^{3-}_6 + e^-$

$$V^{3+} + e \rightarrow \rightleftharpoons V^{2+}$$
 $Zn \rightleftharpoons Zn^{2+} + 2e^{-}$

$$\operatorname{Fe}(\operatorname{CN})_{6}^{3-} + e^{-} \rightleftharpoons \operatorname{Fe}(\operatorname{CN})_{6}^{4-} \qquad \operatorname{Ag}(s) + \operatorname{Br} - \rightleftharpoons \operatorname{Ag}\operatorname{Br}(s) + e^{-}$$

 $S_2O_8^{2-} + 2e^- \rightleftharpoons 2SO_4^{2-}$ $Ti + \rightleftharpoons Ti^{3+} + 2e^-$

(b), (c)	E^0
$S_2O_8^{2-} + 2e^- \rightleftharpoons 2SO_4^{2-}$	2.01
$Ti^{3+} + 2e^{-} \rightleftharpoons Ti^{+}$	1.25
$\operatorname{Fe}(\operatorname{CN})_6^{3-} + e^- \rightleftharpoons \operatorname{Fe}(\operatorname{CN})_6^{4-}$	0.36
$AgBr(s) + e^{-} \rightleftharpoons Ag(s) + Br^{-}$	0.073
$V^{3+} + e^- \rightleftharpoons V^{2+}$	-0.256
$\operatorname{Zn}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Zn}(s)$	-0.763

18-12. (a)

$\operatorname{Sn}(s) \rightleftharpoons \operatorname{Sn}^{2+} + 2e^{-}$	$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(g)$
$Ag^+ + e^- \rightleftharpoons Ag(s)$	$Fe^{2+} \rightleftharpoons Fe^{3+} + e^{-}$
$Sn^{4+} + 2e^{-} \rightleftharpoons Sn^{2+}$	$H_2(g) \rightleftharpoons 2H^+ + 2e^-$
$\mathrm{Fe}^{3+} + \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$	$\operatorname{Sn}^{2+} \rightleftharpoons \operatorname{Sn}^{4+} + 2e^{-}$
$\operatorname{Sn}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	$\operatorname{Co}(s) \rightleftharpoons \operatorname{Co}^{2+} + 2e^{-}$

(b), (

$Ag^+ + e^- \rightleftharpoons Ag(s)$	0.799
$\mathrm{Fe}^{3+} + \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$	0.771
$Sn^{4+} + 2e^{-} \rightleftharpoons Sn^{2+}$	0.154
$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(g)$	0.00
$\operatorname{Sn}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.136
$\operatorname{Co}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Co}(s)$	-0.277

18-13. (a)

$$E_{\rm Cu} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{0.0380}\right) = 0.295 \text{ V}$$

(b)

$$K_{\text{CuCl}} = 1.9 \times 10^{-7} = [\text{Cu}^+][\text{Cl}^-]$$

$$E_{\text{Cu}} = 0.521 - \frac{0.0592}{1} \log\left(\frac{1}{[\text{Cu}^+]}\right) = 0.521 - \frac{0.0592}{1} \log\left(\frac{[\text{Cl}^-]}{K_{\text{CuCl}}}\right)$$

$$= 0.521 - \frac{0.0592}{1} \log\left(\frac{0.0650}{1.9 \times 10^{-7}}\right) = 0.521 - \frac{0.0592}{1} \log(3.42 \times 10^5)$$

$$= 0.521 - 0.328 = 0.193 \text{ V}$$

(c)
$$K_{\text{Cu(OH)}_2} = 4.8 \times 10^{-20} = [\text{Cu}^{2+}][\text{OH}^-]^2$$

$$E_{\rm Cu} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{[{\rm Cu}^{2+}]}\right) = 0.337 - \frac{0.0592}{2} \log\left(\frac{[{\rm OH}^{-}]^2}{K_{\rm Cu(OH)_2}}\right)$$
$$= 0.337 - \frac{0.0592}{2} \log\left(\frac{(0.0350)^2}{4.8 \times 10^{-20}}\right) = 0.337 - \frac{0.0592}{2} \log(2.55 \times 10^{16})$$
$$= 0.337 - 0.486 = -0.149 \text{ V}$$

(**d**)
$$\beta_4 = 5.62 \times 10^{11} = \frac{[\text{Cu}(\text{NH}_3)_4^{2+}]}{[\text{Cu}^{2+}][\text{NH}_3]^4}$$

$$E_{\rm Cu} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{[{\rm Cu}^{2+}]}\right) = 0.337 - \frac{0.0592}{2} \log\left(\frac{\beta_4 [{\rm NH}_3]^4}{[{\rm Cu}({\rm NH}_3)_4^{2+}]}\right)$$
$$= 0.337 - \frac{0.0592}{2} \log\left(\frac{5.62 \times 10^{11} (0.108)^4}{0.0375}\right) = 0.337 - \frac{0.0592}{2} \log(2.04 \times 10^9)$$
$$= 0.337 - 0.276 = 0.061 \text{ V}$$

(e)

$$\frac{[\text{CuY}^{2^{-}}]}{[\text{Cu}^{2^{+}}]c_{\text{T}}} = \alpha_{4}K_{\text{CuY}} = (3.6 \times 10^{-9}) \times (6.3 \times 10^{18}) = 2.3 \times 10^{10}$$
$$[\text{CuY}^{2^{-}}] \approx 3.90 \times 10^{-3}$$
$$c_{\text{T}} = (3.90 \times 10^{-2}) - (3.90 \times 10^{-3}) = 0.0351$$

$$E_{Cu} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{[Cu^{2+}]}\right) = 0.337 - \frac{0.0592}{2} \log\left(\frac{\alpha_4 K_{CuY^2} \cdot c_T}{[CuY^{2-}]}\right)$$
$$= 0.337 - \frac{0.0592}{2} \log\left(\frac{2.3 \times 10^{10} \left(0.0351\right)}{3.90 \times 10^{-3}}\right) = 0.337 - \frac{0.0592}{2} \log(2.07 \times 10^{11})$$
$$= 0.337 - 0.335 = 0.002 \text{ V}$$

18-14. (a)

$$E_{\rm Zn} = -0.763 - \frac{0.0592}{2} \log\left(\frac{1}{0.0500}\right) = -0.802 \text{ V}$$

(b)
$$K_{\text{Zn(OH)}_2} = 3.0 \times 10^{-16} = [\text{Zn}^{2+}][\text{OH}^{-}]^2$$

$$E_{\rm Zn} = -0.763 - \frac{0.0592}{2} \log\left(\frac{1}{[\rm Zn^{2+}]}\right) = -0.763 - \frac{0.0592}{2} \log\left(\frac{[\rm OH^{-}]^2}{K_{\rm Zn(OH)_2}}\right)$$
$$= -0.763 - \frac{0.0592}{2} \log\left(\frac{(0.0200)^2}{3.0 \times 10^{-16}}\right) = -0.763 - \frac{0.0592}{2} \log(1.33 \times 10^{12})$$
$$= -0.763 - 0.359 = -1.12 \text{ V}$$

(c)
$$\beta_4 = 7.76 \times 10^8 = \frac{[\text{Zn}(\text{NH}_3)_4^{2+}]}{[\text{Zn}^{2+}][\text{NH}_3]^4}$$

$$E_{\rm Zn} = -0.763 - \frac{0.0592}{2} \log\left(\frac{1}{[\rm Zn^{2+}]}\right) = -0.763 - \frac{0.0592}{2} \log\left(\frac{\beta_4 [\rm NH_3]^4}{[\rm Zn(\rm NH_3)_4^{2+}]}\right)$$
$$= -0.763 - \frac{0.0592}{2} \log\left(\frac{7.76 \times 10^8 (0.350)^4}{0.0150}\right) = -0.763 - \frac{0.0592}{2} \log(7.76 \times 10^8)$$
$$= -0.763 - 0.263 = -1.03 \text{ V}$$

(**d**)

$$\frac{[\text{Zn}\text{Y}^{2-}]}{[\text{Zn}^{2+}]c_{\text{T}}} = \alpha_4 K_{\text{Zn}\text{Y}} = (5.2 \times 10^{-2}) \times (3.2 \times 10^{16}) = 1.7 \times 10^{15}$$
$$[\text{Zn}\text{Y}^{2-}] \approx 4.00 \times 10^{-3}$$
$$c_{\text{T}} = (5.50 \times 10^{-2}) - (4.00 \times 10^{-3}) = 0.051$$

$$\begin{split} E_{\rm Zn} &= -0.763 - \frac{0.0592}{2} \log \left(\frac{1}{[\rm Zn^{2+}]} \right) = -0.763 - \frac{0.0592}{2} \log \left(\frac{\alpha_4 K_{\rm ZnY^2} c_{\rm T}}{[\rm ZnY^{2-}]} \right) \\ &= -0.763 - \frac{0.0592}{2} \log \left(\frac{1.7 \times 10^{15} \left(0.051 \right)}{5.00 \times 10^{-3}} \right) = -0.763 - \frac{0.0592}{2} \log (1.73 \times 10^{16}) \\ &= -0.763 - 0.481 = -1.24 \text{ V} \end{split}$$

18-15. $2H^+ + 2e^- \rightleftharpoons H_2(g)$

$$E = E^{\circ} - \frac{0.0592}{2} \log \left(\frac{p_{\rm H_2}}{\left(a_{\rm H^+}\right)^2} \right) = 0.00 - \frac{0.0592}{2} \log \left(\frac{1.00}{\left[{\rm H^+}\right]^2 \times \left(\gamma_{\rm H^+}\right)^2} \right)$$

The ionic strength of the solution is 0.0100 M.

From Table 10-2,

$$\gamma_{\rm H^+} = 0.913$$

 $E = 0.00 - \frac{0.0592}{2} \log \left(\frac{1.00}{(0.0100)^2 \times (0.913)^2} \right) = 0.00 - 0.121 = -0.121 \text{ V}$

18-16. (a) $PtCl_4^{2-} + 2e^- \rightleftharpoons Pt(s) + 4 Cl^ E^0 = 0.73 V$

$$E_{\rm Pt} = 0.73 - \frac{0.0592}{2} \log \left(\frac{(0.2450)^4}{0.0160} \right) = 0.73 - (-0.019) = 0.75 \text{ V}$$

(b)
$$E^0 = 0.154$$

$$E_{\rm Pt} = 0.154 - \frac{0.0592}{2} \log \left(\frac{3.50 \times 10^{-3}}{6.50 \times 10^{-2}} \right) = 0.154 - (-0.038) = 0.192 \,\rm V$$

(c)
$$pH = 6.50$$
, $[H^+] = 3.16 \times 10^{-7}$

$$E_{\rm Pt} = 0.000 - \frac{0.0592}{2} \log \left(\frac{1.00}{\left(3.16 \times 10^{-7} \right)^2} \right) = -0.385 \, \rm V$$

Chapter 18

Chapter 18

(d)
$$E^0 = 0.359 \text{ V}$$

 $E_{\text{Pt}} = 0.359 - \frac{0.0592}{1} \log \left(\frac{(0.0686) \times 2}{(0.0255) \times (0.100)^2} \right) = 0.359 - 0.162 = 0.197 \text{ V}$

(e)
$$2Fe^{3+} + Sn^{2+} \rightleftharpoons 2Fe^{2+} + Sn^{4+}$$

$$amount \operatorname{Sn}^{2+}consumed = \frac{0.0918 \operatorname{mmol} \operatorname{SnCl}_2}{\operatorname{mL}} \times \frac{1 \operatorname{mmol} \operatorname{Sn}^{2+}}{\operatorname{mmol} \operatorname{SnCl}_2} \times 25.00 \operatorname{mL} = 2.295 \operatorname{mmol}$$
$$amount \operatorname{Fe}^{3+}consumed = \frac{0.1568 \operatorname{mmol} \operatorname{FeCl}_3}{\operatorname{mL}} \times \frac{1 \operatorname{mmol} \operatorname{Fe}^{3+}}{\operatorname{mmol} \operatorname{FeCl}_3} \times 25.00 \operatorname{mL} = 3.920 \operatorname{mmol}$$
$$amount \operatorname{Sn}^{4+}formed = 3.920 \operatorname{mmol} \operatorname{Fe}^{3+} \times \frac{1 \operatorname{mmol} \operatorname{Sn}^{4+}}{2 \operatorname{mmol} \operatorname{Fe}^{3+}} = 1.960 \operatorname{mmol}$$
$$amount \operatorname{Sn}^{2+}remaining = 2.295 - 1.960 = 0.335 \operatorname{mmol}$$

$$E_{\rm Pt} = 0.154 - \frac{0.0592}{2} \log \left(\frac{(0.335)/50.0}{(1.960)/50.0} \right) = 0.154 - (-0.023) = 0.177 \,\,\mathrm{V}$$

(f)
$$V(OH)_4^+ + V^{3+} + \rightleftharpoons 2VO^{2+} + 2H_2O$$

$$V(OH)_4^+ + 2H^+ + 2e^- \Longrightarrow VO^{2+} + 3H_2O$$
 $E^0 = 1.00 V$

amountV(OH)₄⁺consumed =
$$\frac{0.0832 \text{ mmol V(OH)}_{4}^{+}}{\text{mL}} \times 25.00 \text{ mL} = 2.08 \text{ mmol}$$

amount V³⁺consumed =
$$\frac{0.01087 \text{ mmol } V_2(SO_4)_3}{\text{mL}} \times \frac{2 \text{ mmol } V^{3+}}{\text{mmol } V_2(SO_4)_3} \times 50.00 \text{ mL} = 1.087 \text{ mmol}}$$

amount VO²⁺formed = 1.087 mmol V³⁺ $\times \frac{2 \text{ mmol } VO^{2+}}{\text{mmol } V^{3+}} = 2.174 \text{ mmol}}$
amount V(OH)₄⁺remaining = 2.08 - 1.087 = 0.993 mmol
 $E_{\text{Pt}} = 1.00 - 0.0592 \log \left(\frac{(2.174)/75.00}{(0.993/75.00)(0.1000)^2}\right) = 1.00 - 0.139 = 0.86 \text{ V}}$

18-17. (a)

$$E_{\rm Pt} = 0.36 - 0.0592 \log \left(\frac{0.0613}{0.00669}\right) = 0.36 - 0.057 = 0.30 \,\rm V$$

(b)
$$E_{p_t} = 0.771 - 0.0592 \log \left(\frac{0.0400}{(0.00915) \times 2} \right) = 0.771 - 0.020 = 0.751 \text{ V}$$

(c) $pH = 5.55 [H_3O^+] = 2.82 \times 10^{-6}$

$$E_{\rm Pt} = 0.000 - \frac{0.0592}{2} \log \left(\frac{1.00}{\left(2.82 \times 10^{-6} \right)^2} \right) = 0.000 - 0.329 = -0.329 \, \rm V$$

(d)
$$E_{\rm Pt} = 1.00 - 0.0592 \log \left(\frac{0.0799}{(0.1015)(0.0800)^2} \right) = 1.00 - 0.124 = 0.876 \,\mathrm{V}$$

(e)

amount Ce⁴⁺consumed =
$$\frac{0.0607 \text{ mmol Ce}(SO_4)_2}{\text{mL}} \times \frac{1 \text{ mmol Ce}^{4+}}{\text{mmol Ce}(SO_4)_2} \times 50.00 \text{ mL}$$
$$= 3.04 \text{ mmol Ce}^{4+}$$

amount
$$\text{Fe}^{2+}$$
consumed = $\frac{0.100 \text{ mmol FeCl}_2}{\text{mL}} \times \frac{1 \text{ mmol Fe}^{2+}}{\text{mmol FeCl}_2} \times 50.00 \text{ mL} = 5.00 \text{ mmol}$
amount Fe^{3+} formed = mmol Ce⁴⁺consumed = 3.04 mmol Fe³⁺
amount Fe²⁺remaining = $5.00 - 3.04 = 0.196 \text{ mmol}$

$$E_{\rm Pt} = 0.68 - 0.0592 \log \left(\frac{1.965/100.0}{3.04/100.0}\right) = 0.68 - (-0.011) = 0.69 \text{ V}$$

(f) $V(OH)_4^+ + V^{3+} + \rightleftharpoons 2VO^{2+} + 2H_2O$

amount V(OH)₄⁺ consumed = $\frac{0.0628 \text{ mmol V(OH)}_{4}^{+}}{\text{mL}} \times 50.00 \text{ mL} = 0.314 \text{ mmol}$

amount V³⁺consumed =
$$\frac{0.0832 \text{ mmol } V_2(SO_4)_3}{\text{mL}} \times \frac{2 \text{ mmol } V^{3+}}{\text{mmol } V_2(SO_4)_3} \times 25.00 \text{ mL}$$

=4.16 mmol

amount VO²⁺formed = 0.314 mmol V³⁺
$$\times \frac{2 \text{ mmol VO}^{2+}}{\text{mmol V}^{3+}} = 0.628 \text{ mmol}$$

amount $V(OH)_4^+$ remaining = 4.16 - 0.314 = 3.85 mmol

$$E_{\rm Pt} = 0.337 - 0.0592 \log \left(\frac{3.85 / 75.00}{\left(0.628 / 75.00 \right) \left(0.100 \right)^2} \right) = 0.337 - 0.172 = 0.194 \, \rm V$$

18-18. (a)

$$E_{\rm Ni} = -0.250 - \frac{0.0592}{2} \log\left(\frac{1.00}{0.0883}\right) = -0.250 - 0.031 = -0.281 \text{ V} \text{ anode}$$

(**b**) $E_{\rm Ag} = -0.151 - 0.0592 \log(0.0898) = -0.151 - (-0.062) = -0.089 \text{ V} \text{ anode}$

$$E_{0_2} = 1.229 - \frac{0.0592}{4} \log \left(\frac{1.00}{(780/760)(2.50 \times 10^{-4})^4} \right) = 1.229 - 0.213 = 1.016 \text{ V cathode}$$

(d)
$$E_{\rm Pt} = 0.154 - \frac{0.0592}{2} \log\left(\frac{0.0893}{0.215}\right) = 0.154 - (-0.011) = 0.165 \text{ V cathode}$$

(e)
$$E_{Ag} = 0.017 - 0.0592 \log \left(\frac{(0.1035)^2}{0.00891} \right) = 0.017 - 0.005 = 0.012 \text{ V}$$
 cathode

18-19. (a)
$$E_{\rm Cu} = 0.337 - \frac{0.0592}{2} \log \left(\frac{1.00}{0.0805} \right) = 0.337 - 0.032 = 0.305 \text{ V}$$
 cathode

(b)
$$E_{\rm Pt} = -0.185 - 0.0592 \log (0.0993) = -0.185 - (-0.059) = -0.126 \, \text{V}$$
 anode

(c)
$$E_{\rm Pt} = 0.00 - \frac{0.0592}{2} \log \left(\frac{0.914}{\left(1.00 \times 10^{-4} \right)^2} \right) = 0.00 - 0.236 = -0.236 \, \text{V} \text{ anode}$$

(d)
$$E_{\rm Pt} = 0.771 - 0.0592 \log\left(\frac{0.1420}{0.0886}\right) = 0.771 - 0.012 = 0.759 \text{ V}$$
 cathode
(e) $E_{\rm Ag} = -0.31 - 0.0592 \log\left(\frac{(0.0651)^2}{0.0778}\right) = -0.31 - (-0.075) = -0.24 \text{ V}$ anode

18-20. $2Ag^+ + 2e^- \rightleftharpoons 2Ag(s) \qquad E^\circ = 0.779$

$$[Ag^{+}]^{2}[SO_{3}^{2^{-}}] = 1.5 \times 10^{-14} = K_{sp}$$
$$E = 0.799 - \frac{0.0592}{2} \log\left(\frac{1}{[Ag^{+}]^{2}}\right) = 0.799 - \frac{0.0592}{2} \log\left(\frac{[SO_{3}^{2^{-}}]}{K_{sp}}\right)$$

When $[SO_3^{2^-}] = 1.00$, $E = E^{\circ}$ for $Ag_2SO_3(s) + 2e^- \rightleftharpoons 2Ag(s) + SO_3^{2^-}$.

Thus,

$$E = 0.799 - \frac{0.0592}{2} \log\left(\frac{1.00}{K_{\rm sp}}\right) = 0.799 - \frac{0.0592}{2} \log\left(\frac{1.00}{1.5 \times 10^{-14}}\right) = 0.799 - 0.409 = 0.390 \text{ V}$$

18-21. $2Ni^{2+} + 4e^{-} \rightleftharpoons 2Ni(s)$ $E^{\circ} = -0.250$

$$[\mathrm{Ni}^{2+}]^{2}[\mathrm{P}_{2}\mathrm{O}_{7}^{4-}] = 1.7 \times 10^{-13} = K_{\mathrm{sp}}$$
$$E = -0.250 - \frac{0.0592}{4} \log\left(\frac{1}{[\mathrm{Ni}^{2+}]^{2}}\right) = -0.250 - \frac{0.0592}{4} \log\left(\frac{[\mathrm{P}_{2}\mathrm{O}_{7}^{4-}]}{K_{\mathrm{sp}}}\right)$$

When $[P_2O_7^{4-}] = 1.00, E = E^{\circ}$ for $Ni_2P_2O_7(s) + 4e^- \rightleftharpoons 2Ni(s) + P_2O_7^{4-}$.

Thus,

$$E = -0.250 - \frac{0.0592}{4} \log\left(\frac{1.00}{K_{\rm sp}}\right) = -0.250 - \frac{0.0592}{4} \log\left(\frac{1.00}{1.7 \times 10^{-13}}\right)$$
$$= -0.250 - 0.189 = 0.439 \text{ V}$$

18-22. $2\text{Tl}^+ + 2\text{e}^- \rightleftharpoons 2\text{Tl}(s)$ $E^\circ = -0.336$

$$[\text{Tl}^+]^2[\text{S}^{2-}] = 6 \times 10^{-22} = K_{\text{sp}}$$
$$E = -0.336 - \frac{0.0592}{2} \log\left(\frac{1}{[\text{Tl}^+]^2}\right) = -0.336 - \frac{0.0592}{2} \log\left(\frac{[\text{S}^{2-}]}{K_{\text{sp}}}\right)$$

When $[S^{2-}] = 1.00$, $E = E^{\circ}$ for $Tl_2S(s) + 2e^- \rightleftharpoons 2Tl(s) + S^{2-}$.

Thus,

$$E = -0.336 - \frac{0.0592}{2} \log\left(\frac{1.00}{K_{sp}}\right) = -0.336 - \frac{0.0592}{2} \log\left(\frac{1.00}{6 \times 10^{-22}}\right)$$
$$= -0.336 - 0.628 = -0.96 \text{ V}$$

18-23. $3Pb^{3+} + 6e^{-} \rightleftharpoons 3Pb(s)$ $E^{\circ} = -0.126$

$$[Pb^{2+}]^{3}[AsO_{4}^{2-}]^{2} = 4.1 \times 10^{-36} = K_{sp}$$
$$E = -0.126 - \frac{0.0592}{6} \log\left(\frac{1}{[Pb^{2+}]^{3}}\right) = -0.126 - \frac{0.0592}{6} \log\left(\frac{[AsO_{4}^{2-}]^{2}}{K_{sp}}\right)$$

When $[AsO_4^{2-}] = 1.00$, $E = E^\circ$ for $Pb_3(AsO_4)_2(s) + 4e^- \rightleftharpoons 3Pb(s) + 2AsO_4^{2-}$.

Thus,

$$E = -0.126 - \frac{0.0592}{6} \log\left(\frac{1.00}{K_{sp}}\right) = -0.126 - \frac{0.0592}{6} \log\left(\frac{1.00}{4.1 \times 10^{-36}}\right)$$
$$= -0.126 - 0.349 = -0.475 \text{ V}$$

18-24. $E = -0.763 - \frac{0.0592}{2} \log\left(\frac{1}{[Zn^{2+}]}\right)$

$$\frac{[ZnY^{2^-}]}{[Zn^{2^+}][Y^{4^-}]} = 3.2 \times 10^{16}$$

$$E = -0.763 - \frac{0.0592}{2} \log \left(\frac{[Y^{4-}](3.2 \times 10^{16})}{[ZnY^{2-}]} \right)$$

When
$$[Y^{4-}] = [ZnY^{2-}] = 1.00, E = E_{ZnY^{2-}}^{\circ}$$

 $E = -0.763 - \frac{0.0592}{2} \log \left(\frac{1.00 \left(3.2 \times 10^{16} \right)}{1.00} \right) = -0.763 - 0.489 = -1.25 \text{ V}$
18-25. $[Fe^{3+}] = \frac{[FeY^{-}]}{[Y^{4-}](1.3 \times 10^{25})}$ and $[Fe^{2+}] = \frac{[FeY^{2-}]}{[Y^{4-}](2.1 \times 10^{14})}$

$$E = 0.771 - 0.0592 \log \left(\frac{[\text{Fe}^{2^{+}}]}{[\text{Fe}^{3^{+}}]} \right)$$
$$= 0.771 - 0.0592 \log \left(\frac{[\text{Fe}Y^{2^{-}}](1.3 \times 10^{25})}{[\text{Fe}Y^{-}](2.1 \times 10^{14})} \right)$$

When $[\text{FeY}^{2-}] = [\text{FeY}^{-}] = 1.00, \ E = E_{\text{FeY}^{-}}^{\circ}$

$$E = 0.771 - 0.0592 \log \left(\frac{1.00 \left(1.3 \times 10^{25} \right)}{1.00 \left(2.1 \times 10^{14} \right)} \right) = 0.771 - 0.64 = 0.13 \text{ V}$$

18-26.
$$[Cu^+] = \frac{[Cu(NH_3)_2^+]}{[NH_3]^2 (7.2 \times 10^{10})}$$
 and $[Cu^{2+}] = \frac{[Cu(NH_3)_2^{2+}]}{[NH_3]^2 (5.62 \times 10^{11})}$
 $E = 0.153 - 0.0592 \log \left(\frac{[Cu^+]}{[Cu^{2+}]}\right)$
 $= 0.153 - 0.0592 \log \left(\frac{[Cu(NH_3)_2^+](5.62 \times 10^{11})}{[Cu(NH_3)_2^{2+}](7.2 \times 10^{10})}\right)$

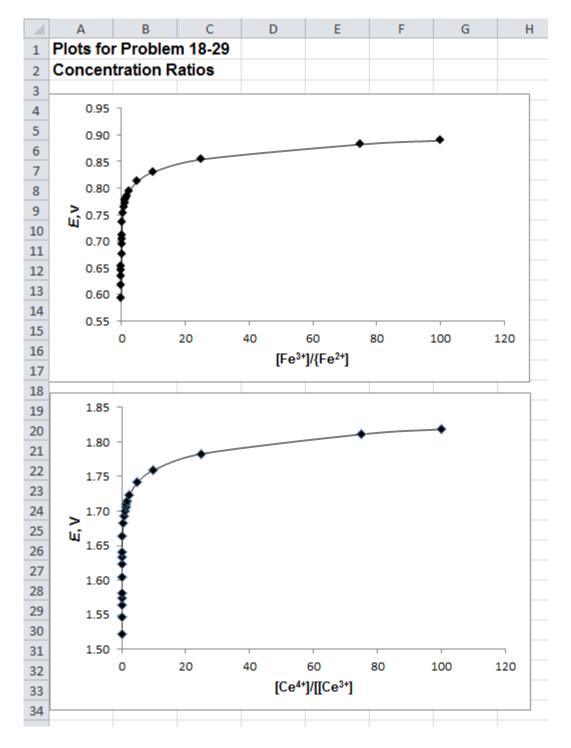
When $[Cu(NH_3)_2^+] = [Cu(NH_3)_2^{2+}] = 1.00, E = E_{Cu(NH_3)_2^{2+}}^{\circ}$

$$E = 0.153 - 0.0592 \log \left(\frac{1.00 \left(5.62 \times 10^{11} \right)}{1.00 \left(7.2 \times 10^{10} \right)} \right) = 0.153 - 0.053 = 0.100 \text{ V}$$

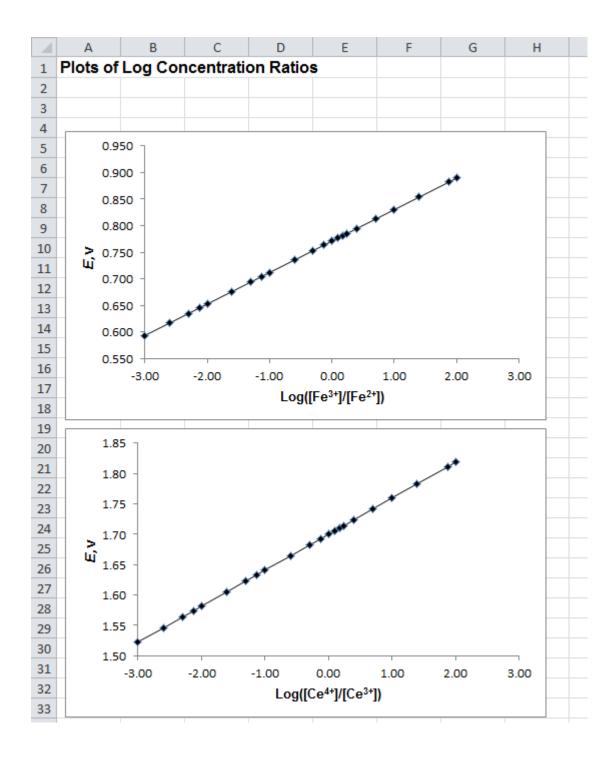
16

18-27.

	Α	В	С	D
1	Problem	18-27		
2	<i>E</i> ⁰ , V	0.771		
3			[Fe ³⁺]/[Fe ²⁺]	E, V
4			0.0010	0.594
5			0.0025	0.617
6			0.0050	0.635
7			0.0075	0.646
8			0.010	0.653
9			0.025	0.676
10			0.050	0.694
11			0.075	0.705
12			0.100	0.712
13			0.250	0.735
14			0.500	0.753
15			0.750	0.764
16			1.00	0.771
17			1.25	0.777
18			1.50	0.781
19			1.75	0.785
20			2.50	0.794
21			5.00	0.812
22			10.00	0.830
23			25.00	0.853
24			75.00	0.882
25			100.00	0.889
26	Spreads	sheet Do	cumentation	
27	Cell D4=	\$B\$2-0.0	59*LOG(1/C4	4)


18-28.

			С	D
1	Problem	18-28		
2	<i>E</i> ⁰ , V	1.7		
3			[Ce ⁴⁺]/[Ce ³⁺]	<i>E, V</i>
4			0.0010	1.523
5			0.0025	1.546
6			0.0050	1.564
7			0.0075	1.575
8			0.010	1.582
9			0.025	1.605
10			0.050	1.623
11			0.075	1.634
12			0.100	1.641
13			0.250	1.664
14			0.500	1.682
15			0.750	1.693
16			1.00	1.700
17			1.25	1.706
18			1.50	1.710
19			1.75	1.714
20			2.50	1.723
21			5.00	1.741
22			10.00	1.759
23			25.00	1.782
24			75.00	1.811
25			100.00	1.818
26	Spreads	sheet Do	cumentation	
27	Cell B4=	\$B\$2-0.0	59*LOG(1/C4))


18-29.

	А	В	С	D	E	F	G
1	Problem 18-2	29					
2	<i>E</i> ⁰ , V (Fe)	0.771					
3	<i>E</i> ⁰ , V (Ce)	1.7					
4	[Fe ³⁺]/[Fe ²⁺]	Log([Fe ³⁺]/[Fe ²⁺])	<i>E, V</i>		[Ce4+]/[Ce3+]	Log([Ce ⁴⁺]/[Ce ³⁺])	<i>E, V</i>
5	0.0010	-3.00	0.593		0.0010	-3.00	1.52
6	0.0025	-2.60	0.617		0.0025	-2.60	1.55
7	0.0050	-2.30	0.635		0.0050	-2.30	1.56
8	0.0075	-2.12	0.645		0.0075	-2.12	1.57
9	0.010	-2.00	0.653		0.010	-2.00	1.58
10	0.025	-1.60	0.676		0.025	-1.60	1.61
11	0.050	-1.30	0.694		0.050	-1.30	1.62
12	0.075	-1.12	0.704		0.075	-1.12	1.63
13	0.100	-1.00	0.712		0.100	-1.00	1.64
14	0.250	-0.60	0.735		0.250	-0.60	1.66
15	0.500	-0.30	0.753		0.500	-0.30	1.68
16	0.750	-0.12	0.764		0.750	-0.12	1.69
17	1.00	0.00	0.771		1.00	0.00	1.70
18	1.25	0.10	0.777		1.25	0.10	1.71
19	1.50	0.18	0.781		1.50	0.18	1.71
20	1.75	0.24	0.785		1.75	0.24	1.71
21	2.50	0.40	0.795		2.50	0.40	1.72
22	5.00	0.70	0.812		5.00	0.70	1.74
23	10.00	1.00	0.830		10.00	1.00	1.76
24	25.00	1.40	0.854		25.00	1.40	1.78
25	75.00	1.88	0.882		75.00	1.88	1.81
26	100.00	2.00	0.889		100.00	2.00	1.82
27	Spreadshee	t Documentation					
28	Cell B5=LOG	(A5)					
29	Cell C5=\$B\$2	2-0.0592*LOG(1/A	5)				
30	Cell F5=LOG	(E5)					
31	Cell G5=\$B\$3	3-0.0592*LOG(1/E	5)				

Plots of Concentration Ratios

Plot of Log Concentration Ratios

Chapter 19

- **19-1.** The electrode potential of a system that contains two or more redox couples is the electrode potential of all half-cell processes at equilibrium in the system.
- **19-2.** (a) *Equilibrium* is the state that a system assumes after each addition of reagent.*Equivalence* refers to a particular equilibrium state when a stoichiometric amount of titrant has been added.

(**b**) A *true oxidation/reduction indicator* owes its color change to changes in the electrode potential of the system. A *specific indicator* exhibits its color change as a result of reactions with a particular solute species.

- **19-3.** The electrode potentials for all half-cell processes in an oxidation/reduction system have the same numerical value when the system is at equilibrium.
- **19-4.** For points before the equivalence point, potential data are computed from the analyte standard potential and the analytical concentrations of the analyte and its reaction product. Post-equivalence point data are based upon the standard potential for the titrant and its analytical concentrations. The equivalence point potential is computed from the two standard potentials and the stoichiometric relation between the analyte and titrant.
- **19-5.** In contrast to all other points on the titration curve, the concentrations of all of the participants in one of the half-reactions or the other cannot be derived from stoichiometric calculations. Instead, the equivalence point potential is computed from the two standard potentials and the stoichiometric relation between the analyte and titrant.
- **19-6.** An asymmetric titration curve will be encountered whenever the titrant and the analyte react in a ratio that is not 1:1.

19-7. (a)
$$E_{\text{right}} = -0.403 - \frac{0.0592}{2} \log\left(\frac{1}{0.0500}\right) = -0.442 \text{ V}$$

 $E_{\text{left}} = -0.126 - \frac{0.0592}{2} \log\left(\frac{1}{0.1200}\right) = -0.153 \text{ V}$
 $E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = -0.442 - (-0.153) = -0.289 \text{ V}$

Because E_{cell} is negative, the spontaneous reaction is not oxidation on the left and reduction on the right. An external source would be needed to force this reaction to occur.

(b)

$$\begin{split} E_{\text{right}} &= 1.25 - \frac{0.0592}{2} \log \left(\frac{0.0400}{9.06 \times 10^{-2}} \right) \\ E_{\text{left}} &= -0.763 - \frac{0.0592}{2} \log \left(\frac{1}{0.0420} \right) = -0.804 \text{ V} \\ E_{\text{cell}} &= E_{\text{right}} - E_{\text{left}} = 1.26 - (-0.804) = 2.06 \text{ V} \end{split}$$

Because E_{cell} is positive the reaction would proceed spontaneously in the direction considered (oxidation on the left, reduction on the right).

(c)

$$E_{\text{right}} = -0.250 - \frac{0.0592}{2} \log\left(\frac{1}{0.0400}\right) = -0.291 \text{ V}$$
$$E_{\text{left}} = 0.000 - \frac{0.0592}{2} \log\left(\frac{757/760}{\left(2.00 \times 10^{-4}\right)^2}\right) = -0.219 \text{ V}$$

 $E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = -0.291 - (-0.219) = -0.072 \text{ V}$

Because E_{cell} is negative, the spontaneous reaction is not oxidation on the left and reduction on the right. An external source would be needed to force this reaction to occur.

(d)
$$E_{\text{right}} = 0.854 - \frac{0.0592}{2} \log \left(\frac{1}{2.60 \times 10^{-3}} \right) = 0.777 \text{ V}$$

 $[\text{Pb}^{2+}][\text{I}^{-}]^2 = 7.9 \times 10^{-9} \text{ and } [\text{Pb}^{2+}] = \frac{7.9 \times 10^{-9}}{[\text{I}^{-}]^2}$
 $E_{\text{left}} = -0.126 - \frac{0.0592}{2} \log \left(\frac{(0.0220)^2}{7.9 \times 10^{-9}} \right) = -0.268 \text{ V}$

$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 0.777 - (-0.268) = 1.045 \text{ V}$$

Because E_{cell} is positive the reaction would proceed spontaneously in the direction considered (oxidation on the left, reduction on the right).

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{NH}_{3}]}{[\mathrm{NH}_{4}^{+}]} = 5.70 \times 10^{-10} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]0.400}{0.200}$$
$$[\mathrm{H}_{3}\mathrm{O}^{+}] = \frac{(5.70 \times 10^{-10})(0.200)}{0.400} = 2.85 \times 10^{-10}$$
$$E_{\mathrm{right}} = 0.000 V$$
$$E_{\mathrm{left}} = 0.000 - \frac{0.0592}{2} \log \left(\frac{1.00}{(2.85 \times 10^{-10})^{2}}\right) = -0.565 V$$
$$E_{\mathrm{cell}} = E_{\mathrm{right}} - E_{\mathrm{left}} = 0.000 - (-0.565) = 0.565 \mathrm{V}$$

Because E_{cell} is positive, the reaction would proceed spontaneously in the direction considered.

(f)

$$E_{\text{right}} = 0.359 - 0.0592 \log \left(\frac{0.0800}{0.1600(0.0100)^2} \right) = 0.140 \text{ V}$$
$$E_{\text{left}} = 0.099 - 0.0592 \log \left(\frac{0.00320}{0.0450(3.00 \times 10^{-2})^2} \right) = -0.013 \text{ V}$$
$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 0.140 - (-0.013) = 0.153 \text{ V}$$

Because E_{cell} is positive, the reaction would proceed spontaneously in the direction considered.

19-8. (a)

$$\begin{split} E_{\text{right}} &= -0.277 - \frac{0.0592}{2} \log \left(\frac{1}{5.87 \times 10^{-4}} \right) = -0.373 \text{ V} \\ E_{\text{left}} &= -0.763 - \frac{0.0592}{2} \log \left(\frac{1}{0.100} \right) = -0.793 \text{ V} \\ E_{\text{cell}} &= E_{\text{right}} - E_{\text{left}} = -0.373 - (-0.793) = 0.420 \text{ V} \end{split}$$

Because E_{cell} is positive, the reaction would proceed spontaneously in the direction considered (oxidation on the left, reduction on the right).

(b)
$$E_{\text{right}} = 0.854 - \frac{0.0592}{2} \log\left(\frac{1}{0.0350}\right) = 0.811 \text{ V}$$

 $E_{\text{left}} = 0.771 - \frac{0.0592}{1} \log\left(\frac{0.0700}{0.1600}\right) = 0.792 \text{ V}$
 $E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 0.811 - 0.792 = 0.019 \text{ V}$

Because E_{cell} is positive, the spontaneous reaction would be oxidation on the left and reduction on the right.

Chapter 19

$$\begin{split} E_{\text{right}} &= 1.229 - \frac{0.0592}{4} \log \left(\frac{1}{1.12 (0.0333)^4} \right) = 1.142 \text{ V} \\ E_{\text{left}} &= 0.799 - 0.0592 \log \left(\frac{1}{0.0575} \right) = 0.726 \text{ V} \\ E_{\text{cell}} &= E_{\text{right}} - E_{\text{left}} = 1.142 - 0.726 = 0.416 \text{ V} \end{split}$$

The spontaneous reaction would be oxidation on the left, reduction on the right.

(d)

$$E_{\text{right}} = -0.151 - 0.0592 \log (0.1220) = -0.097 \text{ V}$$
$$E_{\text{left}} = 0.337 - \frac{0.0592}{2} \log \left(\frac{1}{0.0420}\right) = 0.296 \text{ V}$$
$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = -0.097 - 0.296 = -0.393 \text{ V}$$

The spontaneous reaction would be reduction on the left, oxidation on the right, not the reaction in the direction considered.

(e)

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{HCOO}^{-}]}{[\mathrm{HCOOH}]} = 1.80 \times 10^{-4} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]0.0700}{0.1400}$$
$$[\mathrm{H}_{3}\mathrm{O}^{+}] = \frac{(1.80 \times 10^{-4})(0.1400)}{0.0700} = 3.60 \times 10^{-4}$$
$$E_{\mathrm{right}} = 0.000 - \frac{0.0592}{2} \log \left(\frac{1.00}{(3.60 \times 10^{-4})^{2}}\right) = -0.204 \mathrm{V}$$
$$E_{\mathrm{left}} = 0.000 \mathrm{V}$$

 $E_{\text{cell}} = -0.204 - 0.000 = -0.204 \text{ V}$

Because E_{cell} is negative, the reaction woulds not proceed spontaneously in the direction considered (reduction on the left, oxidation on the right).

(**f**)

$$E_{\text{right}} = 0.771 - 0.0592 \log\left(\frac{0.1134}{0.003876}\right) = 0.684 \text{ V}$$

$$E_{\text{left}} = 0.334 - \frac{0.0592}{2} \log\left(\frac{4.00 \times 10^{-2}}{(8.00 \times 10^{-3})(1.00 \times 10^{-3})^4}\right) = -0.042 \text{ V}$$

$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 0.684 - (-0.042) = 0.726 \text{ V}$$

The direction considered (oxidation on the left, reduction on the right) is the spontaneous direction.

19-9. (a)

$$E_{\text{Pb}^{2+}} = -0.126 - \frac{0.0592}{2} \log\left(\frac{1}{0.0220}\right) = -0.175 \text{ V}$$
$$E_{\text{Zn}^{2+}} = -0.763 - \frac{0.0592}{2} \log\left(\frac{1}{0.1200}\right) = -0.790 \text{ V}$$

$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = -0.175 - (-0.790) = 0.615 \text{ V}$$

(b)

$$E_{\text{left}} = 0.771 - 0.0592 \log\left(\frac{0.0890}{0.0445}\right) = 0.753 \text{ V}$$
$$E_{\text{right}} = 0.36 - 0.0592 \log\left(\frac{0.00300}{0.1564}\right) = 0.462 \text{ V}$$

$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 0.462 - 0.753 = -0.291 \text{ V}$$

$$E_{\text{SHE}} = 0.000 V$$
$$E_{\text{TiO}^{2+}} = 0.099 - 0.0592 \log \left(\frac{0.07000}{(3.50 \times 10^{-3})(10^{-3})^2} \right) = -0.333 V$$
$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = -0.333 - 0.000 = -0.333 V$$

19-10. (a) $Zn |Zn^{2+}(0.1200 \text{ M})| |Pb^{2+}(0.0848 \text{ M})|Pb$

19-11. Note that in these calculations, it is necessary to round the answers to either one or two significant figures because the final step involves taking the antilogarithm of a large number.

(a)
$$\operatorname{Fe}^{3+} + \operatorname{V}^{2+} \rightleftharpoons \operatorname{Fe}^{2+} + \operatorname{V}^{3+} \quad E_{\operatorname{Fe}^{3+}}^{o} = 0.771 \quad E_{\operatorname{V}^{3+}}^{o} = -0.256$$

 $0.771 - 0.0592 \log \left(\frac{[\operatorname{Fe}^{2+}]}{[\operatorname{Fe}^{3+}]} \right) = -0.256 - 0.0592 \log \left(\frac{[\operatorname{V}^{2+}]}{[\operatorname{V}^{3+}]} \right)$
 $\frac{0.771 - (-0.256)}{0.0592} = \log \left(\frac{[\operatorname{Fe}^{2+}][\operatorname{V}^{3+}]}{[\operatorname{Fe}^{3+}][\operatorname{V}^{2+}]} \right) = \log K_{eq} = 17.348$
 $K_{eq} = 2.23 \times 10^{17} \ (2.2 \times 10^{17})$

(b) $\operatorname{Fe}(\operatorname{CN})_{6}^{3-} + \operatorname{Cr}^{2+} \rightleftharpoons \operatorname{Fe}(\operatorname{CN})_{6}^{4-} + \operatorname{Cr}^{3+} \quad E_{\operatorname{Fe}(\operatorname{CN})_{6}^{3-}}^{\circ} = 0.36 \quad E_{\operatorname{Cr}^{3+}}^{\circ} = -0.408$

$$0.36 - 0.0592 \log\left(\frac{[\text{Fe}(\text{CN})_{6}^{4-}]}{[\text{Fe}(\text{CN})_{6}^{3-}]}\right) = -0.408 - 0.0592 \log\left(\frac{[\text{Cr}^{2+}]}{[\text{Cr}^{3+}]}\right)$$
$$\frac{0.36 - (-0.408)}{0.0592} = \log\left(\frac{[\text{Fe}(\text{CN})_{6}^{4-}][\text{Cr}^{3+}]}{[\text{Fe}(\text{CN})_{6}^{3-}][\text{Cr}^{2+}]}\right) = \log K_{\text{eq}} = 12.973$$

 $K_{\rm eq} = 9.4 \times 10^{12} \ (9 \times 10^{12})$

(c)
$$2V(OH)_{4}^{+} + U^{4+} \rightleftharpoons 2VO^{2+} + UO_{2}^{2+} + 4H_{2}O \quad E_{V(OH)_{4}^{+}}^{o} = 1.00 \quad E_{UO_{2}^{2+}}^{o} = 0.334$$

 $1.00 - \frac{0.0592}{2} \log\left(\frac{[VO^{2+}]^{2}}{[V(OH)_{4}^{+}]^{2}[H^{+}]^{4}}\right) = 0.334 - \frac{0.0592}{2} \log\left(\frac{[U^{4+}]}{[UO_{2}^{2+}][H^{+}]^{4}}\right)$
 $\frac{(1.00 - 0.334) 2}{0.0592} = \log\left(\frac{[VO^{2+}]^{2}[UO_{2}^{2+}]}{[V(OH)_{4}^{+}]^{2}[U^{4+}]}\right) = \log K_{eq} = 22.50$
 $K_{eq} = 3.2 \times 10^{22} \ (3 \times 10^{22})$

(d) $Tl^{3+} + 2Fe^{2+} \rightleftharpoons Tl^{+} + 2Fe^{3+} \quad E^{o}_{Fe^{3+}} = 0.771 \quad E^{o}_{Tl^{+}} = 1.25$

$$1.25 - \frac{0.0592}{2} \log\left(\frac{[\text{T1}^+]}{[\text{T1}^{3+}]}\right) = 0.771 - \frac{0.0592}{2} \log\left(\frac{[\text{Fe}^{2+}]^2}{[\text{Fe}^{3+}]^2}\right)$$
$$\frac{(1.25 - 0.771) 2}{0.0592} = \log\left(\frac{[\text{T1}^+][\text{Fe}^{3+}]^2}{[\text{T1}^{3+}][\text{Fe}^{2+}]^2}\right) = \log K_{\text{eq}} = 16.18$$
$$K_{\text{eq}} = 1.5 \times 10^{16} \quad (2 \times 10^{16})$$

(e)

$$2Ce^{4+} + H_{3}AsO_{3} + H_{2}O \rightleftharpoons 2Ce^{3+} + H_{3}AsO_{4} + 2H^{+}$$

$$E_{Ce^{4+}}^{o}(in 1 \text{ M HClO}_{4}) = 1.70 \quad E_{H_{3}AsO_{4}}^{o} = 0.577$$

$$1.70 - \frac{0.0592}{2} \log \left(\frac{[Ce^{3+}]^{2}}{[Ce^{4+}]^{2}} \right) = 0.577 - \frac{0.0592}{2} \log \left(\frac{[H_{3}AsO_{4}]}{[H_{3}AsO_{3}][H^{+}]^{2}} \right)$$

$$\frac{(1.70 - 0.577) 2}{0.0592} = \log \left(\frac{[Ce^{3+}]^{2}[H_{3}AsO_{3}][H^{+}]^{2}}{[Ce^{4+}]^{2}[H_{3}AsO_{4}]} \right) = \log K_{eq} = 37.94$$

$$K_{eq} = 8.9 \times 10^{37} \ (9 \times 10^{37})$$
(f) $2V(OH)_{4}^{+} + H_{2}SO_{3} \rightleftharpoons 2VO^{2+} + SO_{4}^{2-} + 5H_{2}O \quad E_{V(OH)_{4}^{+}}^{o} = 1.00 \quad E_{SO_{4}^{2-}}^{o} = 0.172$

8

$$1.00 - \frac{0.0592}{2} \log \left(\frac{[\text{VO}^{2+}]^2}{[\text{V(OH)}_4^+]^2[\text{H}^+]^4} \right) = 0.172 - \frac{0.0592}{2} \log \left(\frac{[\text{H}_2\text{SO}_3]}{[\text{SO}_4^{-2-}][\text{H}^+]^4} \right)$$
$$\frac{(1.00 - 0.172) 2}{0.0592} = \log \left(\frac{[\text{VO}^{2+}]^2[\text{SO}_4^{-2-}]}{[\text{V(OH)}_4^+]^2[\text{H}_2\text{SO}_3]} \right) = \log K_{\text{eq}} = 27.97$$
$$K_{\text{eq}} = 9.4 \times 10^{27} \quad (9 \times 10^{27})$$

(g) $VO^{2+} + V^{2+} + 2H^+ \rightleftharpoons 2V^{3+} + H_2O \quad E^o_{VO^{2+}} = 0.359 \quad E^o_{V^{3+}} = -0.256$

$$0.359 - 0.0592 \log\left(\frac{[V^{3+}]}{[VO^{2+}][H^{+}]^{2}}\right) = -0.256 - 0.0592 \log\left(\frac{[V^{2+}]}{[V^{3+}]}\right)$$
$$\frac{0.359 - (-0.256)}{0.0592} = \log\left(\frac{[V^{3+}]^{2}}{[VO^{2+}][H^{+}]^{2}[V^{2+}]}\right) = \log K_{eq} = 10.389$$

$$K_{\rm eq} = 2.4 \times 10^{10}$$

(**h**) $\text{TiO}^{2+} + \text{Ti}^{2+} + 2\text{H}^+ \rightleftharpoons 2\text{Ti}^{3+} + \text{H}_2\text{O}$ $E^{\circ}_{\text{TiO}^{2+}} = 0.099$ $E^{\circ}_{\text{Ti}^{3+}} = -0.369$

$$0.099 - 0.0592 \log \left(\frac{[\text{Ti}^{3^{+}}]}{[\text{Ti}O^{2^{+}}][\text{H}^{+}]^{2}} \right) = -0.369 - 0.0592 \log \left(\frac{[\text{Ti}^{2^{+}}]}{[\text{Ti}^{3^{+}}]} \right)$$
$$\frac{0.099 - (-0.369)}{0.0592} = \log \left(\frac{[\text{Ti}^{3^{+}}]^{2}}{[\text{Ti}O^{2^{+}}][\text{H}^{+}]^{2}[\text{Ti}^{2^{+}}]} \right) = \log K_{\text{eq}} = 7.9054$$
$$K_{\text{eq}} = 8.0 \times 10^{7}$$

19-12. (a) At the equivalence point, $[Fe^{2+}] = [V^{3+}]$ and $[Fe^{3+}] = [V^{2+}]$

$$2E_{\rm eq} = 0.771 + (-0.256) - 0.0592 \log\left(\frac{[\rm Fe^{2+}][\rm V^{2+}]}{[\rm Fe^{3+}][\rm V^{3+}]}\right)$$
$$E_{\rm eq} = \frac{0.771 - 0.256}{2} = 0.258 \text{ V}$$

(**b**) At the equivalence point, $[Fe(CN)_6^{3-}] = [Cr^{2+}]$ and $[Fe(CN)_6^{4-}] = [Cr^{3+}]$

$$2E_{eq} = 0.36 + (-0.408) - 0.0592 \log \left(\frac{[Fe(CN)_{6}^{4-}][Cr^{2+}]}{[Fe(CN)_{6}^{3-}][Cr^{3+}]} \right)$$

$$E_{\rm eq} = \frac{0.36 - 0.408}{2} = -0.024 \,\,\mathrm{V}$$

(c) At equivalence, $[VO^{2+}] = 2[UO_2^{2+}]$ and $[V(OH)_4^+] = 2[U^{4+}]$

$$3E_{eq} = 1.00 + 2(0.344) - 0.0592 \log\left(\frac{[VO^{2+}][U^{4+}]}{[V(OH)_4^{++}][UO_2^{2+}][H^{++}]^6}\right)$$
$$3E_{eq} = 1.00 + 2(0.344) - 0.0592 \log\left(\frac{1}{(0.100)^6}\right) = 1.688 - 0.355 = 1.333 \text{ V}$$

$$E_{\rm eq} = \frac{1.333}{3} = 0.444 \, \rm V$$

(d) At equivalence, $[Fe^{2+}] = 2[Tl^{3+}]$ and $[Fe^{3+}] = 2[Tl^{+}]$

$$3E_{\rm eq} = 0.771 + 2(1.25) - 0.0592 \log\left(\frac{[{\rm Fe}^{2+}][{\rm Tl}^{+}]}{[{\rm Fe}^{3+}][{\rm Tl}^{3+}]}\right) = 3.27 - 0.0592 \log\left(\frac{2[{\rm Tl}^{3+}][{\rm Tl}^{+}]}{2[{\rm Tl}^{+}][{\rm Tl}^{3+}]}\right)$$

$$E_{\rm eq} = \frac{3.27}{3} = 1.09 \,\,{\rm V}$$

(e) At equivalence, $[Ce^{3+}] = 2[H_3AsO_4]$, $[Ce^{4+}] = 2[H_3AsO_3]$ and $[H^+] = 1.00$

$$3E_{eq} = 1.70 + 2(0.577) - 0.0592 \log\left(\frac{[Ce^{3+}][H_3AsO_3]}{[Ce^{4+}][H_3AsO_4][H^+]^2}\right)$$
$$= 2.854 - 0.0592 \log\left(\frac{2[H_3AsO_4][H_3AsO_3]}{2[H_3AsO_3][H_3AsO_4][H^+]^2}\right) = 2.854 - 0.0592 \log\left(\frac{1}{(1.00)^2}\right)$$

$$E_{\rm eq} = \frac{2.854}{3} = 0.951 \,\,{\rm V}$$

(f) At equivalence, $[V(OH)_4^+] = 2[H_2SO_3]$ and $[VO^{2+}] = 2[SO_4^{2-}]$

$$3E_{\rm eq} = 1.00 + 2(0.172) - 0.0592 \log \left(\frac{[\rm VO^{2+}][\rm H_2SO_3]}{[\rm V(OH)_4^+][\rm SO_4^{-2-}][\rm H^+]^6} \right)$$
$$3E_{\rm eq} = 1.00 + 2(0.172) - 0.0592 \log \left(\frac{1}{(0.100)^6} \right) = 1.344 - 0.355 = 0.989 \text{ V}$$

$$E_{\rm eq} = \frac{0.989}{3} = 0.330 \,\,{\rm V}$$

(g) At equivalence, $[VO^+] = [V^{2+}]$

$$2E_{\rm eq} = 0.359 + (-0.256) - 0.0592 \log\left(\frac{[V^{2+}]}{[VO^{+}][H^{+}]^{2}}\right) = 0.103 - 0.0592 \log\left(\frac{[V^{2+}]}{[V^{2+}][H^{+}]^{2}}\right)$$
$$2E_{\rm eq} = 0.103 - 0.0592 \log\left(\frac{1}{(0.100)^{2}}\right) = 0.103 - 0.118 = -0.154 V$$

$$E_{\rm eq} = \frac{-0.154}{2} = -0.008 \,\,{\rm V}$$

(**h**) At equivalence, $[Ti^{2+}] = [TiO^{2+}]$

$$2E_{\rm eq} = 0.099 + (-0.369) - 0.0592 \log\left(\frac{[\text{Ti}^{2^+}]}{[\text{Ti}\text{O}^+][\text{H}^+]^2}\right) = 0.103 - 0.0592 \log\left(\frac{[\text{Ti}^{2^+}]}{[\text{Ti}^{2^+}][\text{H}^+]^2}\right)$$
$$2E_{\rm eq} = -0.270 - 0.0592 \log\left(\frac{1}{(0.100)^2}\right) = -0.270 - 0.118 = -0.388 V$$

$$E_{\rm eq} = \frac{-0.388}{2} = -0.194 \,\,{\rm V}$$

19-13. (a) In the solution to Problem 19-11(a) we find

$$K_{\rm eq} = \frac{[V^{3+}][Fe^{2+}]}{[V^{2+}][Fe^{3+}]} = 2.23 \times 10^{17}$$

At the equivalence point,

$$[V^{2+}] = [Fe^{3+}] = x$$

 $[V^{3+}] = [Fe^{2+}] = \frac{0.1000}{2} = 0.0500$

Substituting into the first equation we find

$$2.23 \times 10^{17} = \frac{(0.0500)^2}{x^2}$$
$$x = \sqrt{\frac{0.00250}{2.23 \times 10^{17}}} = 1.06 \times 10^{-10}$$

Thus,

$$[V^{2+}] = [Fe^{3+}] = 1.06 \times 10^{-10} M$$

 $[V^{3+}] = [Fe^{2+}] = 0.0500 M$

(c) At equivalence

$$[V(OH)_{4}^{+}] = 2[U^{4+}] = x$$

$$[VO_{2}^{2+}] = 2[UO_{2}^{2+}] = \frac{2(0.1000)}{3} - 2x = \frac{0.2000}{3} = 0.0667 \text{ M}$$

$$[UO_{2}^{2+}] = \frac{0.1000}{3} = 0.0333 \text{ M}$$

From the solution for Problem 19-11(c)

$$\frac{[\text{VO}_{2}^{2^{+}}]^{2}[\text{UO}_{2}^{2^{+}}]}{[\text{V(OH)}_{4}^{+}]^{2}[\text{U}^{4^{+}}]} = 3.2 \times 10^{22} = \frac{(0.0667)^{2} (0.0333)}{x^{2} \left(\frac{x}{2}\right)}$$
$$\frac{x^{3}}{2} = \frac{(0.0667)^{2} (0.0333)}{3.2 \times 10^{22}}$$
$$x = \sqrt[3]{2 \times (4.62 \times 10^{-27})} = 2.10 \times 10^{-9} \text{M}$$
$$[\text{V(OH)}_{4}^{+}] = 2.1 \times 10^{-9} \text{M} \text{ and } [\text{U}^{4^{+}}] = \frac{2.1 \times 10^{-9}}{2} = 1.0 \times 10^{-9} \text{M}$$

(**f**) Proceeding as in part (c)

$$[VO^{+}] = 0.067 \text{ M}$$
$$[SO_{4}^{2-}] = 0.033 \text{ M}$$
$$[V(OH)_{4}^{+}] = 3.2 \times 10^{-11} \text{ M}$$
$$[H_{2}SO_{3}] = 1.6 \times 10^{-11} \text{ M}$$

(g)

$$x = [V^{2+}] = [VO^{2+}]$$
$$[V^{3+}] = \frac{0.200}{2} = 0.100$$

Assume $[H^+] = 0.1000$. From the solution to Problem 19-11(g)

$$\frac{[V^{3+}]^2}{[VO^{2+}][V^{2+}][H^+]^2} = 2.4 \times 10^{10} = \frac{(0.100)^2}{[VO^{2+}][V^{2+}](0.100)^2}$$
$$2.4 \times 10^{10} = \frac{1.00}{x^2}$$
$$x = [VO^{2+}] = [V^{2+}] = 6.5 \times 10^{-6} M$$
$$[V^{3+}] = 0.100 M$$

19-14.

	$E_{ m eq}, { m V}$	Indicator
(a)	0.258	Phenosafranine
(b)	-0.024	None
(c)	0.444	Indigo tetrasulfonate or Methylene
		blue
(d)	1.09	1,10-Phenanthroline
(e)	0.951	Erioglaucin A
(f)	0.330	Indigo tetrasulfonate
(g)	-0.008	None
(h)	-0.194	None

19-15. (a) $2V^{2+} + Sn^{4+} \rightleftharpoons 2V^{3+} + Sn^{2+}$

Pre-equivalence point. For example, at 10.00 mL

$$[\mathbf{V}^{3+}] = \frac{\left(\frac{0.0500 \text{ mmol } \text{Sn}^{4+}}{\text{mL}} \times 10.00 \text{ mL} \times \frac{2 \text{ mmol } \text{V}^{3+}}{\text{mmol } \text{Sn}^{4+}}\right)}{60.00 \text{ mL}} = 0.0167 \text{ M}$$
$$[\mathbf{V}^{2+}] = \frac{\left(\frac{0.1000 \text{ mmol } \text{V}^{2+}}{\text{mL}} \times 50.00 \text{ mL}\right)}{60.00 \text{ mL}} - 1.67 \times 10^{-2} M = 0.0667 \text{ M}$$
$$E = -0.256 - 0.0592 \log\left(\frac{[\text{V}^{2+}]}{[\text{V}^{3+}]}\right) = -0.256 - 0.0592 \log\left(\frac{0.0667}{0.0167}\right) = -0.292 V$$

The remaining pre-equivalence point data are treated in the same way. The results appear in the spreadsheet that follows.

Equivalence Point, 50.00 mL

Proceeding as in Problem 19-12, we write

$$E = -0.256 - 0.0592 \log\left(\frac{[V^{2+}]}{[V^{3+}]}\right)$$
$$2E = 2 \times 0.154 - 0.0592 \log\left(\frac{[Sn^{2+}]}{[Sn^{4+}]}\right)$$
$$3E = -0.256 + (2 \times 0.154) - 0.0592 \log\left(\frac{[V^{2+}][Sn^{2+}]}{[V^{3+}][Sn^{4+}]}\right)$$

At equivalence, $[V^{2+}] = 2[Sn^{4+}]$ and $[V^{3+}] = 2[Sn^{2+}]$. Thus

$$E_{\rm eq} = \frac{-0.256 + (2 \times 0.154)}{3} - \frac{0.0592 \log(1.00)}{3} = 0.017 \,\,\mathrm{V}$$

Post-equivalence Point. For example, 50.10 mL

$$c_{\text{Sn}^{2+}} = \frac{\left(\frac{0.1000 \text{ mmol } \text{V}^{2+}}{\text{mL}} \times 50.00 \text{ mL} \times \frac{1 \text{ mmol } \text{Sn}^{2+}}{2 \text{ mmol } \text{V}^{2+}}\right)}{100.10 \text{ mL}} = 0.025 \text{ M} \approx [\text{Sn}^{2+}]$$

$$c_{\text{Sn}^{4+}} = \frac{\left(\frac{0.0500 \text{ mmol } \text{Sn}^{4+}}{\text{mL}} \times 50.10 \text{ mL}\right)}{100.10 \text{ mL}} - 0.025 \text{ M} = 5.0 \times 10^{-5} \text{ M} \approx [\text{Sn}^{4+}]$$

$$E = 0.154 - \frac{0.0592}{2} \log \left(\frac{[\text{Sn}^{2+}]}{[\text{Sn}^{4+}]}\right) = 0.154 - \frac{0.0592}{2} \log \left(\frac{2.5 \times 10^{-2}}{5.0 \times 10^{-5}}\right) = 0.074 \text{ V}$$

The remaining post-equivalence points are obtained in the same way and are found in the spreadsheet that follows.

	А	В	С	D	E	F	G		
1	19-15 (a) Titration of	of 50.00 mL	of 0.1000	M V ²⁺ with 0	.0500 M Si	n ⁴⁺			
2		Reaction: 2	2V ²⁺ + Sn ⁴⁺	$\rightarrow 2V^{3+} + Sn$	2+				
3	For V ³⁺ /V ²⁺ , E ⁰	-0.256							
4	For Sn ⁴⁺ /Sn ²⁺ , E ⁰	0.154							
5	Initial conc. V2+	0.1000							
6	Conc. Sn ⁴⁺	0.0500							
7	Volume solution, mL	50.00							
8	Vol. Sn ⁴⁺ , mL	[V ³⁺]	[V ² ⁺]	[Sn ⁴⁺]	[Sn ²⁺]	E, V			
9	10.00	0.0167	0.0667			-0.292			
10	25.00	0.0333	0.0333			-0.256			
11	49.00	0.0495	0.0010			-0.156			
12	49.90	0.0499	0.0001			-0.096			
13	50.00					0.017			
14	50.10			5.00E-05	0.0250	0.074			
15	51.00			4.95E-04	0.0248	0.104			
16	60.00			4.55E-03	0.0227	0.133			
	Documentation								
	Cell B9=\$B\$6*A9*2/(
	Cell C9=(\$B\$5*\$B\$7)					
	Cell F9=\$B\$3-0.0592		9/B9)						
	Cell F13=(\$B\$3+2*\$		////CDC7	A 4 4)					
22	Cell D14=(\$B\$6*A14			A14)					
23	Cell E14=\$B\$7*\$B\$5 Cell F14=\$B\$4-(0.05								
25	Cell 1 14-4044-(0.03	52/2) 2001	0(14/14/						
26	0.250								
27	0.200								
28	0.150						-		
29	0.050								
30	0.050					+			
31	> -0.050								
32	Щ,					+			
33	-0.150					*	_		
34	0.050								
35	-0.250	-							
36	-0.350								
37	0.00	10.00	20.00	30.00	40.00	50.00 (50.00 —		
38									
39	Vol. Sn ⁴⁺ , mL								

(b)

$$\operatorname{Fe}(\operatorname{CN})_{6}^{3-} + \operatorname{Cr}^{2+} \rightleftharpoons \operatorname{Fe}(\operatorname{CN})_{6}^{4-} + \operatorname{Cr}^{3+}$$

The pre-equivalence point data are obtained by substituting concentrations into the equation

$$E = 0.36 - 0.0592 \log \left(\frac{[\text{Fe}(\text{CN})_{6}^{4-}]}{[\text{Fe}(\text{CN})_{6}^{3-}]} \right)$$

The post-equivalence point data are obtained with the Nernst expression for the Cr^{2+}/Cr^{3+} system. That is,

$$E = -0.0408 - 0.0592 \log \left(\frac{[\mathrm{Cr}^{2+}]}{[\mathrm{Cr}^{3+}]} \right)$$

The equivalence point potential is found following the procedure in Problem 19-12. The results for all data points are found in the spreadsheet that follows

	А	В	С	D	E	F
1	19-15 (b) Titration o	f 50.00 mL of	0.1000 M Fe	CN)6 ³⁻ with	0.1000 M Cr ²⁺	
2		Reaction: Fe(C	CN) ₈ ³⁻ + Cr ²⁺	→ Fe(CN) ₆ ⁴⁻	+ Cr ³⁺	
3	For Fe(CN)6 ⁴⁻ , E ⁰	0.36				
4	For Cr ³⁺ /Cr ²⁺ , E ⁰	-0.408				
5	Initial conc. Fe(CN)83-	0.1000				
6	Conc. Cr ²⁺	0.1000				
7	Volume solution, mL	50.00				
8	Vol. Cr ²⁺ , mL	[Fe(CN) ₆ ⁴⁻]	[Fe(CN) ₆ ³]	[Cr ³⁺]	[Cr ²⁺]	E,V
9	10.00	0.0167	0.0667			0.40
10	25.00	0.0333	0.0333			0.36
11	49.00	0.0495	0.0010			0.26
12	49.90	0.0499	0.0001			0.20
13	50.00					-0.02
14	50.10			0.0500	9.99E-05	-0.248
15	51.00			0.0495	0.0010	-0.307
16	60.00			0.0455	0.0091	-0.367
17						
	Cell B9=\$B\$6*A9/(\$B		7. 40			
	Cell C9=(\$B\$5*\$B\$7-\$					
	Cell F9=\$B\$3-0.0592*)			
21 22	1	•				
	Cell E14=(\$B\$6*A14-	· · · · · · · · · · · · · · · · · · ·	207+111			
	Cell F14=\$B\$4-0.0592					
25	Cell 1 14-404-0.0332	20010(214/2	514)			
26						
27	0.50					
28	0.40	+				
29	0.30					_
30	0.20				`	_
31	> 0.10					
32	นั 0.00					
33	-0.10					
34	-0.20					
35	-0.30				t.	
36						
37	-0.40 +	10.00 20.	.00 30.00) 40.00	50.00	60.00
38	0.00	10.00 20.			30.00	00.00
39	-		Vol. Cr ²⁺	, mL		

(c) The data points for this titration, which are found in the spreadsheet that follows, are

obtained in the same way as those for parts (a) and (b).

1	А	В	С	D	E	F	G
1	19-15 (c) Titration of	f 50.00 ml	L of 0.1000 M	/ Fe(CN)6 ⁴⁻	with 0.050	0 M TI ³⁺	
2		Reaction	2Fe(CN)64-	+ $TI^{3+} \rightarrow 2Fe$	e(CN) ₈ ³⁻ + T	1+	
3	For Fe(CN)64-, E0	0.3	6				
4	For TI ³⁺ /TI ⁺ , E ⁰	1.2	5				
5	Initial conc. Fe(CN)84-	0.100	0				
6	Conc. TI ³⁺	0.050	0				
7	Volume solution, mL	50.0	0				
8	Vol. TI ³⁺ , mL	[Fe(CN)64][Fe(CN) ₆ ³]	[TI ³⁺]	[דוי]	E,V	
9	10.00	0.066	7 0.0167			0.32	
10	25.00	0.033	3 0.0333			0.36	
11	49.00	0.001	0 0.0495			0.46	
12	49.90	0.000	1 0.0499			0.52	
13	50.00					0.95	
14	50.10			5.00E-05	0.0250	1.17	
15	51.00			4.95E-04	0.0248	1.20	
16	60.00			4.55E-03	0.0227	1.23	
17	Documentation						
	Cell B9=(\$B\$5*\$B\$7-\$		2)/(\$B\$7+A9)				
19	Cell C9=\$B\$6*A9*2/(\$	6B\$7+A9)					
20	Cell F9=\$B\$3-0.0592*	LOG10(B	9/C9)				
21	Cell F13=(\$B\$3+2*\$B	\$4)/3					
22	Cell D14=(\$B\$6*A14-\$	\$B\$5*\$B\$	7/2)/(\$B\$7+A	.14)			
23	Cell E14=(\$B\$5*\$B\$7	/2)/(\$B\$7-	+A14)				
24	Cell F14=\$B\$4-(0.059	2/2)*LOG	10(E14/D14)				
25							
26	1.40						_
27							
28	1.20			1			-
29	1.00						_
30				1			
31	> 0.80						-
32	ພົ _{0.60}			_			_
33							
34	0.40	+	+				1
35	0.20						_
36							
37	0.00	20.	00	40.00	60.00	0	
38	0.00	20.	00	40.00	60.00	0	0.00
39			Vol	. TI ³⁺ , mL			

(d) The results for this titrat	tion are obtained a	s in parts (a) and (b).

	А	В	С	D	E	F	G
1	19-15 (d) Titration	of 0.1000 M	Fe ³⁺ with	Sn ²⁺			
2				+ → 2Fe ²⁺ +	Sn ⁴⁺		
3	For Fe ³⁺ /Fe ²⁺ E ⁰	0.771					
4	For Sn ⁴⁺ /Sn ²⁺ , E ⁰	0.154					
5	Initial conc. Fe ³⁺	0.1000					
6	Conc. Sn ²⁺	0.0500					
7	Volume solution, mL	50.00					
8	Vol. Sn ²⁺ , mL	[Fe ³⁺]	[Fe ²⁺]	[Sn ⁴⁺]	[Sn ²⁺]	E, V	
9	10.00	0.0667	0.0167			0.807	
10	25.00	0.0333	0.0333			0.771	
11	49.00	0.0010	0.0495			0.671	
12	49.90		0.0499			0.611	
13	50.00					0.360	
14	50.10			0.0250	5.00E-05	0.234	
15	51.00			0.0248	4.95E-04	0.204	
16	60.00			0.0227	4.55E-03	0.175	
17	Documentation						
	Cell B9=(\$B\$5*\$B\$7)/(\$B\$7+A9				
	Cell C9=\$B\$6*A9*2/						
	Cell F9=\$B\$3-0.0592		/C9)				
	Cell F13=(\$B\$3+2*\$						
	Cell D14=((\$B\$5*\$B						
23				A14)			
24	Cell F14=\$B\$4-(0.05	92/2)*LOG1	0(E14/D14)				
25							
26	1.000						_
27 28	_						
28 29	0.800						_
29 30			•				
31	0.600						_
32	>						
33	– wi _{0.400} –						_
34	0.400					†	
35	0.200						
36	0.200						1
37	0.000						
38	0.000	10.00	20.00	30.00	40.00 4	50.00 6	0.00
39	0.00	10.00				0.00 0	0.00
40			Vo	ol. Sn ²⁺ , mL			

(e)
$$2MnO_4^{-} + 5U^{4+} + 2H_2O \rightleftharpoons 2Mn^{2+} + 5UO_2^{2+} + 4H^+$$

Pre-equivalence Point. For example, 10.00 mL

$$\frac{0.02000 \text{ mmol } \text{MnO}_{4}^{-}}{\text{mL}} \times 10.00 \text{ mL } \text{MnO}_{4}^{-} = 0.2000 \text{ mmol } \text{MnO}_{4}^{-}$$

$$\frac{0.05000 \text{ mmol } \text{U}^{4+}}{\text{mL}} \times 50.00 \text{ mL } \text{U}^{4+} = 2.500 \text{ mmol } \text{UO}_{2}^{2+}$$

$$c_{\text{UO}_{2}^{2+}} = [\text{UO}_{2}^{-2^{+}}] = \frac{\left(0.2000 \text{ mmol } \text{MnO}_{4}^{-} \times \frac{5 \text{ mmol } \text{UO}_{2}^{-2^{+}}}{2 \text{ mmol } \text{MnO}_{4}^{-}}\right)}{60.00 \text{ mL } \text{ solution}} = 8.33 \times 10^{-3} \text{ M } \text{UO}_{2}^{-2^{+}}$$

$$c_{\text{U}^{4+}} = [\text{U}^{4+}] = \frac{\left(2.5000 \text{ mmol } \text{U}^{4+}\right)}{60.00 \text{ mL}} - 8.33 \times 10^{-3} = 0.0333 \text{ M } \text{U}^{4+}$$

$$E = 0.334 - \frac{0.0592}{2} \log \left(\frac{[\text{U}^{4+}]}{[\text{UO}_{2}^{-2^{+}}][\text{H}^{+}]^{4}}\right) = 0.334 - \frac{0.0592}{2} \log \left(\frac{3.33 \times 10^{-2}}{([\text{8.33} \times 10^{-3})(1.00)^{4}}\right) = 0.316 \text{ W}$$

The remaining pre-equivalence point data are in the spreadsheet that follows.

Equivalence Point, 50.00 mL

$$\begin{split} 5E_{\rm eq} &= 5 \times 1.51 - 0.0592 \log \left(\frac{[{\rm Mn}^{2+}]}{[{\rm MnO_4}^-][{\rm H}^+]^8} \right) \\ 2E_{\rm eq} &= 2 \times 0.334 - 0.0592 \log \left(\frac{[{\rm U}^{4+}]}{[{\rm UO_2}^{2+}][{\rm H}^+]^4} \right) \end{split}$$

Adding the two equations gives

$$7E_{eq} = (5 \times 1.51) + (2 \times 0.334) - 0.0592 \log \left(\frac{[Mn^{2+}][U^{4+}]}{[MnO_4^{-}][UO_2^{2+}][H^{+}]^{12}}\right)$$

At equivalence, $[MnO_4^-] = 2/5[U^{4+}]$ and $[Mn^{2+}] = 2/5[UO_2^{2+}]$

Substituting these equalities and $[H^+] = 1.00$ into the equation above gives

$$E_{\rm eq} = \frac{8.218}{7} - \frac{0.0592 \log(1.00)}{7} = \frac{8.218}{7} = 1.17 \text{ V}$$

Post-equivalence Point. For example, 50.10 mL

amount MnO₄⁻ added =
$$\frac{0.02000 \text{ mmol MnO}_4^-}{\text{mL}} \times 50.10 \text{ mL} = 1.0020 \text{ mmol}$$

amount Mn²⁺ formed = $\frac{0.05000 \text{ mmol U}^{4+}}{\text{mL}} \times 50.00 \text{ mL} \times \frac{2 \text{ mmol Mn}^{2+}}{5 \text{ mmol U}^{4+}} = 1.000 \text{ mmol}$
amount MnO₄⁻ remaining = $1.0020 - 1.000 = 2.0 \times 10^{-3} \text{ mmol}$
 $E = 1.51 - \frac{0.0592}{5} \log \left(\frac{[\text{Mn}^{2+}]}{[\text{MnO}_4^-][\text{H}^+]^8} \right) = 1.51 - \frac{0.0592}{5} \log \left(\frac{(1.000/100.10)}{(1.0020/100.10)(1.00)^8} \right) = 1.48 \text{ V}$
The other post equivalence point results are derived in the same way and are given in the

The other post equivalence point results are derived in the same way and are given in the spreadsheet that follows.

	A	В	С	D	E	F	G		
1	19-15 (e) Titration of	f 50.00 mL	0.05000 M	U ⁴⁺ with 0.02	2000 M Mn	04			
2		Reaction:	2MnO₄ ⁻ + 5	U ⁴⁺ +2H ₂ O	→ 2Mn ²⁺ + {	5UO2 ²⁺ + 4H	+		
3	For U ⁴⁺ /UO ₂ ²⁺ , E ⁰	0.334							
4	For MnO_4^{-} , E^0	1.51							
5	Initial conc. U4+	0.0500							
6	Conc. MnO₄ ⁻	0.0200							
7	Volume solution, mL	50.00							
8	Vol. MnO4, mL	[U ⁴⁺]	[UO2 ²⁺]	[MnO₄]	[Mn ²⁺]	[H ⁺]	E,V		
9	10.00	0.0333	0.0083			1.00	0.316		
10	25.00	0.0167	0.0167			1.00	0.334		
11	49.00	0.0005	0.0247			1.00	0.384		
12	49.90	0.0001	0.0250			1.00	0.414		
13	50.00					1.00	1.17		
14	50.10			2.00E-05	0.0100	1.00	1.48		
15	51.00			0.0002	0.0099	1.00	1.49		
16	60.00			0.0018	0.0091	1.00	1.50		
17									
18			· ·)					
	Cell C9=(\$B\$6*A9*5/2	2)/(\$B\$7+A9)						
	Cell F9=1.00 (entry)								
	Cell G9=\$B\$3-(0.0592	· · ·							
	Cell G13=((5*\$B\$4+2*								
23	1			·A14)					
24	1	· · ·		544000					
25	Cell G14=\$B\$4-(0.059	2/5)^LOG10)(E14/(D14^	F14^8))					
26									
27 28	1.600						_ +		
20						++			
30	1.400								
31	1.200					+	_		
32	1.000								
33	> 0.800								
34	шĩ								
35	0.600								
36	0.400								
37	0.200								
38	0.000								
39	0.00	10.00	20.00	30.00	40.00	50.00 (60.00		
40									
41	Vol. MnO4 ⁻ , mL								

Chapter 20

20-1. (a)
$$2Mn^{2+} + 5S_2O_8^{2-} + 8H_2O \rightarrow 10SO_4^{2-} + 2MnO_4^{-} + 16H^+$$

(b) $NaBiO_3(s) + 2Ce^{3+} + 4H^+ \rightarrow BiO^+ + 2Ce^{4+} + 2H_2O + Na^+$
(c) $H_2O_2 + U^{4+} \rightarrow UO_2^{2+} + 2H^+$
(d) $V(OH)_4^{+} + Ag(s) + CI^- + 2H^+ \rightarrow VO^{2+} + AgCl(s) + 3H_2O$
(e) $2MnO_4^{-} + 5H_2O_2 + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O$
(f) $ClO_3^{-} + 6I^- + 6H^+ \rightarrow 3I_2 + CI^- + 3H_2O$

20-2. Only in the presence of Cl⁻ ion is Ag a sufficiently good reducing agent to be very useful for prereductions. In the presence of Cl⁻, the half-reaction occurring in the Walden reductor is

$$Ag(s) + Cl^{-} \rightarrow AgCl(s) + e^{-}$$

The excess HCl increases the tendency of this reaction to occur by the common ion effect.

20-3.
$$UO_2^{2+} + 2Ag(s) + 4H^+ + 2Cl^- \rightleftharpoons U^{4+} + 2AgCl(s) + H_2O^-$$

- **20-4.** Standard solutions of reductants find somewhat limited use because of their susceptibility to air oxidation.
- **20-5.** Cerium (IV) precipitates as a basic oxide in alkaline solution.
- **20-6.** Freshly prepared solutions of permanganate are inevitably contaminated with small amounts of solid manganese dioxide, which catalyzes the further decompositions of

permanganate ion. By removing the dioxide at the outset, a much more stable standard reagent is produced.

- **20-7.** Standard permanganate and thiosulfate solutions are generally stored in the dark because their decomposition reactions are catalyzed by light.
- **20-8.** Solutions of $K_2Cr_2O_7$ are used extensively for back-titrating solutions of Fe²⁺ when the latter is being used as a standard reductant for the determination of oxidizing agents.
- **20-9.** The solution concentration of I_3^- becomes stronger because of air oxidation of the excess I^- . The reaction is

$$6I^- + O_2(g) + 4H^+ \rightarrow 2I_3^- + 2H_2O$$

20-10. When a measured volume of a standard solution of KIO₃ is introduced into an acidic solution containing an excess of iodide ion, a known amount of iodine is produced as a result of:

$$\mathrm{IO}_3^- + 5\mathrm{I}^- + 6\mathrm{H}^+ \rightarrow 3\mathrm{I}_2 + 3\mathrm{H}_2\mathrm{O}$$

20-11.

$$Cr_{2}O_{7}^{2-} + \underbrace{6I^{-}}_{excess} + 14H^{+} \rightarrow 2Cr^{3+} + 3I_{2} + 7H_{2}O$$
$$I_{2} + 2S_{2}O_{3}^{2-} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$$

20-12. Starch decomposes in the presence of high concentrations of iodine to give products that do not behave satisfactorily as indicators. This reaction is prevented by delaying the addition of the starch until the iodine concentration is very small.

20-13. 0.2541 g sample
$$\times \frac{1000 \text{ mmol Fe}^{2+}}{55.847 \text{ g}} = 4.5499 \text{ mmol Fe}^{2+}$$

(a)
$$\frac{4.5499 \text{ mmol Fe}^{2+}}{36.76 \text{ mL}} \times \frac{1 \text{ mmol Ce}^{4+}}{\text{mmol Fe}^{2+}} = 0.1238 \text{ M Ce}^{4+}$$

(b)
$$\frac{4.5499 \text{ mmol Fe}^{2+}}{36.76 \text{ mL}} \times \frac{1 \text{ mmol } \text{Cr}_2 \text{O}_7^{-2-}}{6 \text{ mmol } \text{Fe}^{2+}} = 0.02062 \text{ M } \text{Cr}_2 \text{O}_7^{-2-}$$

(c) $\frac{4.5499 \text{ mmol } \text{Fe}^{2+}}{36.76 \text{ mL}} \times \frac{1 \text{ mmol } \text{MnO}_4^{--}}{5 \text{ mmol } \text{Fe}^{2+}} = 0.02475 \text{ M } \text{MnO}_4^{--}$
(d) $\frac{4.5499 \text{ mmol } \text{Fe}^{2+}}{36.76 \text{ mL}} \times \frac{1 \text{ mmol } \text{V(OH)}_4^{++}}{\text{ mmol } \text{Fe}^{2+}} = 0.1238 \text{ M } \text{V(OH)}_4^{++}$
(e) $\frac{4.5499 \text{ mmol } \text{Fe}^{2+}}{36.76 \text{ mL}} \times \frac{1 \text{ mmol } \text{IO}_3^{--}}{4 \text{ mmol } \text{Fe}^{2+}} = 0.03094 \text{ M } \text{IO}_3^{--}$
20-14. $\frac{0.05000 \text{ mol } \text{KBrO}_3}{\text{L}} \times 1.000 \text{ L} \times \frac{167.001 \text{ g } \text{ KBrO}_3}{\text{mol}} = 8.350 \text{ g } \text{ KBrO}_3$

Dissolve 8.350 g KBrO $_3$ in water and dilute to 1.000 L.

20-15.

$$\frac{0.0600 \text{ mol } I_3^-}{L} \times \frac{1 \text{ mol } I_2}{\text{ mol } I_3^-} \times 2.5 \text{ L} \times \frac{253.809 \text{ g } I_2}{\text{ mol }} = 38.07 \text{ g } I_2$$

Dissolve about 38 g I_2 in a concentrated solution of KI and dilute to 2.5 L.

20-16.
$$Ce^{4+} + Fe^{2+} \rightarrow Ce^{3+} + Fe^{3+}$$

$$\frac{0.2219 \text{ g}}{34.65 \text{ mL Ce}^{4+}} \times \frac{1000 \text{ mL}}{\text{L}} \times \frac{1 \text{ mol Fe}}{55.847 \text{ g}} \times \frac{1 \text{ mol Fe}^{2+}}{\text{mol Fe}} \times \frac{1 \text{ mol Ce}^{4+}}{\text{mol Fe}^{2+}} = 0.1147 \text{ M Ce}^{4+}$$

20-17.

$$BrO_{3}^{-} + 6I^{-} + 6H^{+} \rightarrow Br^{-} + 3I_{2} + 3H_{2}O$$
$$I_{2} + 2S_{2}O_{3}^{2-} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$$

 $1 \text{ mmol } BrO_3^- = 3 \text{ mmol } I_2 = 6 \text{ mmol } S_2O_3^{2-}$

$$\frac{0.1298 \text{ g KBrO}_3}{41.32 \text{ mL Na}_2 \text{S}_2 \text{O}_3} \times \frac{1000 \text{ mmol KBrO}_3}{167.001 \text{ g}} \times \frac{6 \text{ mmol S}_2 \text{O}_3^{2-}}{\text{mmol KBrO}_3} = 0.1129 \text{ M Na}_2 \text{S}_2 \text{O}_3$$

20-18. $\begin{array}{l}
MnO_{2} + 2\Gamma + 4H^{+} \rightarrow Mn^{2+} + I_{2} + 2H_{2}O \\
I_{2} + 2S_{2}O_{3}^{2-} \rightarrow 2\Gamma^{-} + S_{4}O_{6}^{2-} \\
1 \text{ mmol } MnO_{2} = 1 \text{ mmol } I_{2} = 2 \text{ mmol } S_{2}O_{3}^{2-} \\
\underbrace{\left(\frac{0.08041 \text{ mmol}}{\text{mL}} \times 29.62 \text{ mL } Na_{2}S_{2}O_{3} \times \frac{1 \text{ mmol } MnO_{2}}{2 \text{ mmol } Na_{2}S_{2}O_{3}} \times \frac{86.937 \text{ g } MnO_{2}}{1000 \text{ mmol}}\right) \\
\hline 0.1267 \text{ g sample} \\
= 81.71\% \text{ MnO}_{2} \\
20-19. \qquad MnO_{4}^{-} + 5Fe^{2+} + 8H^{+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_{2}O \\
1 \text{ mmol } MnO_{4}^{-} = 5 \text{ mmol } Fe^{2+} = 5/2 \text{ mmol } Fe_{2}O_{3} \\
\end{array}$

amount $\text{KMnO}_4 = \frac{0.01926 \text{ mol } \text{KMnO}_4}{\text{mL}} \times 41.63 \text{ mL } \text{KMnO}_4 = 0.80179 \text{ mmol } \text{KMnO}_4$

(a)

$$\frac{\left(0.80179 \text{ mmoL } \text{KMnO}_4 \times \frac{5 \text{ mmol } \text{Fe}^{2+}}{\text{mmol } \text{KMnO}_4} \times \frac{1 \text{ mmol } \text{Fe}}{\text{mmol } \text{Fe}^{2+}} \times \frac{55.847 \text{ g } \text{Fe}}{1000 \text{ mmol}}\right)}{0.7120 \text{ g sample}} \times 100\%$$

=31.45% Fe

(b)

$$\frac{0.80179 \text{ mmoL KMnO}_4 \times \frac{5 \text{ mmol Fe}_2\text{O}_3}{2 \text{ mmol KMnO}_4} \times \frac{159.692 \text{ g Fe}_2\text{O}_3}{1000 \text{ mmol}}}{0.7120 \text{ g sample}} \times 100\%$$

=44.96% Fe₂O₃

20-20.

$$2H_2NOH + 4Fe^{3+} \rightleftharpoons N_2O(g) + 4Fe^{2+} + 4H^+ + H_2O$$

 $Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \rightleftharpoons 2Cr^{3+} + 6Fe^{3+} + 7H_2O$
1 mmol $Cr_2O_7^{2-} = 6$ mmol $Fe^{3+} = 3$ mmol H_2NOH

$$\frac{\left(\frac{0.01528 \text{ mmol } \text{K}_2\text{Cr}_2\text{O}_7}{\text{mL}} \times 14.48 \text{ mL } \text{K}_2\text{Cr}_2\text{O}_7 \times \frac{3 \text{ mmol } \text{H}_2\text{NOH}}{\text{mmol } \text{K}_2\text{Cr}_2\text{O}_7}\right)}{25.00 \text{ mL sample}}$$

$= 0.0266 \text{ M H}_2 \text{NOH}$

20-21. $\text{ClO}_3^- + 6\text{Fe}^{2+} + 6\text{H}^+ \rightarrow \text{Cl}^- + 3\text{H}_2\text{O} + 6\text{Fe}^{3+}$

amount
$$\operatorname{Fe}^{2+} = \frac{0.07654 \operatorname{mmol} \operatorname{Fe}^{2+}}{\operatorname{mL}} \times 50.00 \operatorname{mL} \operatorname{Fe}^{2+} = 3.827 \operatorname{mmol}$$

amnt Fe^{2+} titrated $= \frac{0.07654 \operatorname{mmol} \operatorname{Ce}^{4+}}{\operatorname{mL}} \times 13.26 \operatorname{mL} \operatorname{Ce}^{4+} \times \frac{1 \operatorname{mmol} \operatorname{Fe}^{2+}}{\operatorname{mmol} \operatorname{Ce}^{4+}} = 1.0149 \operatorname{mmol}$
amnt Fe^{2+} reacted with $\operatorname{KClO}_3 = 3.827 - 1.0149 = 2.8121 \operatorname{mmol}$
 $\left(\frac{2.8121 \operatorname{mmoL} \operatorname{Fe}^{2+} \times \frac{1 \operatorname{mmol} \operatorname{KClO}_3}{6 \operatorname{mmol} \operatorname{Fe}^{2+}} \times \frac{122.549 \operatorname{g} \operatorname{KClO}_3}{1000 \operatorname{mmol}} \right)}{0.1862 \operatorname{g} \operatorname{sample}} \times 100\%$

=30.85% KClO₃

20-22.
$$H_3AsO_3 + I_2 + H_2O \rightarrow H_3AsO_4 + 2I^- + 2H^+$$

1 mmol $I_2 = 1$ mmol $H_3AsO_3 = \frac{1}{2}$ mmol As_2O_3

$$\frac{\left(\frac{0.03142 \text{ mmol } \text{I}_2}{\text{mL}} \times 31.36 \text{ mL } \text{I}_2 \times \frac{1 \text{ mmol } \text{As}_2\text{O}_3}{2 \text{ mmol } \text{I}_2} \times \frac{197.841 \text{ g } \text{As}_2\text{O}_3}{1000 \text{ mmol}}\right)}{8.13 \text{ g sample}} \times 100\%$$

$$= 1.199\%$$
 As₂O₃

20-23.
$$2C_2H_5SH + I_2 \rightarrow C_2H_5SSC_2H_5 + 2I^- + 2H^+$$

amount
$$I_2 = \frac{0.01204 \text{ mmol } I_2}{\text{mL}} \times 50.0 \text{ mL} = 0.6020 \text{ mmol}$$

amnt I_2 titrated by $S_2O_3^{2-}$
 $= \frac{0.01437 \text{ mmol } Na_2S_2O_3}{\text{mL}} \times 18.23 \text{ mL} Na_2S_2O_3 \times \frac{1 \text{ mmol } I_2}{2 \text{ mmol } Na_2S_2O_3} = 0.2620 \text{ mmol}$
amnt I_2 reacted with $C_2H_5SH = 0.6020 - 0.2620 = 0.3400 \text{ mmol}$

$$\frac{\left(0.3400 \text{ mmoL } I_2 \times \frac{2 \text{ mmol } C_2 H_5 \text{SH}}{\text{mmol } I_2} \times \frac{62.14 \text{ g } C_2 H_5 \text{SH}}{1000 \text{ mmol}}\right)}{2.043 \text{ g sample}} \times 100\%$$

 $= 2.07\% C_2H_5SH$

20-24.

$$\begin{aligned} 2I^{-} + Br_{2} &\rightarrow I_{2} + 2Br^{-} \\ IO_{3}^{-} + 5I^{-} + 6H^{+} &\rightarrow 3I_{2} + 3H_{2}O \\ I_{2} + 2S_{2}O_{3}^{2-} &\rightarrow 2I^{-} + S_{4}O_{6}^{2-} \end{aligned}$$

1 mmol KI = 1 mmol IO_3^- = 3 mmol I_2 = 6 mmol $S_2O_3^{2-}$

 $\frac{\left(\frac{0.04926 \text{ mmol } \text{Na}_2 \text{S}_2 \text{O}_3}{\text{mL}} \times 19.72 \text{ mL } \text{Na}_2 \text{S}_2 \text{O}_3 \times \frac{1 \text{ mmol } \text{KI}}{6 \text{ mmol } \text{Na}_2 \text{S}_2 \text{O}_3} \times \frac{166.00 \text{ g } \text{KI}}{1000 \text{ mmol}}\right)}{1.307 \text{ g sample}} \times 100\%$

= 2.056% KI

20-25. In the Walden reductor, $V(OH)_4^+ + 2H^+ + e^- \rightleftharpoons VO^{2+} + 3H_2O$

In the Jones reductor, $V(OH)_4^+ + 4H^+ + 3e^- \rightleftharpoons V^{2+} + 4H_2O$

In the first titration,

$$Ce^{4+} + Fe^{2+} \rightarrow Fe^{3+} + Ce^{3+}$$

 $Ce^{4+} + VO^{2+} + 3H_2O \rightarrow V(OH)_4^+ + Ce^{3+} + 2H^+$

amount Fe and V = amount Ce⁴⁺ = $\frac{0.1000 \text{ mmol Ce}^{4+}}{\text{mL}} \times 18.31 \text{ mL Ce}^{4+} = 1.831 \text{ mmol Fe and V}$ In the second titration,

 $Ce^{4+} + Fe^{2+} \rightarrow Fe^{3+} + Ce^{3+}$ $3Ce^{4+} + V^{2+} + 4H_2O \rightarrow V(OH)_4^{+} + 3Ce^{3+} + 4H^+$

amount Fe and
$$3 \times V =$$
 amount Ce⁴⁺
= $\frac{0.1000 \text{ mmol Ce}^{4+}}{\text{mL}} \times 42.41 \text{ mL Ce}^{4+} = 4.241 \text{ mmol Fe and } 3 \times V$

Subtracting the first equation from the second equation gives

$$4.241 - 1.831 = 2.410 = 2 \times \text{amount V}$$

amount V = $\frac{2.410}{2} = 1.205 \text{ mmol}$
amount V₂O₅ = $\frac{1.205 \text{ mmol V}}{2} = 0.6025 \text{ mmol}$
amount Fe = $1.831 - 1.205 = 0.626 \text{ mmol}$
amount Fe₂O₃ = $\frac{0.626 \text{ mmol Fe}}{2} = 0.3130 \text{ mmol}$

$$\frac{(0.6025 \text{ mmol } \text{V}_2\text{O}_5) \times \frac{181.88 \text{ g } \text{V}_2\text{O}_5}{1000 \text{ mmol}}}{2.667 \text{ g sample} \times \frac{50.00 \text{ mL}}{500.0 \text{ mL}}} \times 100\%$$

$$=41.09\% V_2O_5$$

$$\frac{(0.3130 \text{ mmol Fe}_2\text{O}_3) \times \frac{159.69 \text{ g Fe}_2\text{O}_3}{1000 \text{ mmol}}}{2.667 \text{ g sample} \times \frac{50.00 \text{ mL}}{500.0 \text{ mL}}} \times 100\%$$

$$= 18.74\%$$
 Fe₂O₃

20-26.

$$SO_{2}(g) + 2OH^{-} \rightarrow SO_{3}^{2-} + H_{2}O$$

 $IO_{3}^{-} + 2H_{2}SO_{3} + 2CI^{-} \rightarrow ICI_{2}^{-} + 2SO_{4}^{2-} + 2H^{+} + H_{2}O$

1 mmol
$$IO_3^- = 2$$
 mmol $H_2SO_3 = 2$ mmol SO_2

In
$$\frac{2.50 \text{ L}}{\text{min}} \times 59.00 \text{ min} = 147.5 \text{ L of sample, there are}$$

 $\frac{0.002997 \text{ mmol KIO}_3}{\text{mL}} \times 5.15 \text{ mL KIO}_3 \times \frac{2 \text{ mmol SO}_2}{\text{mmol KIO}_3} \times \frac{64.065 \text{ g SO}_2}{1000 \text{ mmol}} = 1.9776 \times 10^{-3} \text{ g SO}_2$
 $\left(\frac{1.9776 \times 10^{-3} \text{ g SO}_2}{147.5 \text{ L} \times \frac{1.20 \text{ g}}{\text{ L}}}\right) \times 10^6 \text{ ppm}$
 $= 11.2 \text{ ppm SO}_2$

20-27.

In

$$S^{2-} + I_2 \rightarrow S(s) + 2I^-$$

 $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$

 $1 \ mmol \ I_2 = 1 \ mmol \ H_2S = 2 \ mmol \ S_2{O_3}^{2-}$

amount I₂ added =
$$\frac{0.00432 \text{ mmol I}_2}{\text{mL}} \times 25.00 \text{ mL I}_2 = 0.1080 \text{ mmol I}_2$$

amount I₂ in excess= $\frac{0.01143 \text{ mmol S}_2 \text{O}_3^{2^-}}{\text{mL}} \times 15.62 \text{ mL S}_2 \text{O}_3^{2^-} \times \frac{1 \text{ mmol I}_2}{2 \text{ mmol S}_2 \text{O}_3^{2^-}}$
= 0.08927 mmol
amount I₂ reacted = amount H₂S = 0.1080 - 0.08927 = 0.01873 mmol

$$\left(\frac{0.01873 \text{ mmol } \text{H}_2\text{S} \times \frac{34.082 \text{ g } \text{H}_2\text{S}}{1000 \text{ mmol}}}{25.00 \text{ L} \times \frac{1.2 \text{ g}}{\text{L}}}\right) \times 10^6 \text{ ppm}$$

 $=21.3 \text{ ppm } H_2S$

20-28.

$$O_2 + 4Mn(OH)_2(s) + 2H_2O \rightleftharpoons 4Mn(OH)_3(s)$$

$$4Mn(OH)_3(s) + 12H^+ + 4I^- \rightleftharpoons 4Mn^{2+} + 2I_2 + 6H_2O$$

$$\frac{0.00897 \text{ mmol } \text{S}_2 \text{O}_3^{2^-}}{\text{mL}} \times 14.60 \text{ mL } \text{S}_2 \text{O}_3^{2^-} \times \frac{1 \text{ mmol } \text{O}_2}{4 \text{ mmol } \text{S}_2 \text{O}_3^{2^-}} \times \frac{32.0 \text{ mg } \text{O}_2}{\text{mmol}} = 1.0477 \text{ mg } \text{O}_2}$$

$$\frac{1.0477 \text{ mg } \text{O}_2}{\left(25 \text{ mL } \text{ sample} \times \frac{250 \text{ mL}}{254 \text{ mL}}\right)}$$

 $= 0.0426 \text{ mg O}_2/\text{mL sample}$

20-29. See spreadsheets on the following pages.

1Problem 20-292Reaction $\operatorname{Sn}^{2+} + 2\operatorname{Fe}^{3+} \rightarrow \operatorname{Sn}^{4}$ 3For Fe, E^0 4For Sn, E^0 5Initial conc. Sn^{2+} 6Conc. Fe^{3+} 7Volume SnCl_2 soln.8Eq. pt. volume9Percentatges1010	0.771 0.154 0.050 0.100 20.00 20.00					I ₂ with 0.10 × 2/0.100 =	
3 For Fe, E^0 4 For Sn, E^0 5 Initial conc. Sn ²⁺ 6 Conc. Fe ³⁺ 7 Volume SnCl ₂ soln. 8 Eq. pt. volume 9 Percentatges Vol. Fe ³	0.771 0.154 0.050 0.100 20.00 20.00 ³⁺ , mL		Eq Pt. will	be at 20.00) × 0.0500 :	× 2/0.100 =	20.00 mL
3 For Fe, E^0 4 For Sn, E^0 5 Initial conc. Sn ²⁺ 6 Conc. Fe ³⁺ 7 Volume SnCl ₂ soln. 8 Eq. pt. volume 9 Percentatges Vol. Fe ³	0.771 0.154 0.050 0.100 20.00 20.00 ³⁺ , mL		Eq Pt. will	be at 20.00) × 0.0500 :	× 2/0.100 =	20.00 mL
 4 For Sn, E⁰ 5 Initial conc. Sn²⁺ 6 Conc. Fe³⁺ 7 Volume SnCl₂ soln. 8 Eq. pt. volume 9 Percentatges Vol. Fe³ 	0.154 0.050 0.100 20.00 20.00 ³⁺ , mL	[Sn ⁴⁺]					
5 Initial conc. Sn ²⁺ 6 Conc. Fe ³⁺ 7 Volume SnCl ₂ soln. 8 Eq. pt. volume 9 Percentatges Vol. Fe ³	0.050 0.100 20.00 20.00 ³⁺ , mL	[Sn ⁴⁺]					
6 Conc. Fe ³⁺ 7 Volume SnCl ₂ soln. 8 Eq. pt. volume 9 Percentatges	0.100 20.00 20.00 ³⁺ , mL	[\$n ⁴⁺]					
 7 Volume SnCl₂ soln. 8 Eq. pt. volume 9 Percentatges Vol. Fe² 	20.00 20.00 ³⁺ , mL	[\$n ⁴⁺]					
8 Eq. pt. volume 9 Percentatges Vol. Fe	20.00 ³⁺ , mL	[Sn ⁴⁺]					
9 Percentatges Vol. Fe	³⁺ , mL	[Sn ⁴⁺]					
			[Sn ²⁺]	[Fe3 ⁺]	[Fe ²⁺]	E, V	
	2.00			[res]	[re]	0.126	
11 20	4.00	0.004343				0.120	
12 30	6.00	0.011538				0.130	
13 40	8.00					0.149	
14 50		0.016667				0.154	
15 60	12.00					0.159	
16 70		0.020588				0.165	
17 80		0.022222				0.172	
18 90		0.023684				0.182	
19 95		0.024359				0.192	
20 99	19.80	0.024874	0.000251			0.213	
21 99.9	19.98	0.024987	2.5E-05			0.243	
22 100	20.00					0.360	
23 101	20.20			0.000498	0.049751	0.653	
24 105	21.00			0.002439	0.04878	0.694	
25 110	22.00			0.004762	0.047619	0.712	
26 120	24.00			0.009091	0.045455	0.730	
27 Spreadsheet Documentation	n						
28 Cell B10=A10/100*\$B\$8				\$B\$3+2*\$E			
29 Cell C10=(\$B\$6*B11/2)/(\$B\$7						*2)/(\$B\$7+E	(23)
30 Cell D10=(\$B\$5*\$B\$7-\$B\$6*E			Cell F23=(
31 Cell G10=\$B\$4-(0.0592/2)*LC)G(D10/0	:10)	Cell G23=	\$B\$3-0.059	2*LOG(F23	/E23)	
32 0.800							
33 34 0.700 -			*	+-+			
25			f.				
35 0.600 - 36							
37 0.500 -							
51							
38 0.400 -			+				
40 0.300							
41 0.200 -							
12	+-+-	+ + +					
43 0.100							
44 0.000		1	1	1			
45 0.00 5.00	10.00	15.00	20.00	25.00	30.00		
46		Volume Fe ³⁴	+, mL				
47			-				

	А	В	С	D	E	F	G	Н	
1	Pb 20-29(b) Titratio	_	-		_	•			
2	Reaction $2S_2O_3^{2-}$ +				0, 1111 01	0200 111 12	(-37		
3	For thiosulf., E ⁰	0.08	Eo otis a	t (25 00 × 0	.08467/2)/	0 10235 =	10.34 ml		
4	For I_3 , E^0	0.536	Eq. prio d	. (20.00 0		0.10200	10.011112		
5	Initial conc. S ₂ O ₃ ²⁻	0.08467							
6	Conc. I3	0.10235							
7	Vol. Na ₂ S ₂ O ₃ soln.	25.00							
8	Eq. Pt. Vol.	10.34							
9	Percentages	Vol. I ₃ ⁻ , mL	[S4062]	$[S_2O_3^2]$	[13]	[1]	E,V		
10	10	1.03	0.0041	0.0732			0.076		
11	20	2.07	0.0078	0.0626			0.089		
12	30	3.10	0.0113	0.0527			0.098		
13	40	4.14	0.0145				0.106		
14	50	5.17	0.0175	0.0351			0.114		
15	60	6.20	0.0203				0.123		
16	70	7.24	0.0230	0.0197			0.132		
17	80	8.27	0.0254	0.0127			0.145		
18	90	9.31	0.0278	0.0062			0.165		
19	95	9.82	0.0289	0.0030			0.183		
20	99	10.24	0.0297	0.0006			0.225		
21	99.9	10.33	0.0299	0.0001			0.283		
22	100	10.34					0.384		
23	101	10.44			0.0003	0.0896			
24	105				0.0015				
25	110	11.37			0.0029	0.0873	0.555		
26	120	12.41			0.0057	0.0849	0.565		
27	Spreadsheet Docu	mentation							
28	Cell B10=A10/100*\$				Cell G22=(\$B\$3+2*\$E	3\$4)/3		
29	Cell C10=(\$B\$6*B10)/(\$B\$7+B10)					\$B\$5*\$B\$7/	2)/(\$B\$7+E	323)
	Cell D10=(\$B\$5*\$B\$	/ X /		10)			3/2)/(\$B\$7+		
31	Cell G10=\$B\$3-(0.0						92/2)*LOG(F		
32	0.600 ¬								
33	0.000				**	-+			
34	0.500 -				f i				
35	0.500								
36	0.400 -								
37	0.400				†				
38	> 0.000								
39	≥ 0.300 -				+				
40					+				
41	0.200 -				• * ·				
42				++	•				
43	0.100 -		* ·						
44									
45	0.000 +	1 1							
46	0.00	2.00 4.00		8.00	10.00 1	2.00 14.	00		
47			Vol.	l₃ ⁻ , mL					

	А	В	С	D	E	F	G	Н			
1	Pb 20-29 (c) Titra	_	-		_						
2	Reaction: 2MnO ₄	-									
3	For oxalic, E ⁰			-	2.999 g/mol × 1	1000 = 0.93	3284 mmol	oxalate			
4	For MnO_4 , E^0			-	ate requres 2 m						
5	Initial mmol ox		-		nmol × 2/5)/0.0			5 mL KMnO₄			
6	Conc. MnO ₄	0.01035		. (0.002077	2.0,0.0						
7	Initial Vol. Soln	25.00									
8	Eq. Pt Vol.	36.05									
9	Percentages	Vol. MnO4 ⁻ , mL		$[H_2C_2O_4]$	[MnO₄ ⁻]	[Mn ²⁺]	[H⁺]	E, V			
10	10	3.61	1.00				1.00	-0.44			
11	20	7.21	1.00	0.0232			1.00	-0.44			
12	30	10.82	1.00	0.0182			1.00	-0.44			
13	40	14.42	1.00	0.0142			1.00	-0.44			
14	50	18.03	1.00	0.0108			1.00	-0.43			
15	60	21.63	1.00	0.0080			1.00	-0.43			
16	70	25.24	1.00	0.0056			1.00	-0.42			
17	80	28.84	1.00	0.0035			1.00	-0.42			
18	90	32.45	1.00	0.0016			1.00	-0.41			
19	95	34.25	1.00	0.0008			1.00	-0.40			
20	99	35.69	1.00	0.0002			1.00	-0.38			
21	99.9	36.01	1.00	0.0000			1.00	-0.35			
22	100	36.05	1.00			0.0061	1.00	0.94			
23	101	36.41			6.046E-05	0.0061	1.00	1.49			
24	105	37.85			2.965E-04	0.0059	1.00	1.49			
25	110	39.66			5.768E-04	0.0058	1.00	1.50			
26	120				1.093E-03	0.0055	1.00	1.50			
27	Spreadsheet Do										
	Cell B10=A10/100				Cell F22=\$B\$5						
	Cell D10=(\$B\$5-\$						3\$5*2/5)/(\$B\$7+B23)				
30 31	Cell H10=\$B\$3-(0 Cell H22=((2*\$B\$3				Cell H23=\$B\$4	-(0.0592/5)	*LOG(F23/	(E23*G23^8))			
32		3+5 9D94 <i>jr1 j</i> -(0.0;	552/1 200	(1/022-2 0	22.10						
33	2.00										
34	1 50										
35	1.50 -				····						
36	1.00										
37	1.00 -				†						
38	> 0.50										
39	0.50 -										
40	0.00										
41	0.00 -										
42	0.50	+ +	• • •	-+-++							
43	-0.50 -										
44	1.00										
45	-1.00 +	10.02	20.00	20.00	40.00	50.00					
46	0.00	10.00	20.00	30.00	40.00	50.00					
47			Vol. MnC	04°, mL							

1	А	В	С	D	F	F	G	Н
	Pb 20-29 (d) Titrati			_	_		-	
	Reaction: 6Fe ²⁺ + C				101000 111120			
	For dichromate, E ⁰	1.33	201					
	For Fe, E ⁰		Thora are '	20.00 mL ×	0.1034 mmol/	(ml = 2.06)	R mmol Eo ²	+
	Initial Fe ²⁺ conc.							
					nmol of dichro			
	Conc. dichromate		or 22.98 m		2.068 mmol/6/	0.01500 mr	noi/mL	
	Initial Vol. soln. Eq. Pt. Vol.	20.00		IL.				
9	Percentages	Vol. Cr ₂ O ₇ ²⁻ , mL		[Fe ²⁺]	[Cr ₂ O ₇ ²]	[Cr ³⁺]	[H⁺]	E,V
10	10 III	2.30	0.0093			[]	1.00	0.715
11	20	4.60	0.0168				1.00	0.735
12	30	6.89					1.00	0.749
13	40	9.19					1.00	0.761
14	50	11.49					1.00	0.771
15	60	13.79					1.00	0.781
16	70	16.09		0.0172			1.00	0.793
17	80	18.38					1.00	0.807
18	90	20.68					1.00	0.828
19	95	21.83					1.00	0.847
20	99	22.75	0.0479				1.00	0.889
21	99.9	22.96	0.0481	0.0000			1.00	0.951
22	100	22.98				0.0160		1.26
23	101	23.21			8.054E-05	0.0160	1.00	1.33
24	105	24.13			3.913E-04	0.0156	1.00	1.33
25	110	25.28			7.620E-04	0.0152	1.00	1.34
26	120	27.58			0.0014	0.0145	1.00	1.34
27	Spreadsheet Docu	mentation						
28	Cell B10=A10/100*9			Cell F22=(\$B\$5*\$B\$7/3)	/(\$B\$7+B22	2)	
29	Cell C10=(\$B\$6*B10	0*6)/(\$B\$7+B10)		Cell H22=((\$B\$4+6*\$B\$3	3)/7)-(0.059	2/7)*LOG(2	*F22/G22^14
30	Cell D10=(\$B\$5*\$B	\$7-\$B\$6*B10*6)/(\$E	3\$7+B10)	Cell E23=(\$B\$6*B23-\$B	\$5*\$B\$7/6)	/(\$B\$7+B23	3)
	Cell H10=\$B\$4-0.05	92*LOG(D10/C10)		Cell H23=9	B\$3-(0.0592/6	6)*LOG(F23	3^2/(E23*G2	23^14))
32	1.400 7							
33					+++++++++			
34	1.300 -				4			
35	1.200 -				1			
36								
37	1.100 -							
38	2 1.000 -							
39	u				+			
40	0.900 -				*			
41	0.800 -	-						
42		+ + + +						
43	0.700 - 🔶							
44	0.600					_ -		
45	0.00	5.00 10.00	15.00	20.00	25.00	30.00		
46 47			/ol. Cr ₂ O ₇ ²⁻ ,	ml				

Chapter 21

21-1. (a) An *indicator electrode* is an electrode used in potentiometry that responds to variations in the activity of an analyte ion or molecule.

(**b**) A *reference electrode* is an electrode whose potential is known, constant and independent of the type of solution in which it is immersed.

(c) An *electrode of the first kind* is a metal electrode that responds to the activity of its cation in solution.

(d) An *electrode of the second kind* is a metal electrode that is used to determine the concentration of an anion that forms a precipitate or a stable complex with the cation of the electrode metal.

21-2. (a) A *liquid junction potential* is the potential that develops across the interface between two solutions having different electrolyte compositions.

(**b**) A *boundary potential* is the potential that develops across an ion-sensitive membrane when the two side of the membrane are immersed in solutions having different concentrations of the ion to which the membrane is sensitive.

(c) The *asymmetry potential* is a potential that develops across an ion-sensitive membrane when the concentrations of the ion are the same on either side of the membrane. This potential arises from dissimilarities between the inner and outer surface of the membrane.

21-3. (a) A titration is generally more accurate than measurements of electrode potential.Therefore, if ppt accuracy is needed, a titration should be picked.

(b) Electrode potentials are related to the activity of the analyte. Thus, pick potential measurements if activity is the desired quantity.

Chapter 21

21-4. For the process $M^{n+} + ne^{-} \rightleftharpoons M(s)$, the Nernst equation predicts

$$E = E^{\circ} - \frac{0.0592}{n} \log\left(\frac{1}{[M^{n+}]}\right) = E^{\circ} + \frac{0.0592}{n} [M^{n+}] = E^{\circ} - \frac{0.0592}{n} pM$$

The response is Nernstian if a plot of *E* vs. pM is linear with a slope of -0.0592/n.

21-5. The potential arises from the difference in positions of dissociation equilibria on each of the two surfaces. These equilibria are described by

$$H^+Gl^- \rightleftharpoons H^+ + Gl^-$$

membrane

The surface exposed to the solution having the higher H^+ concentration becomes positive with respect to the other surface. This charge difference, or potential, serves as the analytical parameter when the pH of the solution on one side of the membrane is held constant.

- **21-6.** In order for a glass membrane to be pH sensitive, it is necessary for the two surfaces to be hydrated so that the equilibria shown in the previous problem can be established.
- 21-7. Uncertainties include (1) the acid error in highly acidic solutions, (2) the alkaline error in strongly basic solutions, (3) the error that arises when the ionic strength of the calibration standards differs from that of the analyte solution, (4) uncertainties in the pH of the standard buffers, (5) nonreproducible junction potentials with solutions of low ionic strength and (6) dehydration of the working surface.
- 21-8. Because of variables that cannot be controlled, it is necessary to calibrate the response of the electrode against one or more standards. It must then be assumed that the junction potential associated with the external reference electrode does not change when the

standard is replaced by the test solution. The uncertainty associated with this assumption translates into uncertainties in the second decimal place of the measured p-value.

- 21-9. The *alkaline error* arises when a glass electrode is employed to measure the pH of solutions having pH values in the 10 to 12 range or greater. In the presence of alkali ions, the glass surface becomes responsive to not only hydrogen ions but also alkali metal ions. Measured pH values are low as a result.
- **21-10.** A *gas-sensing probe* functions by permitting the gas to penetrate a hydrophobic membrane and altering the composition of liquid on the inner side of the membrane. The changes are registered by an indicator/reference electrode pair in contact with the inner solution. Thus, there is no direct contact between the electrodes and the test solution as there is with membrane electrodes.
- 21-11. (a) The *asymmetry potential* in a membrane arises from differences in the composition or structure of the inner and outer surfaces. These differences may arise from contamination of one of the surfaces, wear and abrasion and/or strains set up during manufacturing.
 (b) The *boundary potential* for a membrane electrode is a potential that develops when the membrane separates two solutions that have different concentrations of a cation or an anion that the membrane binds selectively. For an aqueous solution, the following equilibria develop when the membrane is positioned between two solutions of A⁺:

$$\begin{array}{ccc} \mathbf{A}^{+}\mathbf{M}^{-} \xrightarrow{\rightarrow} \mathbf{A}^{+} + \mathbf{M}^{-} \\ \text{membrane}_{1} \leftarrow \text{solution}_{1} + \mathbf{M}^{-} \\ \mathbf{A}^{+}\mathbf{M}^{-} \xrightarrow{\rightarrow} \mathbf{A}^{+} + \mathbf{M}^{-} \\ \text{membrane}_{2} \leftarrow \text{solution}_{2} + \mathbf{M}^{-} \\ \end{array}$$

where the subscripts refer to the two sides of the membrane. A potential develops across this membrane if one of these equilibria proceeds further to the right than the other, and this potential is the boundary potential. For example, if the concentration of A⁺ is greater in solution 1 than in solution 2, the negative charge on side 1 of the membrane will be less than that of side 2 because the equilibrium on side 1 will lie further to the left. Thus, a greater fraction of the negative charge on side 1 will be neutralized by A⁺.
(c) The *junction potential* in a glass/calomel electrode system develops at the interface between the saturated KCl solution in the salt bridge and the sample solution. It is caused by charge separation created by the differences in the rates at which ions migrate across the interface.

(d) The membrane in a solid-state electrode for F^- is crystalline LaF₃, which when immersed in aqueous solution, dissociates according to the equation

 $LaF_3(s) \rightleftharpoons La^{3+} + 3F^{-}$

Thus, the boundary potential develops across this membrane when it separates two solutions of F^- ion concentration. The source of this potential is the same as described in part (b).

- **21-12.** The direct potentiometric measurement of pH provides a measure of the equilibrium activity of hydronium ions in the sample. A potentiometric titration provides information on the amount of reactive protons, both ionized and nonionized, in the sample.
- 21-13. Potentiometric titrations offer many advantages over direct potentiometry including (1) yielding equivalence point data that are independent of E_{cell} and free of uncertainties involving the junction potential, (2) electrode fouling and non-Nernstian behavior are not as serious, (3) the reference electrode potential does not need to be known and (4) the

result is analyte concentration even though the electrode responds to activity, thus ionic strengths are not important.

21-14. The "operational definition of pH" is based on the direct calibration of the meter with carefully prescribed standard buffers followed by potentiometric determination of the pH of unknown solutions. The relationship is:

$$pH_{\rm U} = pH_{\rm S} = \frac{E_{\rm U} - E_{\rm S}}{0.0592}$$

Where pH_U is the pH of the unknown solution, pH_S is the pH of the standard buffer, and E_U and E_S are the potentials of the unknown and standard solution respectively. This relationship has been adopted throughout the world as the *operational definition of pH*.

21-15.
$$\operatorname{AgIO}_3(s) + e^- \rightleftharpoons \operatorname{Ag}(s) + \operatorname{IO}_3^-$$

(a)

$$E_{Ag} = 0.799 - 0.0592 \log \left(\frac{1}{[Ag^+]}\right) \quad K_{sp} = [Ag^+][IO_3^-] = 3.1 \times 10^{-8}$$
$$E_{Ag} = 0.799 - 0.0592 \log \left(\frac{[IO_3^-]}{K_{sp}}\right)$$

When $[IO_3^-] = 1.00$, E_{Ag} is equal to $E^o_{AgIO_3}$ for the reduction of AgIO₃, that is,

$$E_{\text{AgIO}_3}^{\text{o}} = 0.799 - 0.0592 \log \left(\frac{1.00}{3.1 \times 10^{-8}}\right) = 0.354 \text{ V}$$

(b) SCE $||IO_3^-(x M), AgIO_3(sat'd)|| Ag$

(c)

$$\begin{split} E_{\text{cell}} &= E_{\text{AgIO}_3} - E_{\text{SCE}} \\ &= \left(0.354 - 0.0592 \log \left([\text{IO}_3^{-}] \right) - 0.244 \right) \\ &= 0.110 + 0.0592 \text{pIO}_3 \\ \text{pIO}_3 &= \frac{E_{\text{cell}} - 0.110}{0.0592} \end{split}$$

(**d**)
$$\text{pIO}_3 = \frac{0.306 - 0.110}{0.0592} = 3.31$$

21-16. (a) Proceeding as in the previous solution, we write

$$\begin{split} E_{\rm Pb} &= -0.126 - \frac{0.0592}{2} \log \left(\frac{1}{[{\rm Pb}^{2+}]} \right) \quad K_{\rm sp} = [Pb^{2+}] [{\rm I}^{-}]^2 = 7.9 \times 10^{-9} \\ E_{\rm Pb} &= -0.126 - \frac{0.0592}{2} \log \left(\frac{[{\rm I}^{-}]^2}{K_{\rm sp}} \right) \end{split}$$

When $[\Gamma] = 1.00$, *E* becomes $E_{PbI_2}^o$ and

$$E_{\rm PbI_2}^{\rm o} = -0.126 - \frac{0.0592}{2} \log\left(\frac{1.00}{7.9 \times 10^{-9}}\right) = -0.366 \, \rm V$$

(b) SCE
$$||I^-(x M), PbI_2(s)||Pb$$

(c)

$$E_{\text{cell}} = E_{\text{PbI}_2} - E_{\text{SCE}}$$

= $\left(-0.366 - \frac{0.0592}{2} \log([I^-]^2) - 0.244\right)$
= $-0.610 + 0.0592 \text{pI}$
pI = $\frac{E_{\text{cell}} + 0.610}{0.0592}$

(d)
$$pI = \frac{-0.402 + 0.610}{0.0592} = 3.51$$

21-17. (a) SCE|| Γ (*x* M), AgI (sat'd) | Ag

(b) SCE
$$||$$
SCN $^-$ (*x* M), AgSCN (sat'd) $|$ Ag

(c) SCE||PO₄³⁻ (
$$x$$
 M), Ag₃PO₄ (sat'd) | Ag

(d) SCE||SO₃⁻ (
$$x$$
 M), Ag₂SO₃ (sat'd) | Ag

21-18. (a) $\operatorname{AgI}(s) \rightleftharpoons \operatorname{Ag}(s) + I^{-} \quad E^{\circ}_{\operatorname{AgI}} = -0.151 \operatorname{V} (\operatorname{Appendix} 5)$

$$E_{\text{cell}} = -0.151 - 0.0592 \log ([I^{-}]) - 0.244 = -0.395 + 0.0592 \text{pI}$$
$$pI = \frac{E_{\text{cell}} + 0.395}{0.0592}$$

(b) AgSCN(s) \rightleftharpoons Ag⁺ + SCN⁻ $K_{sp} = [Ag^+][SCN^-] = 1.1 \times 10^{-12}$

To obtain E_{AgSCN}^{o} we proceed as in Problem 21-16(a). Thus,

$$E_{\text{AgSCN}}^{\text{o}} = 0.799 - 0.0592 \log \left(\frac{1}{1.1 \times 10^{-12}} \right) = 0.091 \text{ V}$$
$$E_{\text{cell}} = 0.091 - 0.0592 \log \left([\text{SCN}^{-}] \right) - 0.244 = -0.153 + 0.0592 \text{pSCN}$$
$$\text{pSCN} = \frac{\text{E}_{\text{cell}} + 0.153}{0.0592}$$

(c) $\operatorname{Ag_3PO_4}(s) \rightleftharpoons 3\operatorname{Ag^+} + \operatorname{PO_4^{3-}} K_{sp} = [\operatorname{Ag^+}]^3 [\operatorname{PO_4^{3-}}] = 1.3 \times 10^{-20}$

$$E_{Ag_3PO_4}^{o} = 0.799 - \frac{0.0592}{3} \log \left(\frac{1}{1.3 \times 10^{-20}}\right) = 0.407 \text{ V}$$

$$E_{\text{cell}} = 0.407 - \frac{0.0592}{3} \log \left([PO_4^{3-}] \right) - 0.244 = 0.163 + \frac{0.0592}{3} pPO_4$$
$$pPO_4 = \frac{3 \left(E_{\text{cell}} - 0.163 \right)}{0.0592}$$

(d) $\operatorname{Ag}_2\operatorname{SO}_3(s) \rightleftharpoons 2\operatorname{Ag}^+ + \operatorname{SO}_3^{2-} \quad K_{\operatorname{sp}} = [\operatorname{Ag}^+]^2[\operatorname{SO}_3^{2-}] = 1.5 \times 10^{-14}$

$$E_{Ag_2SO_3}^{o} = 0.799 - \frac{0.0592}{2} \log\left(\frac{1}{1.5 \times 10^{-14}}\right) = 0.390 V$$

$$E_{cell} = 0.390 - \frac{0.0592}{2} \log\left([SO_3^{2-}]\right) - 0.244 = 0.146 + \frac{0.0592}{2} pSO_3$$

$$pSO_3 = \frac{2\left(E_{cell} - 0.146\right)}{0.0592}$$

21-19. (a)
$$pI = \frac{-0.196 + 0.395}{0.0592} = 3.36$$

(b)
$$pSCN = \frac{0.137 + 0.153}{0.0592} = 4.90$$

(c)
$$\text{pPO}_4 = \frac{3(0.211 - 0.163)}{0.0592} = 2.43$$

(**d**)
$$pSO_3 = \frac{2(0.285 - 0.146)}{0.0592} = 4.70$$

21-20. SCE||Ag₂CrO₄ (sat'd), CrO₄²⁻ (x M) | Ag

$$Ag_{2}CrO_{4}(s) + 2e^{-} \rightleftharpoons 2Ag(s) + CrO_{4}^{2-} E^{o} = 0.446 V$$

$$0.336 = 0.446 - \frac{0.0592}{2} \log([CrO_{4}^{2-}]) - 0.244 = 0.202 + \frac{0.0592}{2} pCrO_{4}$$

$$pCrO_{4} = \frac{2(0.389 - 0.202)}{0.0592}$$

$$pCrO_4 = 6.32$$

21-21. Substituting into Equation 21-22 gives

pH =
$$-\frac{1(E_{cell} - K)}{0.0592}$$
 and $4.006 = -\frac{(0.2106 - K)}{0.0592}$
 $K = (4.006 \times 0.0592) + 0.2106 = 0.447755$
(a) pH = $-\frac{(-0.2902 - 0.447755)}{0.0592} = 12.47$

Chapter 21

$$a_{\rm H^+} = \operatorname{antilog}(-12.4655) = 3.42 \times 10^{-13} \,\mathrm{M}$$

(b) $\rm pH = -\frac{(0.1241 - 0.447755)}{0.0592} = 5.47$
 $a_{\rm H^+} = \operatorname{antilog}(-5.4671) = 3.41 \times 10^{-6} \,\mathrm{M}$

(c) For part (a)

If
$$E = -0.2902 + 0.002 = -0.2882$$
 V
 $pH = -\frac{(-0.2882 - 0.447755)}{0.0592} = 12.43$
 $a_{H^+} = antilog(-12.4317) = 3.70 \times 10^{-13}$
If $E = -0.2902 - 0.002 = -0.2922$ V
 $pH = -\frac{(-0.2922 - 0.447755)}{0.0592} = 12.50$
 $a_{H^+} = antilog(-12.4992) = 3.17 \times 10^{-13}$ M

Thus pH should be 12.43 to 12.50 and a_{H^+} in the range of 3.17 to $3.70 \times 10^{-13} \text{ M}$

Proceeding in the same way for (b), we obtain

pH in the range 5.43 to 5.50 $a_{\rm H^+}$ in the range 3.16×10^{-6} to 3.69×10^{-6} M

21-22.

amount HA =
$$\frac{0.1243 \text{ mmol NaOH}}{\text{mL}} \times 18.62 \text{ mL NaOH} \times \frac{1 \text{ mmol HA}}{\text{mmol NaOH}} = 2.3145 \text{ mmol}$$

 $\frac{0.4021 \text{ g HA}}{2.3145 \text{ mmol HA}} \times \frac{1000 \text{ mmol}}{\text{mol}} = \frac{173.7 \text{ g HA}}{\text{mol}}$
 $\mathcal{M}_{\text{HA}} = 173.7 \text{ g/mol}$

21.23. For all additions, we calculate

$$E_{\rm Ag} = E_{\rm Ag^+/Ag}^{\rm o} - 0.0592 \log \left(\frac{1}{[{\rm Ag}^+]}\right) \text{ and } E_{\rm cell} = E_{\rm Ag} - E_{\rm SCE}$$

Pre-equivalence point region

$$[SeCN^{-}] \approx c_{SeCN^{-}} = \frac{\text{mmol KSeCN initially present} - \text{mmol AgNO}_3 \text{ added}}{\text{total solution volume in mL}}$$

$$[Ag^+] = \frac{K_{sp}}{[SeCN^-]}$$

The results are shown in the spreadsheet.

Equivalence point

Here $[Ag^+] = [SeCN^-] = \sqrt{K_{sp}}$ we use the Nernst equation to calculate E_{Ag} and then

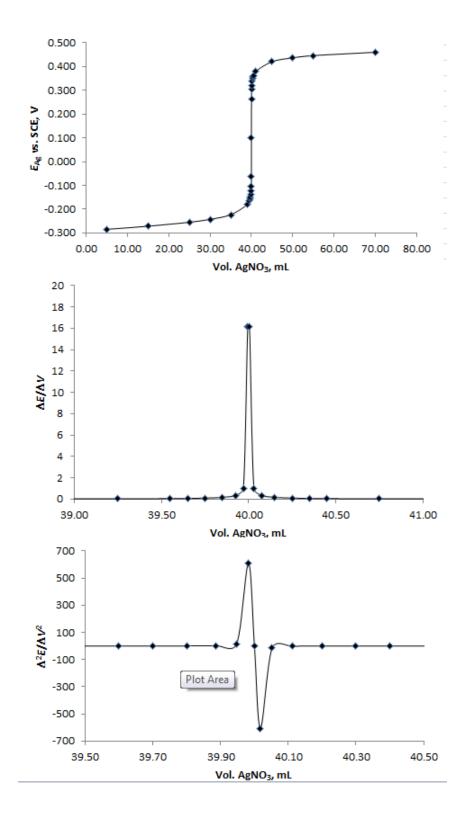
obtain E_{cell} as before. The result is shown in cell D22 of the spreadsheet.

Post equivalence point region

$$[Ag^+] \approx c_{Ag^+} = \frac{\text{mmol AgNO}_3 \text{ added} - \text{mmol KSeCN initially present}}{\text{total solution volume in mL}}$$

The E_{cell} values are shown in column D of the spreadsheet.

First- and second-derivative plots


The calculations for the first- and second-derivative plots follow the method shown in

Applications of Microsoft® Excel in Analytical Chemistry 2nd ed., , Chapter 7 and in

Table 21-4.

1	A	В	С	D	E	F	G	Н	1	J	K	L
1	Problem 21-23 Titra	ation of 50	.00 mL of	0.0800 M KSeCN	with 0.1000	M AgNO ₃						
2	E ⁰ for Ag ⁺ /Ag	0.799										
3	K _{sp} for AgSeCN	4.20E-16	Reaction: /	$Ag^+ + SeCN^- \rightarrow A$	lgSeCN(s)							
4	ESCE	0.244	End pt: 50	.00 × 0.0800/0.10	00 = 40.00 m	L						
5	Initial conc. KSeCN	0.0800										
6	Conc. AgNO ₃	0.1000										
7	Initilal vol., mL	50.00			First Derivat	tive						
8		[SeCN]	[Ag⁺]	EAg vs. SCE, V	Midpt. Vol.	ΔE	∆Vol.	$\Delta E / \Delta V$	Midpt. Vol.	$\Delta(\Delta E / \Delta V)$	ΔV	$\Delta^2 E / \Delta V^2$
9	5.00	0.0636	6.60E-15	-0.284					-			
10	15.00	0.0385	1.09E-14	-0.272	10.00	0.013	10.00	0.0013				
11	25.00	0.0200	2.10E-14	-0.255	20.00	0.017	10.00	0.0017	15.00	0.0004	10.00	0.0000
12	30.00	0.0125	3.36E-14	-0.243	27.50	0.012	5.00	0.0024	23.75	0.0007	7.50	0.0001
13	35.00	0.0059	7.14E-14	-0.223	32.50	0.019	5.00	0.0039	30.00	0.0015	5.00	0.0003
14	39.00	0.0011	3.74E-13	-0.181	37.00	0.043	4.00	0.0106	34.75	0.0068	4.50	0.0015
15	39.50	5.59E-04	7.52E-13	-0.163	39.25	0.018	0.50	0.0359	38.13	0.0253	2.25	0.0112
16	39.60	4.46E-04	9.41E-13	-0.157	39.55	0.006	0.10	0.0577	39.40	0.0217	0.30	0.0724
17	39.70	3.34E-04	1.26E-12	-0.150	39.65	0.007	0.10	0.0743	39.60	0.0166	0.10	0.1659
18	39.80	2.23E-04	1.89E-12	-0.139	39.75	0.010	0.10	0.1045	39.70	0.0303	0.10	0.3028
19	39.90	1.11E-04	3.78E-12	-0.121	39.85	0.018	0.10	0.1785	39.80	0.0740	0.10	0.7396
20	39.95	5.56E-05	7.56E-12	-0.103	39.93	0.018	0.05	0.3567	39.89	0.1782	0.08	2.3761
21	39.99	1.11E-05	3.78E-11	-0.062	39.97	0.041	0.04	1.0348	39.95	0.6781	0.05	15.0679
22	40.00	2.05E-08	2.05E-08	0.100	40.00	0.162	0.01	16.1864	39.98	15.1516	0.03	606.0636
23	40.01		1.11E-05	0.262	40.01	0.162	0.01	16.1858	40.00	-0.0006	0.01	-0.0571
24	40.05		5.55E-05		40.03	0.041	0.04		40.02		0.03	-606.0636
25	40.10		1.11E-04		40.08	0.018	0.05		40.05	-0.6781	0.05	-15.0679
26	40.20		2.22E-04		40.15	0.018	0.10	0.1779	40.11	-0.1782	0.08	-2.3761
27	40.30		3.32E-04		40.25	0.010	0.10		40.20	-0.0740	0.10	-0.7396
28	40.40		4.42E-04	0.356		0.007	0.10		40.30		0.10	-0.3028
29	40.50		5.52E-04		40.45	0.006	0.10		40.40		0.10	-0.1659
30	41.00		1.10E-03		40.75	0.018	0.50		40.60		0.30	-0.0724
31	45.00		5.26E-03		43.00	0.040	4.00		41.88		2.25	-0.0112
32	50.00		1.00E-02		47.50	0.017	5.00		45.25		4.50	-0.0015
33			1.43E-02		52.50	0.009	5.00		50.00		5.00	-0.0003
34	70.00		2.50E-02	0.460	62.50	0.014	15.00	0.0010	57.50	-0.0009	10.00	-0.0001
35												
36		-\$B\$6*A9)/(\$B\$7+A9)		Cell F10=D1							
37					Cell H10=F1							
	Cell D9=\$B\$2-0.0592)-\$B\$4		Cell I11=(E11							
	Cell B22=SQRT(\$B\$				Cell J11=H11							
40)/(\$B\$7+A	23)	Cell K11=E1							
41	Cell E10=(A10+A9)/2	2			Cell L11=J11	/K11						

For the titration curve, plot the potential in column D vs. the volume in column A on an X Y scatter plot. For the first derivative, plot the derivative in column H vs. the midpoint volume in column E. For the second derivative, plot the derivative in column L vs. the midpoint volume in column I. The plots follow.

21-24. For all, $E_{\text{cell}} = E_{\text{ind}} - E_{\text{SCE.}}$ Note there are 2 mmol of Ce(IV) that react per mmol of HNO₂

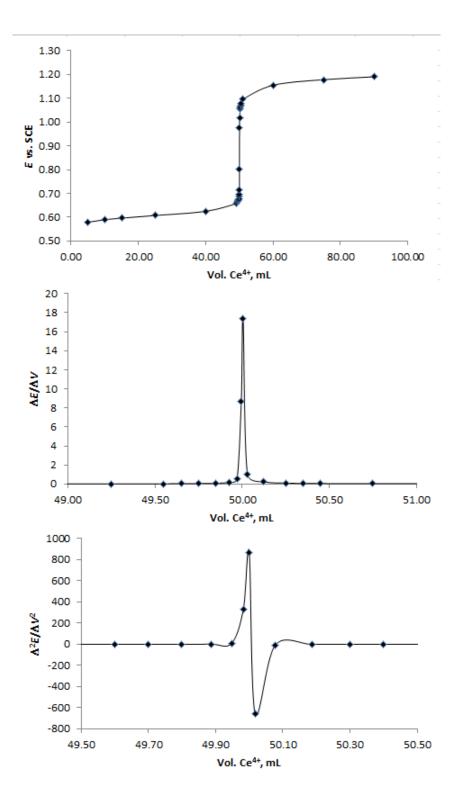
Pre-equivalence point region

$$[NO_{3}^{-}] \approx c_{NO_{3}^{-}} = \frac{\text{mmol Ce(IV) added} \times \frac{1 \text{ mmol HNO}_{2}}{2 \text{ mmol Ce(IV)}}}{\text{total solution volume in mL}}$$

 $[HNO_2] \approx c_{HNO_2} = \frac{\text{mmol HNO}_2 \text{ initially present} - \left(\text{mmol Ce(IV) added} \times \frac{1 \text{ mmol HNO}_2}{2 \text{ mmol Ce(IV)}}\right)}{\text{total solution volume in mL}}$

$$E_{\text{ind}} = E_{\text{NO}_{3}^{-}/\text{HNO}_{2}}^{\text{o}} - \frac{0.0592}{2} \log \left(\frac{[\text{HNO}_{2}]}{[\text{NO}_{3}^{-}][\text{H}^{+}]^{3}} \right)$$

Equivalence point


$$E_{\rm eq} = \left(\frac{2E_{\rm NO_3^{-}/HNO_2}^{\rm o} + E_{\rm Ce^{4+}/Ce^{3+}}^{\rm o}}{3}\right) - \frac{0.0592}{3}\log\left(\frac{1}{\left[\rm H^+\right]^3}\right)$$

Post equivalence point region

$$[Ce^{3+}] \approx c_{Ce^{3+}} = \frac{\text{mmol HNO}_2 \text{ initially present} \times \frac{2 \text{ mmol Ce(III)}}{\text{mmol HNO}_2}}{\text{total solution volume in mL}}$$

$$[Ce^{4+}] \approx c_{Ce^{4+}} = \frac{\text{mmol Ce(IV) added} - \left(\text{mmol HNO}_2 \text{ initially present} \times \frac{2 \text{ mmol Ce(IV)}}{\text{mmol HNO}_2}\right)}{\text{total solution volume in mL}}$$
$$E_{ind} = E_{Ce^{4+}/Ce^{3+}}^{\circ} - 0.0592 \log \left(\frac{[Ce^{3+}]}{[Ce^{4+}]}\right)$$

1	Α	В	С	D	E	F	G	H		J	K	L	М	Ν	0
1	Problem 21-24 T	itration of	HNO ₂ with	Ce4+ at pl	H 1.00										
2	E ⁰ HNO ₂				e^{4+} +H ₂ O \rightarrow NO) ₃ - + 3H+	+ 2Ce ³⁺								
3	E ⁰ , Ce ⁴⁺ /Ce ³⁺	1.44	Eq. Pt. is	at 0.0500 ×	40.00 ×2/0.08	0 = 50.00) mL								
4	Initial conc. HNO ₂	0.0500													
5	Conc. Ce(IV)	0.0800													
6	Vol. HNO ₂	40.00													
7	Initial soln. vol.	75.00													
8	pH	1.00													
9	ESCE	0.244													
- 10		[NO ₃]		[Ce ³⁺]	[Ce ⁴⁺]	Eind	E vs SCE	Midpt. Vo	ΔE	ΔV	$\Delta E / \Delta V$	Midnt, Vo	$\Delta(\Delta E / \Delta V)$	ΔV	$\Delta^2 E / \Delta V^2$
11	5.00	0.00250			[00]	0.823	0.579	mapt. vo				mapa vo			
12	10.00	0.00230	0.01882			0.833	0.589	7.50	0.010	5.00	0.002				
13	15.00	0.00667				0.840	0.596	12.50	0.007	5.00	0.001	10.00	-0.001	5.00	0.000
4	25.00	0.01000				0.851	0.607	20.00	0.011	10.00	0.001	16.25	0.000	7.50	0.000
5	40.00	0.01391	0.00348			0.869	0.625	32.50	0.018	15.00	0.001	26.25	0.000	12.50	0.000
16	49.00	0.01581	0.00032			0.901	0.657	44.50	0.032	9.00	0.004	38.50	0.002	12.00	0.000
17	49.50	0.01590	0.00016			0.910	0.666	49.25	0.009	0.50	0.018	46.88	0.015	4.75	0.003
8	49.60	0.01592	0.00013			0.913	0.669	49.55	0.003	0.10	0.029	49.40	0.011	0.30	0.036
9	49.70	0.01594	0.00010			0.917	0.673	49.65	0.004	0.10	0.037	49.60	0.008	0.10	0.083
20	49.80	0.01596	6.41E-05			0.922	0.678	49.75	0.005	0.10	0.052	49.70	0.015	0.10	0.151
21	49.90	0.01598	3.20E-05			0.931	0.687	49.85	0.009	0.10	0.089	49.80	0.037	0.10	0.370
22	49.95		1.60E-05			0.940	0.696	49.93	0.009	0.05	0.178	49.89	0.089	0.08	1.188
23	49.99	0.01600	3.20E-06			0.961	0.717	49.97	0.021	0.04	0.517	49.95	0.339	0.05	7.534
24	50.00					1.047	0.803	50.00	0.087	0.01	8.678	49.98	8.160	0.03	326.419
25	50.01			0.0320		1.22	0.977	50.01	0.174	0.01	17.355	50.00	8.677	0.01	867.746
26	50.05			0.0320		1.26	1.018	50.03	0.041	0.04	1.034	50.02	-16.321	0.03	
27	50.20			0.0319		1.30	1.054	50.13	0.036	0.15	0.238	50.08	-0.797	0.09	-8.388
8	50.30			0.0319		1.31	1.064	50.25	0.010	0.10	0.104	50.19	-0.133	0.13	-1.067
29	50.40			0.0319		1.32	1.072	50.35	0.007	0.10	0.074	50.30	-0.030	0.10	-0.303
30	50.50			0.0319		1.32	1.078	50.45	0.006	0.10	0.057	50.40	-0.017	0.10	-0.166
31	51.00			0.0317		1.34	1.095	50.75	0.018	0.50	0.036	50.60	-0.022	0.30	-0.072
32	60.00			0.0296		1.40	1.155	55.50	0.059	9.00	0.007	53.13	-0.029	4.75	-0.006
33 34	75.00			0.0267		1.42	1.178	67.50	0.024	15.00	0.002		-0.005	12.00	0.000
		umontoti		0.0242	0.0194	1.43	1.190	82.50	0.012	15.00	0.001	75.00	-0.001	15.00	0.000
35 36	Spreadsheet Doc Cell B11=(\$B\$5*A*					Coll H12-	-(A12+A11)/2								
	Cell C11=(\$B\$5*A					Cell112=0									
	Cell F11=\$B\$2-(0.0			1*(10^_\$B\$	3)^3))	Cell J12=C									
	Cell G11=F11-\$B\$		5,511,01		, , ,,	Cell K12=									
	Cell F24=((2*\$B\$2-		(0.0592/3)*I	OG(1/(10^	-\$B\$8)^3)		(H13+H12)/2								
	Cell D25=(\$B\$4*\$E					Cell M13=K13-K12									
	Cell E25=(\$B\$5*A2		,	57+A25)		Cell N13=									
	Cell F25=\$B\$3-0.0						=M13/N13								

21-25. Pre-equivalence point region

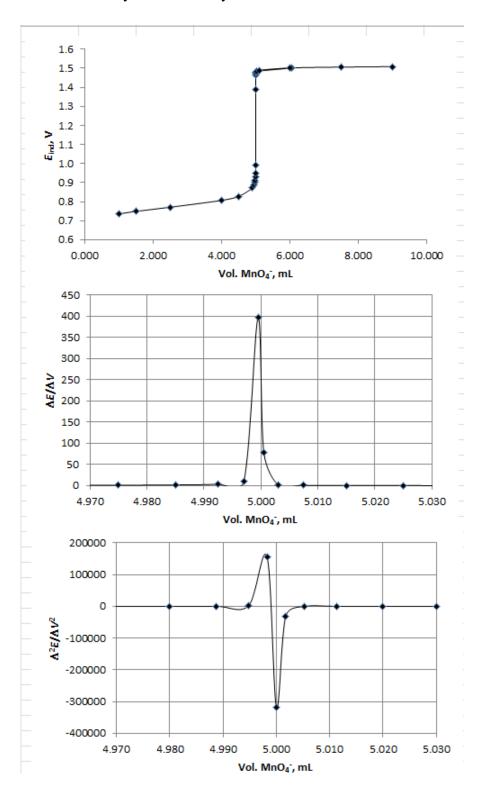
$$[Fe^{3+}] \approx c_{Fe^{3+}} = \frac{\text{mmol MnO}_4^- \text{ added} \times \frac{5 \text{ mmol Fe}^{3+}}{\text{mmol MnO}_4^-}}{\text{total solution volume in mL}}$$

$$[Fe^{2+}] \approx c_{Fe^{2+}} = \frac{\text{mmol Fe}^{2+}\text{initially present} - \left(\text{mmol MnO}_4^- \text{added} \times \frac{5 \text{ mmol Fe}^{2+}}{\text{mmol MnO}_4^-}\right)}{\text{total solution volume in mL}}$$

$$E_{\text{ind}} = E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\text{o}} - 0.0592 \log \left(\frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} \right)$$

Equivalence point

$$E_{\rm eq} = \left(\frac{5E_{\rm MnO_4^-/Mn^{2+}}^{\rm o} + E_{\rm Fe^{3+}/Fe^{2+}}^{\rm o}}{6}\right) - \frac{0.0592}{6}\log\left(\frac{1}{\left[\rm H^+\right]^8}\right)$$


Post equivalence point region

$$[Mn^{2+}] \approx c_{Mn^{2+}} = \frac{\text{mmol Fe}^{2+}\text{initially present} \times \frac{\text{mmol MnO}_4^-}{5 \text{ mmol Fe}^{2+}}}{\text{total solution volume in mL}}$$
$$[MnO_4^-] \approx c_{MnO_4^-} = \frac{\text{mmol MnO}_4^- \text{ added } - \left(\text{mmol Fe}^{2+}\text{initially present} \times \frac{\text{mmol MnO}_4^-}{5 \text{ mmol Fe}^{2+}}\right)}{\text{total solution volume in mL}}$$

$$E_{\text{ind}} = E_{\text{MnO}_{4}^{-}/\text{Mn}^{2+}}^{\text{o}} - \frac{0.0592}{5} \log \left(\frac{[\text{Mn}^{2+}]}{[\text{MnO}_{4}^{-}][\text{H}^{+}]^{8}} \right)$$

The titration curve is quite asymmetrical because of the different number of electrons involved in the two half reactions. As can be seen in the plots, the maximum of the first derivative does not coincide with the equivalence point, nor does the zero crossing of the second derivative.

1	A	В	С	D	E	F	G	Н	I.	J	K	L	М	Ν
1	Problem 21-25 Ti	tration of	25.00 mL o	of 0.1 M Fe(II) \	with 0.1 M	MnO₄ ⁻								
2			Reaction M	InO4 +5Fe ²⁺ +	8H⁺ → Mn	²⁺ + 5Fe ³⁺ ·	+ 4H ₂ O							
3	E ⁰ for Fe	0.771	Since 5 mr	nol of Fe(II) are	consumed	per mmol	of MnO4-,							
4	E ⁰ for Mn	1.51	the eq. pt is	s at 25.00 × 0.1	1/(5 × 0.1)	= 5.00 mL								
5	Initial conc. Fe ²⁺	0.10			. ,									
6	Conc. MnO₄ ⁻	0.10												
7	Initial volume	25.00												
8	[H+]	1.00												
9	Vol. MnO ₄ , mL	[Fe ²⁺ }	[Fe ³⁺]	[MnO₄]	[Mn ²⁺]	E _{ind} , V	Midpt. Vol	ΔE	ΔV	ΔE/ΔV	Midpt. Vol.	$\Delta(\Delta E / \Delta V)$	ΔV	$\Delta^2 E / \Delta V^2$
10	1.000	0.019	0.077	[0.735						. ,		
11	1.500	0.028	0.066			0.749		0.014	0.500	0.028				
12	2.500	0.045	0.045			0.771	2.000	0.022	1.000	0.022	1.625	-0.006	0.750	0.0
13	4.000	0.069	0.017			0.807	3.250	0.036	1.500	0.024	2.625	0.002	1.250	0.0
14	4.500	0.076	8.47E-03			0.827	4.250	0.021	0.500	0.042	3.750	0.018	1.000	0.0
15	4.900	0.082	1.67E-03			0.871	4.700	0.044	0.400	0.109	4.475	0.067	0.450	0.1
16	4.950	0.083	8.35E-04			0.889	4.925	0.018	0.050	0.362	4.813	0.253	0.225	1.1
17	4.970	0.083	5.01E-04			0.902	4.960	0.013	0.020	0.662	4.943	0.300	0.035	8.6
18	4.980	0.083	3.34E-04			0.913	4.975	0.010	0.010	1.048	4.968	0.386	0.015	25.7
19	4.990	0.083	1.67E-04			0.931	4.985	0.018	0.010	1.787	4.980	0.740	0.010	74.0
20	4.995	0.083	8.33E-05			0.949	4.993	0.018	0.005	3.569		1.782	0.007	237.6
21	4.999	0.083	1.67E-05			0.990		0.041	0.004	10.350		6.781	0.005	1506.8
22	5.000					1.387		0.397	0.001	396.859		386.510		154603.8
23	5.001			3.33E-06	0.017	1.466		0.079	0.001	79.371				-317488.6
24	5.005			1.67E-05	0.017	1.474		0.008	0.004	2.069			0.002	
25	5.010			3.33E-05	0.017			0.004	0.005	0.713		-1.356	0.005	-301.4
26	5.020			6.66E-05	0.017			0.004	0.010	0.356		-0.356	0.007	-47.5
27	5.030			9.99E-05	0.017	1.484		0.002	0.010	0.208		-0.148	0.010	
28	5.040			1.33E-04	0.017			0.001	0.010	0.148		-0.061	0.010	
29	6.050			3.38E-03	0.016	1.502		0.017	1.010	0.017		-0.131	0.510	
30	5.100			3.32E-04	0.017			-0.012	-0.950	0.013		-0.004	0.030	
31	6.000			3.23E-03	0.016			0.012	0.900	0.013		0.000	-0.025	
32	7.500			0.008	0.015			0.005	1.500	0.003			1.200	
33	9.000			0.012	0.015	1.509	8.250	0.002	1.500	0.002	7.500	-0.002	1.500	0.0
34	Spreadsheet Doc						0.000	4 540						
35	Cell B10=\$B\$6*A1			7. 440)			Cell H11=F1							
36	Cell C10=(\$B\$5*\$E			(+A10)			Cell 111=A1							
37				00/1/0000403			Cell J11=H1							
38	Cell F22=((5*\$B\$4- Cell D23=(\$B\$6*A2						Cell K12=(G							
39	Cell E23=(\$B\$5*\$E			17723)			Cell L12=J1 Cell M12=G							
	Cell F23=(\$B\$4-(0.0			8*\$8\$\$\$			Cell M12=G Cell N12=L1							
	Cell G11=(A11+A1			5 9D90.0JJ			Cell N1Z-L	2/11/12						

21-26.

$$pNa = -\log([Na^{+}]) = -\left(\frac{E_{cell} - K}{0.0592}\right) \text{ where } E_{cell} = -0.2462 \text{ V}$$

After addition $E_{cell}^{"} = -0.1994 \text{ V}$
$$-\log\left(\frac{10.00 \times [Na^{+}] + 1.00 \times (2.00 \times 10^{-2})}{10.00 + 1.00}\right) = -\left(\frac{E_{cell}^{"} - K}{0.0592}\right)$$

$$-\log\left(0.9091[Na^{+}] + (1.818 \times 10^{-3})\right) = -\left(\frac{E_{cell}^{"} - K}{0.0592}\right)$$

Subtracting this latter equation from that for the initial potential gives

$$-\log([Na^{+}]) + \log(0.9091[Na^{+}] + (1.818 \times 10^{-3})) = -\left(\frac{E_{cell} - K}{0.0592}\right) + \left(\frac{E_{cell} - K}{0.0592}\right)$$
$$= \left(\frac{E_{cell} - E_{cell}}{0.0592}\right)$$

$$-\log\left(\frac{[Na^{+}]}{0.9091[Na^{+}] + (1.818 \times 10^{-3})}\right) = \frac{-0.1994 + 0.2462}{0.0592} = 0.7905$$

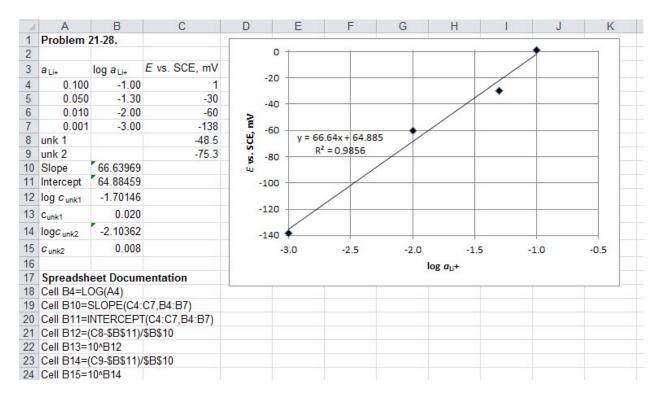
or,
$$\log\left(\frac{[Na^{+}]}{0.9091[Na^{+}] + (1.818 \times 10^{-3})}\right) = -0.7905$$

$$\frac{[Na^{+}]}{0.9091[Na^{+}] + (1.818 \times 10^{-3})} = \operatorname{antilog}(-0.7905) = 0.16198$$

$$[Na^{+}] = 0.1473[Na^{+}] + 2.945 \times 10^{-4}$$

 $[\text{Na}^+] = 3.453 \times 10^{-4} \text{ M}$ or rounding $3.5 \times 10^{-4} \text{ M}$

21-27.


$$pF = -\log([F^{-}]) = \frac{E'_{cell} - K}{0.0592} \text{ where } E'_{cell} = 0.5021 \text{ V}$$
$$-\log\left(\frac{25.00 [F^{-}] + (2.00 \times 5.45 \times 10^{-2})}{25.00 + 2.00}\right) = \frac{E''_{cell} - K}{0.0592} \text{ where } E''_{cell} = 0.4213 \text{ V}$$

$$-\log(0.9259 [F^{-}] + 4.04 \times 10^{-3}) + \log([F^{-}]) = \frac{E_{cell}^{'} - K}{0.0592} - \frac{E_{cell}^{'} - K}{0.0592}$$
$$= \frac{0.4213 - 0.5021}{0.0592} = -1.3649$$

$$\frac{[F^{-}]}{0.9259 [F^{-}] + 4.04 \times 10^{-3}} = \text{antilog}(-1.3649) = 0.04317$$
$$[F^{-}] = 0.03997 [F^{-}] + 1.744 \times 10^{-4}$$

$$[F^{-}] = 1.82 \times 10^{-4} \text{ M}$$

21-28.

Theoretically for a cation with n = 1, the slope should be +0.0592 V, or 59.2 mV. Our

slope is slightly higher than this as shown in the spreadsheet above, but the plot is linear.

Hence, we conclude that the Nernst equation is obeyed with a slightly larger than

theoretical slope.

Chapter 21

	Α	В	С	D		E	F		G	Н	1 I I	J	K
1	Problem 2	21-29			120								
2					120								
3	CF-	log c _F -	E vs. SCE, mV		100	•							
4	5.00E-04	-3.30	0.02		100	\square							
5	1.00E-04	-4.00			80				y:	-59.203x	- 194.94		
6	5.00E-05			È						R ² = 0.9	991		
7	1.00E-05	-5.00		SCE,	60			<u> </u>					
8	unk 1		38.9	Š	00								
9	unk 2		55.3	З. Ц	40								
10		-59.2027			40					\sim			
	Intercept	-194.9418			20								
12	log _{cunk1}	-3.9498			20								
13	C _{unk1}	1.12E-04			0							<u> </u>	
14	log c _{unk2}	-4.2269			-5	5.00	-4.	50	-4	1.00	-3.50	Ť	-3.00
15	C _{unk2}	5.93E-05							lo	g c _F -			
16													
17	Spreadsh	eet Document	aion										
	Cell B4=L0												
		SLOPE(C4:C7,I											
		NTERCEPT(C4											
21		C8-\$B\$11)/\$B\$	510										
22	Cell B13=1												
23		C9-\$B\$11)/\$B\$	510										
24	Cell B15=1	10^B14											

21-29.

Theoretically the slope should be -0.0592 V, or -59.2 mV. Our slope is almost exactly

this as shown in the spreadsheet above. The plot is linear so we can conclude that the

Nernst equation is obeyed with a nearly theoretical slope.

Chapter 22

22-1. (a) In *Concentration polarization*, the current in an electrochemical cell is limited by the rate at which reactants are brought to or removed from the surface of one or both electrodes. In *Kinetic polarization*, the current is limited by the rate at which electrons are transferred between the electrode surfaces and the reactant in solution. For either type, the current is no longer linearly related to cell potential.

(**b**) The *coulomb* is a unit of electrical charge, whereas the *ampere* is a unit of current measuring the rate of flow of charge. One ampere is one coulomb/second.

(c) *Diffusion* is the movement of species under the influence of a concentration gradient. *Migration* is the movement of an ion under the influence of an electrostatic attractive or repulsive force.

(d) The electrode at which an electrochemical oxidation or reduction occurs is the *working electrode*. The *reference electrode* is an electrode of constant potential against which the potential of the working electrode is measured.

(e) The *electrolysis circuit* consists of a working electrode and a counter electrode. The *control circuit* regulates the applied potential such that the potential between the working electrode and a reference electrode in the control circuit is constant and at a desired level.

22-2. (a) *Ohmic potential*, or *IR* drop, of a cell is the product of the current in the cell in amperes and the electrical resistance of the cell in ohms.

(b) *Overvoltage* is the amount of extra voltage that must be applied to a cell to overcome the effects of concentration or kinetic polarization. It is the difference between the theoretical cell potential and the actual cell potential at a given current.

(c) In *controlled-potential electrolysis*, the potential applied to a cell is continuously adjusted to maintain a constant potential between the working electrode and a reference electrode.

(d) A *coulometric titration* is an electroanalytical method in which a constant current of known magnitude generates a reagent that reacts with the analyte. The time required to generate enough reagent to complete the reaction is measured.

(e) *Current efficiency* is a measure of agreement between the number of faradays of charge and the number of moles of reactant oxidized or reduced at a working electrode.(f) A *galvanostat* is an instrument that provides a constant current.

- **22-3.** *Diffusion* arises from concentration differences between the electrode surface and the bulk of solution. *Migration* results from electrostatic attraction or repulsion. *Convection* results from stirring, vibration or temperature differences.
- **22-4.** A current in an electrochemical cell always causes the cell potential to become less positive or more negative.
- **22-5.** Variables that influence concentration polarization include temperature, stirring, reactant concentrations, presence or absence of other electrolytes and electrode surface areas.
- 22-6. Both kinetic and concentration polarization cause the potential of an electrode to be more negative than the thermodynamic value. Concentration polarization results from the slow rate at which reactants or products are transported to or away from the electrode surfaces. Kinetic polarization arises from the slow rate of the electrochemical reaction at the electrode surfaces.

2

- **22-7.** Kinetic polarization is often encountered when the product of a reaction is a gas, particularly when the electrode is a soft metal such as mercury, zinc or copper. It is likely to occur at low temperatures and high current densities.
- **22-8.** High concentration of an inert electrolyte, called the *supporting electrolyte*, are used to minimize the contribution of migration to concentration polarization. The supporting electrolyte also reduces the cell resistance, which decreases the *IR* drop.
- 22-9. Potentiometric methods are carried out under zero current conditions and the effect of the measurement on analyte concentration is typically undetectable. In contrast, electrogravimetric and coulometric methods depend on the presence of a net current and a net cell reaction (i.e., the analyte is quantitatively converted to a new oxidation state). Unlike potentiometric methods where the cell potential is simply the difference between two electrode potentials, two additional phenomena, *IR* drop and polarization, must be considered in electrogravimetric and coulometric methods where current is present. Finally, the final measurement in electrogravimetric and coulometric methods is the mass of the product produced electrolytically, while in potentiometric methods it is the cell potential.
- **22-10.** A *depolarizer* is a substance that is reduced or oxidized more readily than a potentially interfering species. For example, the codeposition of hydrogen is prevented through the introduction of nitrate ion as a cathodic depolarizer.
- **22-11.** The species produced at the counter electrode are potential interferences by reacting with the products at the working electrode. Isolation of one from the other is ordinarily required.

22-12. An *auxiliary reagent* is generally required in a coulometric titration to permit the analyte to be oxidized or reduced with 100% current efficiency. As a titration proceeds, the potential of the working electrode will inevitably rise as concentration polarization of the analyte begins. Unless an auxiliary reagent is present to terminate this rise by producing a species that reacts with the analyte, some other species will be oxidized or reduced thus lowering the current efficiency and producing erroneous results.

22-13. (a)

$$\frac{0.0175 \text{ C}}{\text{s}} \times \frac{1 \text{ F}}{96,485 \text{ C}} \times \frac{1 \text{ mol } \text{e}^-}{\text{F}} \times \frac{1 \text{ mol}}{\text{mol } \text{e}^-} \times \frac{6.02 \times 10^{23} \text{ ions}}{\text{mol}} = \frac{1.1 \times 10^{17} \text{ ions}}{\text{s}}$$

(b)

$$\frac{0.0175 \text{ C}}{\text{s}} \times \frac{1 \text{ F}}{96,485 \text{ C}} \times \frac{1 \text{ mol } \text{e}^-}{\text{F}} \times \frac{1 \text{ mol}}{2 \text{ mol } \text{e}^-} \times \frac{6.02 \times 10^{23} \text{ ions}}{\text{mol}} = \frac{5.5 \times 10^{16} \text{ ions}}{\text{s}}$$

(c)

$$\frac{0.0175 \text{ C}}{\text{s}} \times \frac{1 \text{ F}}{96,485 \text{ C}} \times \frac{1 \text{ mol } \text{e}^-}{\text{F}} \times \frac{1 \text{ mol}}{3 \text{ mol } \text{e}^-} \times \frac{6.02 \times 10^{23} \text{ ions}}{\text{mol}} = \frac{3.6 \times 10^{16} \text{ ions}}{\text{s}}$$

22-14. (a)

$$E_{\text{right}} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{0.250}\right) = 0.319 \text{ V}$$

$$E_{\text{left}} = 1.229 - \frac{0.0592}{4} \log\left(\frac{1}{1.00 \times 1.00 \times 10^{-3}}\right) = 1.051 \text{ V}$$

$$E_{\text{applied}} = E_{\text{right}} - E_{\text{left}} = 0.319 - 1.051$$

$$= -0.732 \text{ V}$$

(b)

$$E_{\text{right}} = -0.136 - \frac{0.0592}{2} \log\left(\frac{1}{0.220}\right) = -0.155 V$$

$$E_{\text{left}} = 1.229 - \frac{0.0592}{4} \log\left(\frac{1}{\left(\frac{770}{760}\right) \times 1.00 \times 10^{-4}}\right) = 0.992 V$$

$$E_{\text{applied}} = E_{\text{right}} - E_{\text{left}} = -0.155 - 0.992$$

$$= -1.147 \text{ V}$$

(c)

$$[H^{+}] = \text{antilog } -3.70 = 1.995 \times 10^{-4}$$
$$E_{\text{right}} = 0.000 - \frac{0.0592}{2} \log \left(\frac{\frac{765}{760}}{1.995 \times 10^{-4}} \right) = -0.219 \text{ V}$$
$$E_{\text{left}} = 0.073 - 0.0592 \log \ 0.0964 = 0.133 \text{ V}$$
$$E_{\text{applied}} = E_{\text{right}} - E_{\text{left}} = -0.219 - 0.133$$
$$= -0.352 \text{ V}$$

(**d**)

right electrode:
$$Cu^{2+}+2e^{-} \rightarrow Cu(s)$$

left electrode: $2Tl^{+} + 6OH^{-} \rightarrow Tl_2O_3(s) + 3H_2O + 4e^{-}$
 $E_{right} = 0.337 - \frac{0.0592}{2} \log \left(\frac{1}{0.010}\right) = 0.278 \text{ V}$
 $E_{left} = 0.020 - \frac{0.0592}{4} \log [Tl^{+}]^2 [OH^{-}]^6$
pH = 7.50; pOH = 6.5; $[OH^{-}] = 3.16 \times 10^{-7}$
 $= 0.020 - \frac{0.0592}{4} \log (10^{-3}) (16 \times 10^{-7}) 0.665 \text{ V}$
 $E_{applied} = E_{right} - E_{left} = 0.278 - 0.665$
 $= -0.387 \text{ V}$

5

Chapter 22

22-15.

$$E_{\text{right}} = -0.763 - \frac{0.0592}{2} \log \left(\frac{1}{2.95 \times 10^{-3}}\right) = -0.838 \text{ V}$$
$$E_{\text{left}} = -0.277 - \frac{0.0592}{2} \log \left(\frac{1}{5.90 \times 10^{-3}}\right) = -0.343 \text{ V}$$
$$E_{\text{cell}} = -0.838 - -0.343 - 0.065 \times 4.50$$
$$= -0.788 \text{ V}$$

22-16.

$$E_{\text{right}} = -0.403 - \frac{0.0592}{2} \log \left(\frac{1}{6.59 \times 10^{-2}}\right) = -0.438 \text{ V}$$
$$E_{\text{left}} = -0.136 - \frac{0.0592}{2} \log \left(\frac{1}{7.83 \times 10^{-4}}\right) = -0.228 \text{ V}$$
$$E_{\text{cell}} = -0.438 - -0.228 - 0.062 \times 4.95$$

22-17. (a)

$$E_{\text{right}} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{0.250}\right) = 0.319 \text{ V}$$

$$E_{\text{left}} = 1.229 - \frac{0.0592}{4} \log\left(\frac{1}{1.00 \times 10^{-4}}\right) = 0.992 \text{ V}$$

$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 0.319 - 0.992$$

$$= -0.673 \text{ V}$$

(b)
$$IR = -0.15 \times 3.60 = -0.54$$
 V

(c) Recall that the overpotential in an electrolytic cell requires the application of a larger or more negative potential. That is, 0.50 V must be subtracted from the cell potential.

 $E_{\rm applied} = -0.673 - 0.54 - 0.50 = -1.71 \ {\rm V}$

Chapter 22

(**d**)

$$E_{\text{right}} = 0.337 - \frac{0.0592}{2} \log \left(\frac{1}{7.00 \times 10^{-6}}\right) = 0.184 \text{ V}$$
$$E_{\text{applied}} = 0.184 - 0.992 - 0.54 - 0.50$$
$$= -1.85 \text{ V}$$

22.18. (a)

$$E_{\text{right}} = -0.250 - \frac{0.0592}{2} \log\left(\frac{1}{0.150}\right) = -0.274 V$$
$$E_{\text{left}} = 1.229 - \frac{0.0592}{4} \log\left(\frac{1}{1.00 \times 1.00 \times 10^{-2}}\right) = 1.111 V$$

$$E_{\text{cell}} = -0.274 - 1.111 = -1.39 \text{ V}$$

(b)
$$IR = -0.10 \times 3.55 = -0.355$$
 V

current density at cathode = $\frac{1.00 \text{ A}}{120 \text{ cm}^2} = 0.0083 \text{ A/cm}^2$

current density at anode = $\frac{1.00 \text{ A}}{80 \text{ cm}^2} = 0.0125 \text{ A/cm}^2$

(d) As in 22-17 (c), the overpotential is subtracted from the cell potential or

$$E_{\text{applied}} = -1.39 - 0.355 - 0.52 = -2.26 \text{ V}$$

$$E_{\text{right}} = -0.250 - \frac{0.0592}{2} \log\left(\frac{1}{1.00 \times 10^{-4}}\right) = -0.368 \text{ V}$$

$$E_{\text{applied}} = -0.368 - 1.11 - 0.355 - 0.52 = -2.35 \text{ V}$$

22-19. Cd begins to form when

$$E = -0.403 - \frac{0.0592}{2} \log\left(\frac{1}{0.0650}\right) = -0.438 \text{ V}$$

(a) The Co^{2+} concentration when Cd first begins to deposit is:

$$-0.438 = -0.277 - \frac{0.0592}{2} \log\left(\frac{1}{[\text{Co}^{2+}]}\right)$$
$$\log [\text{Co}^{2+}] = \frac{2 - 0.438 + 0.277}{0.0592} = -5.439$$

 $[Co^{2+}] = antilog -5.439 = 3.6 \times 10^{-6} \ M$

(b)
$$E_{\text{cathode}} = -0.277 - \frac{0.0592}{2} \log \left(\frac{1}{1.00 \times 10^{-5}} \right) = -0.425 \text{ V}$$

(c) Referring to Example 22-2, quantitative separation is assumed to occur when the $[\text{Co}^{2+}]$ falls to 10^{-4} of its original concentration or 2.0×10^{-5} M. Thus, if the cathode is maintained between -0.425 V and -0.438 V, the quantitative separation of Co^{2+} from Cd^{2+} is possible in theory.

22-20. pH = 2.50
$$[H^+] = 3.16 \times 10^{-3}$$

 BiO^+ is more readily reduced than Co^{2+}

(a) Deposition of Co begins when

$$E_{\text{cathode}} = -0.277 - \frac{0.0592}{2} \log\left(\frac{1}{0.040}\right) = -0.318 \text{ V}$$

$$-0.318 = 0.320 - \frac{0.0592}{3} \log\left(\frac{1}{[\text{BiO}^+] \ 3.16 \times 10^{-3}}\right)$$

$$\left(\frac{0.0592}{3}\right) \log \ [\text{BiO}^+] = -0.318 - 0.320 - \frac{0.0592}{3} \log \ 3.16 \times 10^{-3} \ ^2 = -0.5393$$

$$\log \ [\text{BiO}^+] = -0.5393 \times \frac{3}{0.0592} = -27.33$$

$$[\text{BiO}^+] = \operatorname{antilog}(-27.33) = 5 \times 10^{-28} \text{ M}$$

(c) Referring to Example 22-2, quantitative separation is assumed to occur when the $[BiO^+]$ falls to 10^{-4} of its original concentration or 5.0×10^{-6} M. Thus, if the right electrode is maintained between -0.318 V and 0.103 V, the quantitative separation of BiO^+ from Co^{2+} is possible in theory.

22-21. (a) Bi deposits at a lower potential, that is

$$[H^{+}] = \text{antilog } -1.95 = 1.12 \times 10^{-2} \text{ M}$$
$$E_{\text{cathode}} = 0.320 - \frac{0.0592}{3} \log \left(\frac{1}{0.250 \ 1.12 \times 10^{-2}}\right)$$

= 0.231 V

(b) Sn deposits when

$$E_{\text{cathode}} = -0.136 - \frac{0.0592}{2} \log\left(\frac{1}{0.250}\right) = -0.154 \text{ V}$$

$$-0.154 = 0.320 - \frac{0.0592}{3} \log\left(\frac{1}{[\text{BiO}^+] 1.12 \times 10^{-2}]^2}\right)$$

$$= 0.320 + \frac{0.0592}{3} \log 1.12 \times 10^{-2} + \frac{0.0592}{3} \log [\text{BiO}^+]$$

$$\log [\text{BiO}^+] = \frac{3 - 0.154 - 0.320 + 0.077}{0.0592} = -20.12$$

$$[\text{BiO}^+] = \text{antilog}(-20.12) = 7.6 \times 10^{-21} \text{ M}$$

(c) When [BiO⁺] = 10⁻⁶

$$E_{\text{cathode}} = 0.320 - \frac{0.0592}{3} \log \left(\frac{1}{1.00 \times 10^{-6} \ 1.12 \times 10^{-2}} \right) = 0.124 \text{ V}$$

Sn begins to form when $E_{\text{cathode}} = -0.154 \text{ V}$ (see part (b))

range vs. SCE = 0.124 - 0.244 to -0.154 - 0.244 or -0.12 to -0.398 V

22-22. Deposition of A is complete when

$$E_{\rm A} = E_{\rm A}^{\rm o} - \frac{0.0592}{n_{\rm A}} \log \left(\frac{1}{2.00 \times 10^{-5}}\right) = E_{\rm A}^{\rm o} - \frac{0.278}{n_{\rm A}}$$

Deposition of B begins when

$$E_{\rm B} = E_{\rm B}^{\rm o} - \frac{0.0592}{n_{\rm B}} \log\left(\frac{1}{2.00 \times 10^{-1}}\right) = E_{\rm B}^{\rm o} - \frac{0.0414}{n_{\rm B}}$$

Boundary condition is that $E_A = E_B$. Thus,

$$E_{A}^{o} - \frac{0.278}{n_{A}} = E_{B}^{o} - \frac{0.0414}{n_{B}} \text{ or}$$

$$E_{A}^{o} - E_{B}^{o} = \frac{0.278}{n_{A}} - \frac{0.0414}{n_{B}}$$
(a) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{1} - \frac{0.0414}{1} = 0.237 \text{ V}$
(b) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{2} - \frac{0.0414}{1} = 0.0976 \text{ V}$
(c) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{3} - \frac{0.0414}{1} = 0.0513 \text{ V}$
(d) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{1} - \frac{0.0414}{2} = 0.257 \text{ V}$
(e) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{2} - \frac{0.0414}{2} = 0.118 \text{ V}$
(f) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{3} - \frac{0.0414}{2} = 0.0720 \text{ V}$
(g) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{1} - \frac{0.0414}{3} = 0.264 \text{ V}$

(**h**)
$$E_{\rm A}^{\rm o} - E_{\rm B}^{\rm o} = \frac{0.278}{2} - \frac{0.0414}{3} = 0.125 \text{ V}$$

(**i**) $E_{\rm A}^{\rm o} - E_{\rm B}^{\rm o} = \frac{0.278}{3} - \frac{0.0414}{3} = 0.0789 \text{ V}$

22-23. (a)

$$0.250 \text{ g Co} \times \frac{1 \text{ mol Co}}{58.93 \text{ g}} \times \frac{2 \text{ mol e}^-}{\text{mol Co}} \times \frac{1 \text{ F}}{\text{mol e}^-} \times \frac{96,485 \text{ C}}{\text{F}} = 8.186 \times 10^2 \text{ C}$$
$$8.186 \times 10^2 \text{ C} \times \frac{1 \text{ A} \times \text{s}}{\text{C}} \times \frac{1}{0.851 \text{ A}} \times \frac{1 \text{ min}}{60 \text{ s}} = 16.0 \text{ min}$$

(b)
$$3\text{Co}^{2+} + 4\text{H}_2\text{O} \rightleftharpoons \text{Co}_3\text{O}_4(s) + 8\text{H}^+ + 2\text{e}^- \qquad \frac{3}{2} \mod \text{Co}^{2+} = 1 \mod \text{e}^-$$

$$0.250 \text{ g Co} \times \frac{1 \text{ mol Co}}{58.93 \text{ g}} \times \frac{2 \text{ mol e}^-}{3 \text{ mol Co}} \times \frac{1 \text{ F}}{\text{mol e}^-} \times \frac{96,485 \text{ C}}{\text{F}} = 2.727 \times 10^2 \text{ C}$$
$$2.727 \times 10^2 \text{ C} \times \frac{1 \text{ A} \times \text{s}}{\text{C}} \times \frac{1}{0.851 \text{ A}} \times \frac{1 \text{ min}}{60 \text{ s}} = 5.34 \text{ min}$$

22-24. (a)

$$0.450 \ g \ \text{Tl} \times \frac{1 \ \text{mol} \ \text{Tl}}{204.38 \ \text{g}} \times \frac{3 \ \text{mol} \ \text{e}^{-}}{\text{mol} \ \text{Tl}} \times \frac{1 \ \text{F}}{\text{mol} \ \text{e}^{-}} \times \frac{96,485 \ \text{C}}{\text{F}} = 6.373 \times 10^2 \ \text{C}$$
$$6.373 \times 10^2 \ \text{C} \times \frac{1 \ \text{A} \times \text{s}}{\text{C}} \times \frac{1}{1.00 \ \text{A}} \times \frac{1 \ \text{min}}{60 \ \text{s}} = 10.6 \ \text{min}$$

(b) $2TI^+ + 3H_2O \rightleftharpoons TI_2O_3 + 6H^+ + 4e^- 2 \mod TI^+ = 4 \mod e^-$

$$0.450 \text{ g Tl} \times \frac{1 \text{ mol Tl}}{204.38 \text{ g}} \times \frac{4 \text{ mol e}^-}{2 \text{ mol Tl}} \times \frac{1 \text{ F}}{\text{mol e}^-} \times \frac{96,485 \text{ C}}{\text{F}} = 4.249 \times 10^2 \text{ C}$$
$$4.249 \times 10^2 \text{ C} \times \frac{1 \text{ A} \times \text{s}}{\text{C}} \times \frac{1}{1.00 \text{ A}} \times \frac{1 \text{ min}}{60 \text{ s}} = 7.08 \text{ min}$$

(c) As in part (a)

$$0.450 \ g \ \text{Tl} \times \frac{1 \ \text{mol} \ \text{Tl}}{204.38 \ \text{g}} \times \frac{1 \ \text{mol} \ \text{e}^{-}}{\text{mol} \ \text{Tl}} \times \frac{1 \ \text{F}}{\text{mol} \ \text{e}^{-}} \times \frac{96,485 \ \text{C}}{\text{F}} = 2.124 \times 10^2 \ \text{C}$$
$$2.124 \times 10^2 \ \text{C} \times \frac{1 \ \text{A} \times \text{s}}{\text{C}} \times \frac{1}{1.00 \ \text{A}} \times \frac{1 \ \text{min}}{60 \ \text{s}} = 3.54 \ \text{min}$$

22-25.

$$\left(5\min\times\frac{60\,\text{s}}{\min}+24\,\text{s}\right)\times0.300\,\text{A}\times\frac{1\,\text{C}}{\text{A}\times\text{s}}\times\frac{1\,\text{F}}{96,485\,\text{C}}\times\frac{1\,\text{eq}\,\text{HA}}{\text{F}}=1.007\times10^{-3}\,\text{eq}\,\text{HA}$$

 $\frac{0.1330 \text{ g HA}}{1.007 \times 10^{^{-3}} \text{ eq HA}} = 132.0 \text{ g/eq}$

22-26. 1 mol NaCN = 1 mol H^+ = 1 mol e^- 4 min 11 s = 251 s

$$\frac{55.6 \times 10^{-3} \text{A} \times 251 \text{s} \times \frac{1 \text{ C}}{\text{A} \times \text{s}} \times \frac{1 \text{ F}}{96,485 \text{ C}} \times \frac{1 \text{ mol NaCN}}{\text{F}} \times \frac{49.01 \text{ g NaCN}}{\text{mol}}}{\frac{\text{mol}}{\text{mol}}} = \frac{0.709 \text{ g NaCN}}{\text{L}}$$

$$\frac{10 \text{ mL sample} \times \frac{\text{L}}{1000 \text{ mL}}}{\frac{55.6 \times 10^{-3} \text{A} \times 251 \text{ s} \times \frac{1 \text{ C}}{\text{A} \times \text{s}} \times \frac{1 \text{ F}}{96,485 \text{ C}} \times \frac{1 \text{ mol NaCN}}{\text{F}} \times \frac{49.01 \text{ g NaCN}}{\text{mol}}}{\frac{\text{mol}}{\text{mol}}} \times 10^{6} \text{ ppm}}$$

$$\frac{10 \text{ mL sample} \times \frac{1.00 \text{ g H}_2 \text{O}}{\text{mL H}_2 \text{O}}}{\frac{10 \text{ mL sample} \times \frac{1.00 \text{ g H}_2 \text{O}}{\text{mL H}_2 \text{O}}}$$

= 709 ppm NaCN

22-27. 1 mol CaCO₃ = 1 mol HgNH₃Y²⁻ = 2 mol e^{-}

$$\frac{\left(39.4 \times 10^{-3} \text{ A} \times 3.52 \text{ min} \times \frac{60 \text{ s}}{\text{min}} \times \frac{1 \text{ C}}{\text{A} \times \text{s}} \times \frac{1 \text{ mol } \text{e}^-}{96,485 \text{ C}} \times \frac{1 \text{ mol } \text{CaCO}_3}{2 \text{ mol } \text{e}^-} \times \frac{100.09 \text{ g } \text{CaCO}_3}{\text{mol}}\right)}{25.00 \text{ mL } \text{ sample} \times \frac{1.00 \text{ g } \text{H}_2 \text{O}}{\text{mL } \text{H}_2 \text{O}}} \times 10^6 \text{ppm}$$

=173 ppm CaCO₃

22-28. Proceeding as in Problem 22-27,

 $1 \ mol \ H_2S = 1 \ mol \ I_2 = 2 \ mol \ e^-$

Chapter 22

$$\frac{\left(46.3\times10^{-3}\text{ A}\times11.05\text{ min}\times\frac{60\text{ s}}{\text{min}}\times\frac{1\text{ C}}{\text{A}\times\text{s}}\times\frac{1\text{ mol }\text{e}^-}{96,485\text{ C}}\times\frac{1\text{ mol }\text{H}_2\text{S}}{2\text{ mol }\text{e}^-}\times\frac{34.08\text{ g}\text{ H}_2\text{S}}{\text{mol}}\right)}{100.00\text{ mL sample}\times\frac{1.00\text{ g}\text{ H}_2\text{O}}{\text{mL}\text{ H}_2\text{O}}}\times10^6\text{ ppm}$$

 $=54.2 \text{ ppm } H_2S$

22-29. 1 mol $C_6H_5NO_2 = 4 \text{ mol } e^-$

$$\frac{\left(33.47 \text{ C} \times \frac{1 \text{ F}}{96,485 \text{ C}} \times \frac{1 \text{ mol } \text{e}^-}{\text{F}} \times \frac{1 \text{ mol } \text{C}_6 \text{H}_5 \text{NO}_2}{4 \text{ mol } \text{e}^-} \times \frac{123.11 \text{ g} \text{ C}_6 \text{H}_5 \text{NO}_2}{\text{mol}}\right)}{300 \text{ mg sample} \times \frac{g}{1000 \text{ mg}}} \times 100\%$$

=3.56% C₆H₅NO₂

22-30. 1 mol $C_6H_5OH = 3 \text{ mol } Br_2 = 6 \text{ mol } e^-$ 6 min 22 s = 382 s

$$\frac{\left(0.0503 \text{ A} \times 382 \text{ s} \times \frac{1 \text{ C}}{\text{A} \times \text{s}} \times \frac{1 \text{ F}}{96,485 \text{ C}} \times \frac{1 \text{ mol } \text{e}^-}{\text{F}} \times \frac{1 \text{ mol } \text{C}_6 \text{H}_5 \text{OH}}{6 \text{ mol } \text{e}^-} \times \frac{94.11 \text{ g} \text{ C}_6 \text{H}_5 \text{OH}}{\text{mol}}\right)}{100.00 \text{ mL sample} \times \frac{1.00 \text{ g} \text{ H}_2 \text{O}}{\text{mL} \text{ H}_2 \text{O}}} \times 10^6 \text{ ppm}$$

 $= 31.2 \text{ ppm } C_6 H_5 OH$

22-31. 1 mol
$$CCl_4 = 1$$
 mol e^- 1 mol $CHCl_3 = 3$ mol e^- . For sample 1,

$$\begin{aligned} &11.63 \,\mathrm{C} \times \frac{1 \,\mathrm{F}}{96,485 \,\mathrm{C}} \times \frac{1 \,\mathrm{mol} \,\mathrm{e}^{-}}{\mathrm{F}} \times \frac{1 \,\mathrm{mol} \,\mathrm{CCl}_{4}}{\mathrm{mol} \,\mathrm{e}^{-}} = 1.2054 \times 10^{-4} \,\mathrm{mol} \,\mathrm{CCl}_{4} \\ &68.60 \,\mathrm{C} \times \frac{1 \,\mathrm{F}}{96,485 \,\mathrm{C}} \times \frac{1 \,\mathrm{mol} \,\mathrm{e}^{-}}{\mathrm{F}} \times \frac{1 \,\mathrm{mol} \,\mathrm{CHCl}_{3}}{3 \,\mathrm{mol} \,\mathrm{e}^{-}} = 2.3700 \times 10^{-4} \,\mathrm{mol} \,\mathrm{CHCl}_{3} \\ &\mathrm{original} \,\mathrm{amount} \,\mathrm{CHCl}_{3} = 2.3700 \times 10^{-4} - 1.2054 \times 10^{-4} \,\mathrm{=} 1.1646 \times 10^{-4} \,\mathrm{mol} \,\mathrm{CHCl}_{3} \\ &\frac{1.2054 \times 10^{-4} \,\mathrm{mol} \,\mathrm{CCl}_{4} \times \frac{153.82 \,\mathrm{g} \,\mathrm{CCl}_{4}}{\mathrm{mol}} \times 100\% \,\mathrm{=} 2.472 \,\% \,\mathrm{CCl}_{4} \\ &\frac{1.165 \times 10^{-4} \,\mathrm{mol} \,\mathrm{CHCl}_{3} \times \frac{119.38 \,\mathrm{g} \,\mathrm{CHCl}_{3}}{\mathrm{mol}} \times 100\% \,\mathrm{=} 1.854 \,\% \,\mathrm{CHCl}_{3} \end{aligned}$$

The remaining samples are treated similary and the results are in the spreadsheet.

Chapter 22

	А	В	С	D	D E		G	H
1	Problem 22-	31						
2	1 mol CCl ₄ =	1 mol e ⁻		1 mol CHCl ₃ = 3	3 mol e ⁻			
3								
4		Chg Requ	ired at	Amnt CCI _{4,}	Amnt CHCl ₃ ,	Orig. amnt CHCI ₃ ,		
5	Sample No.	-1.0 V, C	-1.8 V, C	mol	mol mol		%CCI ₄	%CHCI ₃
6	1	11.63	68.60	1.205E-04	2.370E-04	1.165E-04	2.472	1.854
7	2	21.52	85.33	2.230E-04	2.948E-04	7.176E-05	4.574	1.142
8	3	6.22	45.98	6.447E-05	1.589E-04	9.438E-05	1.322	1.502
9	4	12.92	55.31	1.339E-04	1.911E-04	5.718E-05	2.746	0.910
10								
11	Spreadshee	t Documer	ntation					
12	Cell D6=B6/96485							
13	Cell E6=(C6/	96485)/3						
14	Cell F6=E6-E)6						
15	Cell G6=(D6*	Cell G6=(D6*153.82/0.75)*100						
16	Cell H6=(F6*	119.38/0.75	5)*100					

22-32.

$$2CHCl_{3} + 6H^{+} + 6e^{-} + 6Hg(l) \rightarrow 2CH_{4}(g) + 3Hg_{2}Cl_{2}(s)$$

$$CH_{2}Cl_{2} + 2H^{+} + 2e^{-} + 2Hg(l) \rightarrow CH_{4}(g) + Hg_{2}Cl_{2}(s)$$

$$1 \text{ mol } CHCl_{3} = 3 \text{ mol } e^{-} \qquad 1 \text{ mol } CH_{2}Cl_{2} = 2 \text{ mol } e^{-}$$

Let $x = mass CHCl_3$. For sample 1, 0.1309 g – $x = mass CH_2Cl_2$

$$\begin{pmatrix} x \text{ g CHCl}_{3} \times \frac{1 \text{ mol CHCl}_{3}}{119.38 \text{ g}} \times \frac{3 \text{ mol e}^{-}}{\text{mol CHCl}_{3}} \end{pmatrix} + \begin{pmatrix} 0.1309 \text{ g} - x \times \frac{1 \text{ mol CH}_{2}\text{Cl}_{2}}{84.93 \text{ g}} \times \frac{2 \text{ mol e}^{-}}{\text{mol CH}_{2}\text{Cl}_{2}} \end{pmatrix}$$

= total mol e⁻ = 306.72 C × $\frac{\text{F}}{96,485 \text{ C}} \times \frac{1 \text{ mol e}^{-}}{\text{F}} = 3.1789 \times 10^{-3}$
2.5130 × 10⁻² x + 2.3549 × 10⁻² 0.1309 - x = 3.1789 × 10⁻³
mass CHCl₃ = x = 6.093 × 10⁻² g
%CHCl₃ = $\left(\frac{6.093 \times 10^{-2}\text{g}}{0.1309 \text{ g}}\right) \times 100\% = 46.55\%$
%CH₂Cl₂ = 100.00% - 46.55\% = 53.45\%

The remainder of the samples are treated in the same way and the results are in the spreadsheet that follows.

	А	В	С	D	E	F	G
1	Problem 2	2-32					
2	M CHCl ₂	119.38					
3	м CH ₂ Cl2	84.93					
4		Mass	Charge	Total mol e	x	%CHCI ₃	%CH ₂ Cl ₂
5		0.1309	306.72	0.00317894	0.060974	46.58	53.42
6		0.1522	356.64	0.00369633	0.070965	46.63	53.37
7		0.1001	234.54	0.00243084	0.046557	46.51	53.49
8		0.0755	176.91	0.00183355	0.035176	46.59	53.41
9		0.0922	216.05	0.00223921	0.043015	46.65	53.35
10							
11					Mean	46.59	53.41
12					Std dev	0.054	0.054
13					Rel SD	0.0012	0.0010
14							
15	Spreadshe	eet Docum	entation				
16	Cell D5=C5	5/96485					
17	Cell E5=(D	5-(B5*2/\$B	\$3))/(3/\$B\$	2-2/\$B\$3)			
18	Cell F5=E5	/B5*100					
19	Cell G5=(B	5-E5)/B5*1(00				
20	Cell F11=A	VERAGE(F	5:F9)				
21	Cell F12=S	TDEV.S(F5	5: F9)				
22	Cell F13=F	12/F11					

22-33. See spreadsheet, following page.

	А	В	С	D	E	F	G	Н	1	J	K		L	М	N	
1	Problem 2	22-33														
2	I, A	0.02	Volume, mL	100												
3	n	1	Initial [Fe ²⁺]	0.05182												
4	F		Initial [Ce3+]	0.075												
5	<i>E^{0'}</i> (Fe)		$E^{0'}$ (Ce)	1.44				1.6								
	t,s	lt 0.00	[Fe ³⁺]		[Ce ³⁺]	[Ce4+]	E	1.5 -								
7	100		0.0207286		[00]	[00]	E _{system} 0.669577							+	+-+	
8	150		0.0207286				0.690426	1.4								
<u>o</u> 9	200						0.890426									
10	200						0.731232	1.3 -								
11	220						0.731232	1.2 -								
12	230						0.742803									
13	240						0.822045	55 1.1 -								
14	249.5						0.840109	เมื่						+		
15	249.6		0.0517386				0.845953	1 -								
16	249.7						0.853521									
17	249.8						0.864281	0.9 -						±		
18	249.9						0.883115	0.8						*		
19	250			1.522 00			1.06	0.0						\checkmark		
20	250.1				0.023158	0.051842		0.7		•		+	•			
21	250.2					0.051863		•		- •						
22	250.3					0.051884		0.6	T	1 1	1	-	1	-		
23	250.4					0.051904		100	120	140 160	180		220	240 2	260 280	300
24	250.5					0.051925						t,s				
25	260	5.2			0.021106	0.053894	1.464103									
26	270	5.4				0.055967										
27	250	5			0.023178	0.051822	1.460686									
28	290	5.8			0.014887	0.060113	1.475885									
29	300	6			0.012814	0.062186	1.480611									
30	Spreadsh	eet Docum	entation													
31	Cell B7=\$E	3\$2*A7														
32	Cell C7=10	000*B7/(\$B	\$3* \$ B\$4)													
	Cell D7=\$[
			*LOG(D7/C7))												
35	Cell G19=(\$B\$5+\$D\$	5)/2													
			\$B\$3*\$B\$4)													
	Cell E20=															
38	Cell G20=S	D\$5-0.059	2*LOG(E20/F	-20)												

23-34. 1 mol $C_6H_5NH_2 = 3 \text{ mol } Br_2 = 6 \text{ mol } e^-$

$$\begin{pmatrix} 3.76 - 0.27 & \min \times \frac{60 \text{ s}}{\min} \times \frac{1.51 \times 10^{-3} \text{ C}}{\text{s}} \times \frac{1 F}{96,485 \text{ C}} \times \\ \frac{1 \mod e^{-}}{F} \times \frac{1 \mod C_{6}\text{H}_{5}\text{NH}_{2}}{6 \mod e^{-}} \end{pmatrix} = 5.462 \times 10^{-7} \mod C_{6}\text{H}_{5}\text{NH}_{2}$$

$$5.462 \times 10^{-7} \mod C_{6}\text{H}_{5}\text{NH}_{2} \times \frac{93.128 \text{ g} C_{6}\text{H}_{5}\text{NH}_{2}}{\text{mol}} \times \frac{10^{6}\mu\text{g}}{\text{g}}$$

 $= 50.9 \ \mu g \ C_6 H_5 N H_2$

23-35. 1 mol Sn⁴⁺ = 2 mol $e^- \rightarrow 1$ mol Sn²⁺ = 2 mol C₆H₄O₂

$$\begin{pmatrix} 8.34 - 0.691 & \min \times \frac{60 \text{ s}}{\min} \times \frac{1.062 \times 10^{-3} \text{ C}}{\text{s}} \times \frac{1 F}{96,485 \text{ C}} \\ \times \frac{1 \mod e^{-}}{F} \times \frac{1 \mod C_6 \text{H}_5 \text{NH}_2}{2 \mod e^{-}} \end{pmatrix} = 2.526 \times 10^{-6} \mod C_6 \text{H}_4 \text{O}_2$$
$$2.526 \times 10^{-6} \mod C_6 \text{H}_4 \text{O}_2 \times \frac{108.10 \text{ g} \text{ C}_6 \text{H}_4 \text{O}_2}{\text{mol}}$$

$$= 2.73 \times 10^{-4} \mathrm{g} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$$

Chapter 23

23-1. (a) *Voltammetry* is an analytical technique that is based on measuring the current that develops at a small electrode as the applied potential is varied. *Amperometry* is a technique in which the limiting current is measured at a constant potential.
(b) In *linear scan voltammetry*, the current in a cell is monitored continuously as the applied potential is changed at a constant rate. In *pulse voltammetry*, an excitation signal is used that consists of a series of voltage pulses that increase in size linearly as a function of time.

(c) *Differential pulse* and *square wave voltammetry* differ in the type of pulse sequence used as shown in Figure 23-1b and 23-1c.

(d) A *rotating disk electrode* is a disk electrode rotated rapidly by a motor. The *ring-disk-electrode* is a modified rotating disk with a second ring-shaped electrode isolated electrically from the center disk. These electrodes are shown in Figure 23-19.
(e) In voltammetry, a *limiting current* is a current that is independent of applied potential. Its magnitude is limited by the rate at which a reactant is brought to the surface of the electrode by migration, convection, and/or diffusion. A *diffusion current* is a limiting current when analyte transport is solely by diffusion.

(**f**) *Laminar flow* is a type of liquid flow in which layers of liquid slide by one another in a direction that is parallel to a solid surface. It is characterized by a parabolic flow profile. *Turbulent flow* is a type of liquid flow that has no regular pattern.

(g) The *half-wave potential* is closely related to the *standard potential* for a reversible reaction. That is,

$$E_{1/2} = E_{\rm A}^{\rm o} - \frac{0.0592}{n} \log\left(\frac{k_{\rm A}}{k_{\rm B}}\right)$$

where k_A and k_B are constants that are proportional to the diffusion coefficients of the analyte and product. When these are approximately the same, the half-wave potential and the standard potential are essentially equal.

(h) In *stripping methods*, the analyte is first deposited on a working electrode. The deposited analyte is later stripped from the working electrode and determined by an electroanalytical method, often voltammetry. In standard *voltammetry*, the electrode current is measured as a function of applied potential.

23-2. (a) A *voltammogram* is a plot of current versus applied potential.

(**b**) In *hydrodynamic voltammetry*, current-potential curves are obtained in stirred solution.

(c) The *Nernst diffusion layer* is a static layer of solution immediately adjacent to the electrode surface in which mass transport occurs by diffusion alone.

(**d**) A *mercury film electrode* is formed by electrodepositing a thin layer of mercury onto a disk electrode.

(e) The half-wave potential is the potential on a voltammetric wave when the current is one-half of the limiting current.

(**f**) The *diffusion current* is a limiting current in voltammetry when the analyte is transported to the electrode surface solely by diffusion.

23-3. A high supporting electrolyte concentration is used in most electroanalytical procedures to minimize the contribution of migration to concentration polarization. The supporting electrolyte also reduces the cell resistance, which decreases the *IR* drop.

- **23-4.** The reference electrode is placed near the working electrode to minimize the *IR* drop that can distort voltammograms.
- **23-5.** Most organic electrode processes consume or produce hydrogen ions. Unless buffered solutions are used, marked pH changes can occur at the electrode surface as the reaction proceeds.
- **23-6.** In stripping methods, the electrodeposition step preconcentrates the analyte on the surface of the working electrode. Because of this preconcentration step, stripping methods are more sensitive than ordinary voltammetric methods.
- **23-7.** The purpose of the electrodeposition step in stripping analysis is to preconcentrate the analyte on the surface of the working electrode and to separate it from many interfering species.
- **23-8.** The advantages of a hanging mercury drop electrode compared with platinum or carbon electrodes include (1) the high overvoltage of hydrogen on mercury, (2) the ability to form fresh electrode surfaces of reprodcuble area and (3) the reproducible currents that are achieved on a mercury electrode. The disadvantages include (1) its poor anodic potential range, (2) its relatively large residual current, (3) its inconvenience.

23-9. A plot of
$$E_{appl}$$
 versus $\log \frac{i}{i_l - i}$ should yield a straight line having a slope of $\frac{-0.0592}{n}$

Thus, n is readily obtained from the slope.

23-10. For the reduction of quinone (Q) to hydroquinone (H_2Q), Equation 23-3 takes the form

$$E_{\rm appl} = E_{\rm Q}^{\rm o} - \frac{0.0592}{n} \log \left(\frac{c_{\rm H_2Q}^{\rm o}}{c_{\rm Q}^{\rm o} \left(c_{\rm H^+}^{\rm o} \right)^2} \right) - E_{\rm ref}$$

where $c_{H^+}^{\circ}$ is the concentration of H⁺ at the electrode surface. Substituting Equations 23-7 and 23-10 in to this equation gives

$$E_{\text{appl}} = E_{\text{Q}}^{\text{o}} - \frac{0.0592}{n} \log \left(\frac{k_{\text{Q}}}{k_{\text{H}_{2}\text{Q}} \left(c_{\text{H}^{+}}^{\text{o}} \right)^{2}} \right) - \frac{0.0592}{n} \log \left(\frac{i}{i_{l} - i} \right) - E_{\text{ref}}$$

when $i = i_l/2$, E_{appl} is the half-wave potential. With the added assumption that $k_Q \approx k_{H_2Q}$,

this last equation becomes

$$E_{1/2} = E_{Q}^{o} - E_{ref} - \frac{0.0592}{n} \log\left(\frac{1}{\left(c_{H^{+}}^{o}\right)^{n}}\right)$$
(1)
= 0.599 - 0.244 - 0.0592pH

= 0.0355 - 0.0592 pH

(a) At pH 7.00,

 $E_{1/2} = 0.355 - 0.0592 \times 7.00 = -0.059 \text{ V}$

(b) At pH 5.00,

$$E_{1/2} = 0.355 - 0.0592 \times 5.00 = +0.059 \text{ V}$$

23-11. Here we develop the titration curve for 10, 25, 50, 75, 90, 95, 99, 100, 110, 125 and

150% titrated. The corresponding volumes of titrant are calculated in cells B8:B18 of the spreadsheet. We must find the concentration of Pb^{2+} at each volume and from it find the limiting current from

$$i_l = 10 \times c_{\text{Pb}^{2+}}(\text{mM}) = 10 \times 1000 \left(\frac{\text{mM}}{\text{M}}\right) [\text{Pb}^{2+}](\text{M})$$

Pre-equivalence point region

At each titrant volume, we calculate the concentrations of sulfate and Pb^{2+} as follows:

$$[SO_4^{2^-}] = c_{SO_4^{2^-}} = \frac{\text{mmol } SO_4^{2^-} \text{ initially present} - \text{mmol } Pb^{2^+} \text{added}}{\text{total solution volume in mL}}$$
$$[Pb^{2^+}] = \frac{K_{\text{sp}}}{[SO_4^{2^-}]}$$

The limiting current values are shown in the spreadsheet.

Equivalence point

Here, $[Pb^{2+}] = [SO_4^{2-}] = \sqrt{K_{sp}}$

The result is shown in the spreadsheet.

Post-equivalence point region

Here we find the Pb^{2+} concentration from the excess titrant added.

 $[Pb^{2+}] = c_{Pb^{2+}} = \frac{\text{mmol Pb}^{2+} \text{ added} - \text{mmol SO}_4^{2-} \text{ initially present}}{\text{total solution volume in mL}}$

The limiting current values are shown in the spreadsheet along with a plot i_l versus volume of Pb²⁺ added.

	Α	В	С	D	E	F	G	H		J	K	L	M
1	Problem 23-1	11. Amper	ometric tit	ration of su	Ifate with	Pb ²⁺							
2	Ksp			of 1:1 stoicl									
3	Initial SO42-	0.025	is 0.025 mi	mol/'mL × 2	5 mL/ 0.04	mmol/mL :	= 15.625 n	nL					
4	Initial volume	25.00											
5	Conc. Pb2+	0.04				70	7						
6	Eq. Pt.	15.625										+	
7	% Titrated	Vol. Pb ²⁺	[SO4 ²]	{Pb ²⁺]	<i>і</i> , µА	60	-						
8	10	1.563	0.0212	7.56E-07	0.008	50							
9	25	3.906	0.0162	9.87E-07	0.010	50	1						
10	50	7.813	0.0095	1.68E-06	0.017	4 0	-						
11	75	11.719	0.0043	3.76E-06	0.038	⊈ ⁴⁰ .** ₃₀					+		
12	90	14.063	1.60E-03	1.00E-05	0.100	·- ² 30	-						
13	95	14.844	7.84E-04	2.04E-05	0.204								
14	99	15.469	1.54E-04	1.04E-04	1.036	20	-						
15	100	15.625		1.26E-04	1.265	10					•		
16	110	17.188		1.48E-03	14.815	10	1						
17	125	19.531		3.51E-03	35.088	0	•	•	• •				
18	150	23.438		6.45E-03	64.516		0.00	5.00	10.00	15.00	20.	00	25.00
19	Spreadsheet	Documen	tation					2.00		Pb ²⁺ , mL			
20	Cell B8=A8/1	00*\$B\$6							VOI.	PD-', ML			
21	Cell C8=(\$B\$	3*\$B\$4-\$B\$	5*B8)/(\$B\$	4+B8)									
22	Cell D8=\$B\$2	/C8											
23	Cell E8=10*10)00*D8											
24	Cell D15=SQ	RT(\$B\$2)											
25	Cell D16=(\$B	\$5*B16-\$B\$	3*\$B\$4)/(\$8	B\$4+B16)									

23-12. Initially there are 60 mL \times 0.08 mmol/mL = 4.8 mmol Cu²⁺ present.

Applying a current of 6.0 μ A for 45 minutes represents a charge of

 $6.0 \times 10^{-6} \text{ C/s} \times 45 \text{ min} \times 60 \text{ s/min} = 0.0162 \text{ C}$

The number of moles of Cu^{2+} reduced by that amount of charge is:

 $n_{\text{Cu}2+} = Q/nF = 0.0162 \text{ C}/(2 \times 96485 \text{ C/mol}) = 8.4 \times 10^{-8} \text{ mol or } 8.4 \times 10^{-5} \text{ mmol}$

The percentage removed is thus $(8.4 \times 10^{-5} \text{ mmol}/ 4.8 \text{ mmol}) \times 100\% = 1.7 \times 10^{-3}\%$

23-13. $i_1 = kc_u$ where $i_1 = 1.86 \ \mu\text{A}$ and c_u is the concentration of the unknown.

$$i_2 = \frac{k(25.00c_u + 5.00 \times 2.12 \times 10^{-3})}{25.00 + 5.00} = 5.27 \,\mu\text{A}$$

From above, $k = i_1/c_u$. Substituting this into the second equation and solving for c_u gives

$$c_{\rm u} = 1.77 \times 10^{-4} \,{\rm M}$$

23-14. (a) The advantages include reaching steady-state currents rapidly, having very small charging currents which enables rapid potential scanning, having small *IR* drops, being able to respond to very small volumes and in flowing streams, and having large signal-to-noise ratios.

(**b**) The currents become very small as the electrode size decreases. Problems can also arise if the electrode dimensions become comparable to the double-layer thickness or to molecular dimensions. In some cases for nanoelectrodes, new theories and experimental approaches may be necessary.

Chapter 24

- **24-1.** The yellow color comes about because the solution absorbs blue light in the wavelength region 435-480 nm and transmits its complementary color (yellow). The purple color comes about because green radiation (500-560 nm) is absorbed and its complementary color (purple) is transmitted.
- **24-2.** (a) Absorbance A is the negative logarithm of transmittance $T (A = -\log T)$.

(b) The molar absorptivity, ε , is given by A/bc where A is the absorbance of a medium having a pathlength of b cm and an analyte concentration of c molar. Molar absorptivity has the units of L mol⁻¹ cm⁻¹. The absorptivity, a, is also given by A/bc where A is again the absorbance of the medium, but b may have any specified units of length and c may have any specified units of concentration.

- **24-3**. Deviations from linearity can occur because of polychromatic radiation, unknown chemical changes such as association or dissociation reactions, stray light, and molecular or ionic interactions at high concentration.
- **24-4.** A real deviation from Beer's law is a deviation due to a real limitation to the law. A real deviation occurs at high concentrations due to molecular or ionic interactions. Other deviations occur because of the imperfect manner in which measurements are made (instrumental deviations) or because of chemical changes that occur with concentration and are unknown to the user.
- 24-5. Both electronic and vibrational transitions are quantized, that is they occur at specific wavelengths and energies. Electronic transitions are much higher in energy, involving excitation or relaxation of electrons from one orbital to another, while vibrational transitions involve changes in the vibrational frequency of the atoms in a molecule. Both

atoms and molecules can undergo electronic transitions while only molecules can undergo vibrational transitions.

24-6.
$$v = c/\lambda = 3.00 \times 10^{10} \text{ cm s}^{-1}/\lambda(\text{cm}) = (3.00 \times 10^{10}/\lambda) \text{ s}^{-1} = (3.00 \times 10^{10}/\lambda) \text{ Hz}$$

(a) $v = 3.00 \times 10^{10} \text{ cm s}^{-1}/(2.65 \text{ Å} \times 10^{-8} \text{ cm/Å}) = 1.13 \times 10^{18} \text{ Hz}$
(b) $v = 3.00 \times 10^{10} \text{ cm s}^{-1}/(211.0 \text{ nm} \times 10^{-7} \text{ cm/nm}) = 1.42 \times 10^{15} \text{ Hz}$
(c) $v = 3.00 \times 10^{10} \text{ cm s}^{-1}/(694.3 \text{ nm} \times 10^{-7} \text{ cm/nm}) = 4.32 \times 10^{14} \text{ Hz}$
(d) $v = 3.00 \times 10^{10} \text{ cm s}^{-1}/(10.6 \text{ µm} \times 10^{-4} \text{ cm/µm}) = 2.83 \times 10^{13} \text{ Hz}$
(e) $v = 3.00 \times 10^{10} \text{ cm s}^{-1}/(19.6 \text{ µm} \times 10^{-4} \text{ cm/µm}) = 1.53 \times 10^{13} \text{ Hz}$
(f) $v = 3.00 \times 10^{10} \text{ cm s}^{-1}/(1.86 \text{ cm} = 1.61 \times 10^{10} \text{ Hz}$
24-7. $\lambda = c/v = 3.00 \times 10^{10} \text{ cm s}^{-1}/v (\text{s}^{-1}) = (3.00 \times 10^{10}/v) \text{ cm}$

(a)
$$\lambda = 3.00 \times 10^{10} \text{ cm s}^{-1} / (118.6 \text{ MHz} \times 10^{6} \text{ Hz/MHz}) = 253.0 \text{ cm}$$

- (b) $\lambda = 3.00 \times 10^{10} \text{ cm s}^{-1} / (114.10 \text{ kHz} \times 10^3 \text{ kHz/Hz}) = 2.629 \times 10^5 \text{ cm}$
- (c) $\lambda = 3.00 \times 10^{10} \text{ cm s}^{-1} / (105 \text{ MHz} \times 10^{6} \text{ Hz/MHz}) = 286 \text{ cm}$
- (d) $\lambda = 1/1210 \text{ cm}^{-1} = 8.264 \times 10^{-4} \text{ cm}$

24-8.
$$\overline{\nu} = 1/(185 \text{ nm} \times 10^{-7} \text{ cm/nm}) = 5.41 \times 10^4 \text{ cm}^{-1} \text{ to}$$

$$1/(3000 \times 10^{-7} \text{ cm}) = 3.33 \times 10^{3} \text{ cm}^{-1}$$

24-9. (a) $\overline{\nu} = 1/(3 \ \mu m \times 10^{-4} \ cm/\mu m) = 3.33 \times 10^3 \ cm^{-1}$ to

$$1/(15 \times 10^{-4} \text{ cm}) = 6.67 \times 10^{2} \text{ cm}^{-1}$$

(b) $v = 3.00 \times 10^{10} \text{ cm s}^{-1} \times 3.333 \times 10^{3} \text{ cm}^{-1} = 1.00 \times 10^{14} \text{ Hz to}$

$$3.00 \times 10^{10} \times 6.67 \times 10^2 = 2.00 \times 10^{13} \text{ Hz}$$

24-10. $v = c/\lambda = 3.00 \times 10^{10} \text{ cm s}^{-1}/(2.70 \text{ Å} \times 10^{-8} \text{ cm/Å}) = 1.11 \times 10^{18} \text{ Hz}$

$$E = hv = 6.63 \times 10^{-34} \text{ J s} \times 1.11 \times 10^{18} \text{ s}^{-1} = 7.36 \times 10^{-16} \text{ J}$$

24-11. $\lambda = c/v = (3.00 \times 10^{10} \text{ cm s}^{-1}) / (220 \times 10^{6} \text{ s}^{-1}) = 136 \text{ cm or } 1.36 \text{ m}$

$$E = hv = 6.63 \times 10^{-34} \text{ J s} \times 220 \times 10^{6} \text{ s}^{-1} = 1.46 \times 10^{-25} \text{ J}$$

24-12. (a) $\lambda = 589 \text{ nm}/1.35 = 436 \text{ nm}$

(b)
$$\lambda = 694.3 \text{ nm}/1.55 = 448 \text{ nm}$$

24-13. (a)
$$ppm^{-1} cm^{-1}$$

- (b) $L \mu g^{-1} cm^{-1}$
- (c) $\%^{-1}$ cm⁻¹
- (d) $L g^{-1} cm^{-1}$

24-14. (a) $\% T = 100 \times \text{antilog}(-0.0356) = 92.1\%$

Proceeding similarly, we obtain

(b) %T = 12.7; (c) %T = 41.8; (d) %T = 68.1; (e) %T = 32.7; (f) %T = 17.7%

24-15. (a) $A = -\log T = -\log (27.2\%/100\%) = 0.565$

Proceeding similarly,

- (b) $A = -\log(0.579) = 0.237$; (c) A = 0.514; (d) A = 1.400; (e) A = 1.032; (f) A = 0.196
- **24-16.** (a) $\% T = 100\% \times \text{antilog}(-2 \times 0.0356) = 100\% \times \text{antilog}(-0.0712) = 84.9\%$

Proceeding in the same way,

(b) % T = 1.62%; (c) % T = 17.5%; (d) % T = 46.3%; (e) % T = 10.7%; (f) % T = 3.12%

24-17. (a) $A = -\log T = -\log (0.2272/2) = 0.867$

Proceeding similarly,

(b) A = 0.538; (c) A = 0.815; (d) A = 1.701; (e) 1.333; (f) A = 0.497

24-18. (a) $\%T = \text{antilog}(-0.172) \times 100\% = 67.3\%$

$$c = A/\varepsilon b = (0.172)/(4.23 \times 10^{3} \times 1.00) = 4.07 \times 10^{-5} \text{ M}$$
$$c = 4.07 \times 10^{-5} \frac{\text{mol}}{\text{L}} \times \frac{200 \text{ g}}{\text{mol}} \times \frac{1 \text{ L}}{1000 \text{ g}} \times 10^{6} \text{ ppm} = 8.13 \text{ ppm}$$

$$a = A/bc = 0.172/(1.00 \times 8.13) = 0.0211 \text{ cm}^{-1} \text{ ppm}^{-1}$$

Using similar conversions and calculations, we can evaluate the missing quantities

			Е	a	b	С	
	A	%T	L mol ⁻¹ cm ⁻¹	cm ⁻¹ ppm ⁻¹	cm	Μ	ppm
*(a)	0.172	67.3	4.23×10^{3}	0.0211	1.00	4.07×10^{-5}	8.13
(b)	0.348	44.9	5.16×10^{3}	0.0258	0.500	1.35×10^{-4}	27.0
*(c)	0.520	30.2	7.95×10^{3}	0.0397	1.00	6.54×10^{-5}	13.1
(d)	0.402	39.6	1.83×10^4	0.0912	2.50	8.80×10^{-6}	1.76
*(e)	0.638	23.0	3.73×10^{3}	0.0187	0.100	1.71×10^{-3}	342
(f)	0.0778	83.6	9.64×10^{3}	0.0483	1.00	$8.07 imes 10^{-6}$	1.61
*(g)	0.798	15.9	3.17×10^3	0.0158	1.50	1.68×10^{-4}	33.6
(h)	0.955	11.1	1.35×10^{4}	0.0677	1.00	$7.07 imes 10^{-5}$	<i>14.1</i>
*(i)	1.28	5.23	9.78×10^{3}	0.0489	5.00	2.62×10^{-5}	5.24
(j)	0.179	66.2	2.49×10^{3}	0.0124	1.00	$7.19 imes 10^{-5}$	14.4

24-19. molar mass KMnO₄ = 158.03 g/mol

$$c = \frac{4.48 \text{ g KMnO}_4}{10^6 \text{ g soln}} \times \frac{1000 \text{ g soln}}{\text{L}} \times \frac{1 \text{ mol}}{158.03 \text{ g KMnO}_4} = 2.8349 \times 10^{-5} \text{ M}$$

$$A = -\log(0.859) = 0.066$$

$$\varepsilon = A/bc = 0.066/(1.00 \times 2.8349 \times 10^{-5}) = 2.33 \times 10^{3} \text{ L mol}^{-1} \text{ cm}^{-1}$$

24-20.
$$c = \frac{2.25 \text{ g Be(II) complex}}{10^6 \text{ g soln}} \times \frac{1000 \text{ g soln}}{\text{L}} \times \frac{\text{mol}}{166.2 \text{ g Be(II) complex}} = 1.354 \times 10^{-5} \text{ M}$$

 $A = -\log(37.5\%/100\%) = 0.426$
 $\varepsilon = A/bc = 0.426/1.354 \times 10^{-5} = 3.15 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$
24-21. (a) $A = 7.00 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1} \times 1.00 \text{ cm} \times 3.40 \times 10^{-5} \text{ mol L}^{-1} = 0.238$

4

(b)
$$A = 7.00 \times 10^3 \times 1.00 \times 2 \times 3.40 \times 10^{-5} = 0.476$$

- (c) For part (a), T = antilog(-0.238) = 0.578
 - For part (b), T = antilog(-0.476) = 0.334

(d)
$$A = -\log(T) = -\log(0.578/2) = 0.539$$

24-22.

$$c = \frac{4.33 \text{ g.Fe}}{10^6 \text{ g.soln}} \times \frac{1000 \text{ g.soln}}{\text{L}} \times \frac{\text{mot Fe}}{55.847 \text{ g.Fe}} \times \frac{1 \text{ mol FeSCN}^{2+}}{\text{mot Fe}} \times \frac{5.00 \text{ mL}}{50.00 \text{ mL}}$$

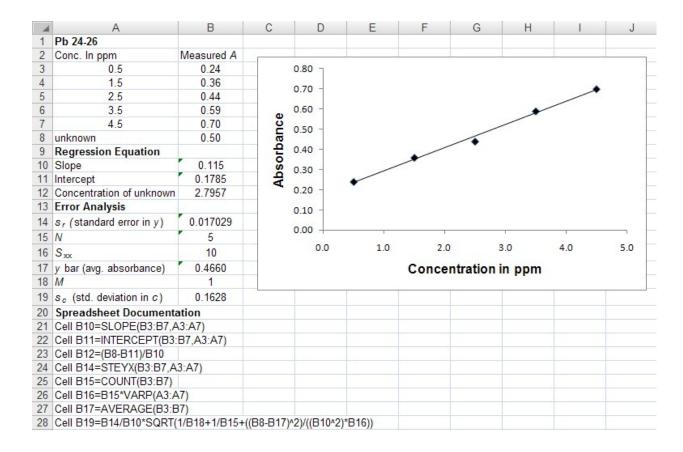
= 7.75 × 10⁻⁶ M
$$A = 7.00 \times 10^3 \times 2.50 \times 7.75 \times 10^{-6} = 0.136$$

24-23. (a)
$$A = 9.32 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1} \times 1.00 \text{ cm} \times 5.67 \times 10^{-5} \text{ mol } \text{L}^{-1} = 0.528$$

(b) $\% T = 100 \times anitlog(-0.528) = 29.6\%$

(c)
$$c = A/\varepsilon b = 0.528/(9.32 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1} \times 2.50 \text{ cm}) = 2.27 \times 10^{-5} \text{ M}$$

24-24. (a)
$$A = 7000 \text{ Lmol}^{-1} \text{ cm}^{-1} \times 1.00 \text{ cm} \times 6.17 \times 10^{-5} \text{ mol } \text{L}^{-1} = 0.439$$


(b)
$$\%T = 100 \times \operatorname{anitlog}(-0.439) = 36.4\%$$

(c) $c = A/\varepsilon b = 0.439/(7000 \text{ L mol}^{-1} \text{ cm}^{-1} \times 5.00 \text{ cm}) = 1.25 \times 10^{-5} \text{ M}$
(d) $b = A/\varepsilon c = 0.439/(7000 \text{ L mol}^{-1} \text{ cm}^{-1} \times 3.13 \times 10^{-5} \text{ mol L}^{-1}) = 2.00 \text{ cm}$
24-25. $2.10 = -\log (P/P_0)$ $P/P_0 = 0.0079433$
 $P = 0.007943 P_0$
 $P_s/P_0 = 0.0075$
 $P_s = 0.0075 P_0$
 $A' = \left(\frac{P_0 + P_s}{P + P_s}\right) = \log\left(\frac{P_0 + 0.0075P_0}{0.007943P_0 + 0.0075P_0}\right) = \log\left(\frac{1.0075P_0}{0.015443P_0}\right) = \log(65.2139)$

= 1.81

Chapter 24

Error =
$$[(1.81 - 2.10)/2.10] \times \%100 = -13.6\%$$

24-26.

Rounding to keep only significant figures, we have

 $c_{\rm unk} = 2.8 \pm 0.2 \text{ ppm}$

A b 24-27	В	С	D	E	F	G	Н	1	J
onc. In ppm	Measured A		0.900 7						
1.00	0.230		0.800 -						
2.00	0.436						/		
3.00	0.638	0	and the second se				-		
4.00	0.848	20	0.600 -			/			
Urine	0.518	ar	0.500 -			/			
egression Equation	-	dr	0.400		*				
lope	0.2056	So	0.400		/				
tercept	0.024	Ab	0.300 -	~					
oncentration of unknown	2.4027		0.200 -	-					
rror Analysis			0 100 -	/					
(standard error in y)	0.002366								
	4				1.		1	1	
xx	5		0.00	1.00	2.00)	3.00	4.00	5.00
bar (avg. absorbance)	0.538				Concer	ntration	in ppm		
	1								
std. deviation in c)	0.012878								
preadsheet Documentation									
ell B9=SLOPE(B3:B6,A3:A6)									
ell B10=INTERCEPT(B3:B6,A	3:A6)								
ell B11=(B7-B10)/B9									
ell B15=B14*VARP(A3:A6)									
ell B16=AVERAGE(B3:B6)									
ell B17 = user entry									
	1.00 2.00 3.00 4.00 Urine egression Equation lope tercept oncentration of unknown rror Analysis , (standard error in y) xx bar (avg. absorbance) (std. deviation in c) preadsheet Documentation ell B9=SLOPE(B3:B6,A3:A6) ell B10=INTERCEPT(B3:B6,A3:A6) ell B11=(B7-B10)/B9 ell B13=STEYX(B3:B6,A3:A6) ell B14=COUNT(B3:B6) ell B15=B14*VARP(A3:A6)	1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis	1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.024 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis	1.00 0.230 0.800 2.00 0.436 0.700 3.00 0.638 0.600 4.00 0.848 0.600 Urine 0.518 0.600 egression Equation 0.2056 0.400 lope 0.2056 0.300 tercept 0.024 0.300 oncentration of unknown 2.4027 0.000 rror Analysis 0.002366 0.100 r (standard error in y) 0.002366 0.000 bar (avg. absorbance) 0.538 0.000 e (std. deviation in c) 0.012878 0.000 preadsheet Documentation 1 0.000 0.000 ell B19=SLOPE(B3:B6,A3:A6) 1 1 0.000 ell B11=(B7-B10)/B9 1 1 1 1 ell B13=STEYX(B3:B6,A3:A6) 1 1 1 1 ell B14=COUNT(B3:B6) 1 1 1 1 1 ell B15=B14*VARP(A3:A6) 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.600 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis 0.002366 r (standard error in y) 0.002366 4 0.00 xx 5 bar (avg. absorbance) 0.538 1 0.000 e (std. deviation in c) 0.012878 preadsheet Documentation 0.012878 ell B19=SLOPE(B3:B6,A3:A6) 0.012878 ell B11=(B7-B10)/B9 0.012878 ell B11=(B7-B10)/B9 0.012878 ell B13=STEYX(B3:B6,A3:A6) 0.012878 ell B14=COUNT(B3:B6) 0.012878</td><td>1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.600 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis 0.002366 y 0.002366 0.000 1.00 0.000 1.00 0.000 1.00 xx 5 bar (avg. absorbance) 0.538 preadsheet Documentation 0.012878 preadsheet Documentation 0.012878 ell B19=SLOPE(B3:B6,A3:A6) 0 ell B11=(B7-B10)/B9 0 ell B14=COUNT(B3:B6,A3:A6) 0 ell B14=COUNT(B3:B6) 0 ell B15=B14*VARP(A3:A6) 0</td><td>1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.0024 iope 0.2056 tercept 0.024 oncentration of unknown 2.4027 ror Analysis 0.002366 r (standard error in y) 0.002366 0.00 1.00 2. (std. deviation in c) 0.012878 preadsheet Documentation 1 ell B19=SLOPE(B3:B6,A3:A6) 1 ell B10=INTERCEPT(B3:B6,A3:A6) 1 ell B11=[B7-B10//B9 1 ell B13=STEYX(B3:B6,A3:A6) 1 ell B14=COUNT(B3:B6) 1 ell B15=B14*VARP(A3:A6) 1</td><td>1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.500 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis 0.100 r (standard error in y) 0.002366 4 0.000 5 0.100 bar (avg. absorbance) 0.538 1 0.001.000 2 (std. deviation in c) 0.012878 preadsheet Documentation ell B19=SLOPE(B3:B6,A3:A6) ell B10=INTERCEPT(B3:B6,A3:A6) ell B11=(B7-B10)/B9 ell B11=(B7-B10)/B9 ell B14=COUNT(B3:B6) ell B15=B14*VARP(A3:A6) ell B15=B14*VARP(A3:A6)</td><td>1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.500 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis 0.002366 (standard error in y) 0.002366 4 0.00 5 0.00 bar (avg. absorbance) 0.538 1 0.00 6 (std. deviation in c) 0.012878 preadsheet Documentation 0.012878 ell B19=SLOPE(B3:B6,A3:A6) 0.00 ell B11=(B7-B10)/B9 0.00 ell B14=COUNT(B3:B6,A3:A6) 0.00 ell B14=COUNT(B3:B6) 0.00 ell B14=COUNT(B3:B6) 0.00 ell B15=B14*VARP(A3:A6) 0.00</td></t<>	1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.600 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis 0.002366 r (standard error in y) 0.002366 4 0.00 xx 5 bar (avg. absorbance) 0.538 1 0.000 e (std. deviation in c) 0.012878 preadsheet Documentation 0.012878 ell B19=SLOPE(B3:B6,A3:A6) 0.012878 ell B11=(B7-B10)/B9 0.012878 ell B11=(B7-B10)/B9 0.012878 ell B13=STEYX(B3:B6,A3:A6) 0.012878 ell B14=COUNT(B3:B6) 0.012878	1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.600 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis 0.002366 y 0.002366 0.000 1.00 0.000 1.00 0.000 1.00 xx 5 bar (avg. absorbance) 0.538 preadsheet Documentation 0.012878 preadsheet Documentation 0.012878 ell B19=SLOPE(B3:B6,A3:A6) 0 ell B11=(B7-B10)/B9 0 ell B14=COUNT(B3:B6,A3:A6) 0 ell B14=COUNT(B3:B6) 0 ell B15=B14*VARP(A3:A6) 0	1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.0024 iope 0.2056 tercept 0.024 oncentration of unknown 2.4027 ror Analysis 0.002366 r (standard error in y) 0.002366 0.00 1.00 2. (std. deviation in c) 0.012878 preadsheet Documentation 1 ell B19=SLOPE(B3:B6,A3:A6) 1 ell B10=INTERCEPT(B3:B6,A3:A6) 1 ell B11=[B7-B10//B9 1 ell B13=STEYX(B3:B6,A3:A6) 1 ell B14=COUNT(B3:B6) 1 ell B15=B14*VARP(A3:A6) 1	1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.500 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis 0.100 r (standard error in y) 0.002366 4 0.000 5 0.100 bar (avg. absorbance) 0.538 1 0.001.000 2 (std. deviation in c) 0.012878 preadsheet Documentation ell B19=SLOPE(B3:B6,A3:A6) ell B10=INTERCEPT(B3:B6,A3:A6) ell B11=(B7-B10)/B9 ell B11=(B7-B10)/B9 ell B14=COUNT(B3:B6) ell B15=B14*VARP(A3:A6) ell B15=B14*VARP(A3:A6)	1.00 0.230 2.00 0.436 3.00 0.638 4.00 0.848 Urine 0.518 egression Equation 0.500 lope 0.2056 tercept 0.024 oncentration of unknown 2.4027 rror Analysis 0.002366 (standard error in y) 0.002366 4 0.00 5 0.00 bar (avg. absorbance) 0.538 1 0.00 6 (std. deviation in c) 0.012878 preadsheet Documentation 0.012878 ell B19=SLOPE(B3:B6,A3:A6) 0.00 ell B11=(B7-B10)/B9 0.00 ell B14=COUNT(B3:B6,A3:A6) 0.00 ell B14=COUNT(B3:B6) 0.00 ell B14=COUNT(B3:B6) 0.00 ell B15=B14*VARP(A3:A6) 0.00

24-27. (a)

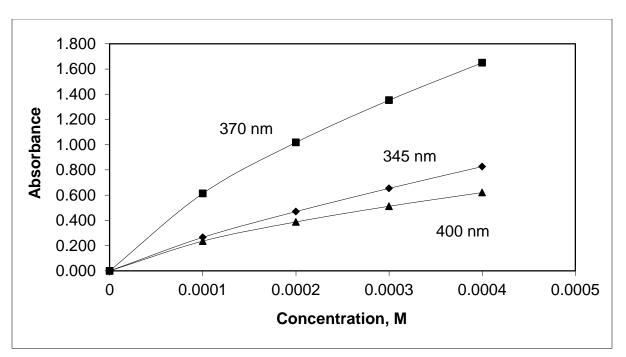
(b) mass P = 1123 mL × 1122 mL ×
$$\frac{2.4 \text{ mg P}}{1000 \text{ mL}}$$
 × $\frac{50.0 \text{ mL}}{1.00 \text{ mL}}$ = 135 mg P

(c) conc.
$$PO_4^{3-} =$$

$$\frac{2.4 \text{ mg P}}{\text{L}} \times \frac{50.0 \text{ mL}}{1 \text{ mL}} \times \frac{\text{mmol P}}{30.9738 \text{ mg P}} \times \frac{1 \text{ mmol PO}_4^{3-}}{\text{mmol P}} = 3.87 \text{ mM}$$

24-28.

	A	В	C	D	E	F	G	H	1	J
1	Pb 24-28									
2	Conc. mM	Measured A	C).7						
3	2.00	0.065		.6 -						
4	6.00	0.205						0-14	/	
5	10.00	0.338	00).5 -				~		
6	14.00	0.474	Absorbance					-		
7	18.00	0.598	0a).4 -			/			
8	unknown	0.402	E c).3 -			*			
9	Regression Equation		SC			/				
10	Slope	0.03338	T C).2 -		*				
11	Intercept	0.00225	-		/					
	Concentration of unkown	11.97753	C).1						
13	Error Analysis			0						
14	s_r (standard error in y)	0.00488			5.00		10.00	15.00		20.00
15	N	5.0		0.00	5.00	,	10.00	15.00		20.00
16	S _{xx}	160				Conc	entration	. μM		
	y bar (avg. absorbance)	0.33600								
18		1								
19	sc (std. deviation in c)	0.16186								
20	Spreadsheet Documentation									
	Cell B10=SLOPE(B3:B7,A3:A7									
	Cell B11=INTERCEPT(B3:B7,A									
	Cell B12=(B8-B11)/B10									
	Cell B14=STEYX(B3:B7,A3:A7))								
25	Cell B15=COUNT(B3:B7)									
26	Cell B16=B15*VARP(A3:A7)									
27	Cell B17=AVERAGE(B3:B7)									
	Cell B18= user entry									
29	Cell B19=B14/B10*SQRT(1/B1	8+1/B15+((B8-B1)	7)^2)/((B10^2	2)*B16))						
30			a San Astronomica Carlos	9						


Rounding to keep only significant figures

 $c_{\text{unk}} = 12.0 \pm 0.2 \ \mu\text{M}$

24-29.
$$[Cr_2O_7^{2-7}]/\{[CrO_4^{2-7}][H^+]^2 = 4.2 \times 10^{14}$$

 $[H^+] = antilog (-5.60) = 2.51 \times 10^{-6}$
 $[Cr_2O_7^{2-7}] = c_{K_2Cr_2O_7} - [CrO_4^{2-7}]/2$
 $\frac{c_{K_2Cr_2O_7} - 0.500[CrO_4^{2-7}]}{[CrO_4^{2-7}]^2 \times (2.51 \times 10^{-6})^2} = 4.2 \times 10^{14}$
 $c_{K_2Cr_2O_7} - 0.500 [CrO_4^{2-7}] = 2.65 \times 10^3 [CrO_4^{2-7}]^2$
 $[CrO_4^{2-7}]^2 + 1.887 \times 10^{-4} [CrO_4^{2-7}] - 3.774 \times 10^{-4} c_{K_3Cr_2O_7} = 0$
When $c_{K_2Cr_2O_7} = 4.00 \times 10^{-4}$
 $[CrO_4^{2-7}]^2 + 1.887 \times 10^{-4} [CrO_4^{2-7}] - 1.510 \times 10^{-7} = 0$
 $[CrO_4^{2-7}]^2 + 1.887 \times 10^{-4} - 3.055 \times 10^{-4}/2 = 2.473 \times 10^{-4}$
 $A_{345} = 1.84 \times 10^3 \times 3.055 \times 10^{-4} + 10.7 \times 10^2 \times 2.473 \times 10^{-4} = 0.827$
 $A_{370} = 4.81 \times 10^3 \times 3.055 \times 10^{-4} + 1.89 \times 10^2 \times 2.473 \times 10^{-4} = 1.649$
 $A_{400} = 1.88 \times 10^3 \times 3.055 \times 10^{-4} + 1.89 \times 10^2 \times 2.473 \times 10^{-4} = 0.621$

Proceeding in the same way, we obtain

<i>C</i> _{K2Cr2O7} ²⁻	[CrO ₄ ²⁻]	$[Cr_2O_7^{2-}]$	A ₃₄₅	A ₃₇₀	A_{400}	
4.00×10^{-4}	3.055×10^{-4}	2.473×10^{-4}	0.827	1.649	0.621	
3.00×10^{-4}	2.551×10^{-4}	1.725×10^{-4}	0.654	1.353	0.512	
$2.00 imes 10^{-4}$	1.961×10^{-4}	1.019×10^{-4}	0.470	1.018	0.388	
1.00×10^{-4}	1.216×10^{-4}	3.920×10^{-4}	0.266	0.613	0.236	
0.0	0.0	0.0	0.000	0.000	0.000	

Plotting these data clearly shows the deviations from linearity that occur

Chapter 24

Chapter 25

25-1. (a) *Phototubes* consist of a single photoemissive surface (cathode) and an anode in an evacuated envelope. They exhibit low dark current, but have no inherent amplification. *Solid-state photodiodes* are semiconductor *pn*-junction devices that respond to incident light by forming electron-hole pairs. They are more sensitive than phototubes but less sensitive than photomultiplier tubes.

(b) *Phototubes* consist of a single photoemissive surface (cathode) and an anode in an evacuated envelope. They exhibit low dark current, but have no inherent amplification. *Photomultipliers* have built-in gains and thus have very high sensitivities. They suffer from somewhat larger dark currents.

(c) *Filters* isolate a single band of wavelengths. They provide low resolution wavelength selection suitable for quantitative work. *Monochromators* produce high resolution for qualitative and quantitative work. With monochromators, the wavelength can be varied continuously, whereas this is not possible with filters.

(d) A *conventional spectrophotometer* monitors a given narrow range of wavelengths determined by the orientation of the grating in the monochromator and the openings of the slits. This device can provide very high resolution wavelength selection, but is relatively slow when acquiring an absorption spectrum over a range of wavelengths due to the necessity of scanning the monochromator. A *diode-array spectrophotometer* simultaneously monitors a range of wavelengths determined by the dispersion of the grating monochromator and the width of the diode-array. This device allows very high-speed acquisition of an absorption spectrum over a range of wavelengths, but the

wavelength resolution is limited by the dispersion of the monochromator and the separation between the detecting elements in the diode-array.

- **25-2.** The *effective bandwidth of a monochromator* is the width in units of wavelength of the band of transmitted radiation measured at one half the height of the band.
- **25-3**. Quantitative analyses can tolerate rather wide slits since measurements are usually carried out at a wavelength maximum where the slope of the spectrum $dA/d\lambda$ is relatively constant. On the other hand, qualitative analyses require narrow slits so that any fine structure in the spectrum will be resolved. This can allow differentiation of one compound from another.
- **25-4**. Photons in the infrared region of the spectrum do not have sufficient energy to cause photoemission from the cathode of a photomultiplier.
- **25-5**. *Tungsten/halogen lamps* contain a small amount of iodine in the evacuated quartz envelope that contains the tungsten filament. The iodine prolongs the life of the lamp and permits it to operate at a higher temperature. The iodine combines with gaseous tungsten that sublimes from the filament and causes the metal to be redeposited, thus adding to the life of the lamp.
- 25-6. (a) *Spectrophotometers* have monochromators for multiple wavelength operation and for procuring spectra while *photometers* utilize filters for fixed wavelength operation. While offering the advantage of multiple wavelength operation, spectrophotometers are substantially more complex and more expensive than photometers.

(**b**) A *spectrograph* uses a diffraction grating to disperse the spectrum, but contains no exit slit, allowing the dispersed spectrum to strike a multi-wavelength detector. A

polychromator uses a diffraction grating to disperse the spectrum, but contains multiple exit slits, allowing several discrete wavelengths to be monitored simultaneously.

(c) Both a *monochromator* and a *polychromator* use a diffraction grating to disperse the spectrum, but a monochromator contains only one exit slit and detector while a polychromator contains multiple exit slits and detectors. A monochromator can be used to monitor one wavelength at a time while a polychromator can monitor several discrete wavelengths simultaneously.

(d) A *single-beam spectrophotometer* employs a fixed beam of radiation that irradiates first the solvent and then the analyte solution. In a *double-beam instrument* the solvent and solution are irradiated simultaneously or nearly so. The advantages of the double-beam instruments are freedom from problems arising from fluctuations in the source intensity due to drift in electronic circuits and easier adaptation to automatic spectral recording. The single-beam instrument offers the advantages of simplicity and lower cost.

25-7. (a)
$$\lambda_{\text{max}} = 2.90 \times 10^3 / T = 2.90 \times 10^3 / 4000 = 0.73 \ \mu\text{m}$$

(b) $\lambda_{\text{max}} = 2.90 \times 10^3 / 3000 = 0.97 \ \mu\text{m}$
(c) $\lambda_{\text{max}} = 2.90 \times 10^3 / 2000 = 1.45 \ \mu\text{m}$
(d) $\lambda_{\text{max}} = 2.90 \times 10^3 / 1000 = 2.90 \ \mu\text{m}$
25-8. (a) $E_t = 5.69 \times 10^{-8} (4000)^4 = 1.46 \times 10^7 \ \text{W/m}^2$
(b) $E_t = 5.69 \times 10^{-8} (3000)^4 = 4.61 \times 10^6 \ \text{W/m}^2$
(c) $E_t = 5.69 \times 10^{-8} (2000)^4 = 9.10 \times 10^5 \ \text{W/m}^2$
(d) $E_t = 5.69 \times 10^{-8} (1000)^4 = 5.69 \times 10^4 \ \text{W/m}^2$

....

()

25-9. (a)
$$\lambda_{\text{max}} = 2.90 \times 10^3 / 2870 = 1.01 \,\mu\text{m}$$
 (1010 nm)
 $\lambda_{\text{max}} = 2.90 \times 10^3 / 3000 = 0.967 \,\mu\text{m}$ (967 nm)
(b) $E_t = 5.69 \times 10^{-8} (2870)^4 \times (1 \,\text{m} / 100 \,\text{cm})^2 = 386 \,\text{W/cm}^2$
 $E_t = 5.69 \times 10^{-8} (3000)^4 \times (1 \,\text{m} / 100 \,\text{cm})^2 = 461 \,\text{W/cm}^2$

- **25-10.** As a minimum requirement, the radiation emitted by the source of a single-beam instrument must be stable for however long it takes to make the 0% T adjustment, the 100% *T* adjustment, and the measurement of *T* for the sample.
- **25-11**. (a) The 0% transmittance is measured with no light reaching the detector and is a measure of the dark current.

(b) The 100% transmittance adjustment is made with a blank in the light path and measures the unattenuated source. It compensates for any absorption or reflection losses in the cell and optics.

- **25-12**. Electrolyte concentration, pH, temperature.
- **25-13**. Fourier transform IR spectrometers have the advantages over dispersive instruments of higher speed and sensitivity, better light-gathering power, more accurate and precise wavelength settings, simpler mechanical design, and elimination of stray light and IR emission.

25-14. (a) $\% T = (149 / 625) \times 100\% = 23.84\%$

 $A = -\log(23.84\% / 100\%) = 0.623$

(b) Since A is proportional to concentration, at $\frac{1}{2}$ concentration A = 0.623 / 2 = 0.311T = antilog(-A) = antilog(-0.311) = 0.488

(c) Since A is proportional to light path, at twice the light path $A = 2 \times 0.623 = 1.246$

 $T = \operatorname{antilog}(-A) = \operatorname{antilog}(-1.246) = 0.057; \ \% T = 5.7$

- **25-15.** (a) $\% T = (23.5/75.9) \times 100\% = 30.96\%$
 - **(b)** $A = -\log(30.96\%/100\%) = 0.509$
 - (c) Since *A* is proportional to concentration, at 1/3 concentration A = 0.509/3 = 0.170 $T = \operatorname{antilog}(-A) = \operatorname{antilog}(-0.170) = 0.677$
 - (d) $A = 2 \times 0.509 = 1.018$

T = antilog(-A) = antilog(-1.018) = 0.096

- 25-16. In a *deuterium lamp*, the input energy from the power source produces an excited deuterium molecule that dissociates into two atoms in the ground state and a photon of radiation. As the excited deuterium molecules relaxes, the quantized energy is distributed between the energy of the photon and the kinetic energies of the two deuterium atoms. The latter can vary from nearly zero to the original energy of the excited molecule. Therefore, the energy of the radiation, which is the difference between the quantized energy of the excited molecule and the kinetic energies of the atoms, can also vary continuously over the same range. Consequently, the emission spectrum is a continuum.
- **25-17.** A *photon detector* produces a current or voltage as a result of the emission of electrons from a photosensitive surface when struck by photons. A *thermal detector* consists of a darkened surface to absorb infrared radiation and produce a temperature increase. A *thermal transducer* produces an electrical signal whose magnitude is related to the temperature and thus the intensity of the infrared radiation.

- **25-18**. An *absorption spectrometer* requires a separate radiation source and a sample compartment that holds containers for the sample and blank. With an *emission spectrometer*, the sample is introduced directly into a hot plasma or flame where excitation and emission occur.
- 25-19. Basically, an *absorption photometer* and a *fluorescence photometer* consist of the same components. The basic difference is in the location of the detector. The detector in a fluorometer is positioned at an angle of 90° to the direction of the beam from the source so that emission is detected rather than transmisson. In addition, a filter is often positioned in front of the detector to remove radiation from the excitation beam that may result from scattering or other nonfluorescence processes. In a transmission photometer, the detector is positioned in a line with the source, the filter, and the detector.
- **25-20**. The performance characteristics of an interference filter include the wavelength of its transmittance peak, the percent transmission at the peak, and the effective bandwidth.
- **25-21**. (a) *Transducer* indicates the type of detector that converts quantities, such as light intensity, pH, mass, and temperature, into electrical signals that can be subsequently amplified, manipulated, and finally converted into numbers proportional to the magnitude of the original quantity.

(b) The *dark current* is the small current that develops in a radiation transducer in the absence of radiation.

(c) A semiconductor containing unbonded electrons (e.g. produced by doping silicon with a Group V element) is termed an *n*-type semiconductor.

6

(d) The *majority carrier* in a semiconductor is the mobile charge carrier in either *n*-type or *p*-type materials. For *n*-type, the majority carrier is the electron, while in *p*-type, the majority carrier is a positively charged hole.

(e) A *depletion layer* results when a reverse bias is applied to a *pn*-junction type device. Majority carriers are drawn away from the junction leaving a nonconductive depletion layer.

(f) *Scattered radiation* in a monochromator is unwanted radiation that reaches the exit slit as a result of reflection and scattering. Its wavelength usually differs from that of the radiation reaching the slit from the dispersing element.

25-22. (a)
$$\lambda_{\text{max}} = 2t\eta/\mathbf{n}$$

 $t = \lambda_{\text{max}} \mathbf{n} / (2\eta) = 4.54 \ \mu\text{m} \ \times 1 / (2 \times 1.34) = 1.69 \ \mu\text{m}$

(b) $\lambda_n = 2t\eta \mathbf{n}$

For **n** = 1, 2, 3, ...

 $\lambda_1 = 4.54 \ \mu m, \ \lambda_2 = 2.27 \ \mu m, \ \lambda_3 = 1.51 \ \mu m_{\pm} \ etc.$

25-23.

1 Wavelength, nm $P_{solvent}$ $P_{solution}$ T A 2 350 0.002669 0.002560 0.927357 0.021 3 375 0.006326 0.005995 0.947545 0.023 4 400 0.016975 0.015143 0.892072 0.050 5 425 0.035517 0.031648 0.891046 0.050 6 450 0.062425 0.0224978 0.40129 0.338 7 475 0.095374 0.019073 0.199986 0.699 8 500 0.144567 0.023275 0.165577 0.781 9 525 0.188984 0.037448 0.199163 0.703 10 550 0.263103 0.088537 0.336512 0.473 11 575 0.318361 0.20872 0.630957 0.200 12 600 0.394600 0.278072 0.704693 0.152 13 625 0.47018 0.363525 0.762079 0.118 14 650 0.564295 0.460281	H	G	F	E	D	С	В	A	
2 350 0.002689 0.002560 0.947545 0.023 3 375 0.006326 0.005995 0.947545 0.023 4 400 0.016975 0.015143 0.892072 0.050 5 425 0.035517 0.031648 0.891046 0.050 6 450 0.062425 0.024978 0.40129 0.398 7 475 0.095374 0.019073 0.199986 0.699 8 500 0.140567 0.023275 0.165577 0.781 9 525 0.180884 0.037448 0.199163 0.703 10 550 0.263103 0.088537 0.336512 0.473 11 575 0.318361 0.200872 0.630957 0.021 12 600 0.234460 0.278072 0.74493 0.152 13 625 0.47718 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.821 0.081 15 675 0.655066 0.611062 0.92287				A	Т	Psolution	Psolvent	Wavelength, nm	1
4 400 0.016975 0.015143 0.892072 0.050 5 425 0.035517 0.031648 0.891046 0.050 6 450 0.062425 0.024978 0.400129 0.398 7 475 0.095374 0.19073 0.19986 0.699 8 500 0.140567 0.023275 0.165577 0.781 9 525 0.188984 0.037448 0.198153 0.703 10 550 0.263103 0.088537 0.336512 0.473 11 575 0.318361 0.200872 0.704693 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.829851 0.081 15 675 0.655066 0.611062 0.932825 0.300 16 700 0.739180 0.704426 0.952477 0.020 18 750 0.845979 0.863224 0.974316 0.011 19 775 0.945083 0.921446 0				0.021	0.952357			350	2
5 425 0.035517 0.031648 0.891046 0.050 6 450 0.062425 0.024978 0.400129 0.398 7 475 0.095374 0.019073 0.199986 0.699 8 500 0.140567 0.023275 0.165577 0.781 9 525 0.188984 0.037448 0.198153 0.703 10 550 0.263103 0.088537 0.336512 0.473 11 575 0.318361 0.200872 0.630957 0.200 12 600 0.394600 0.278072 0.704693 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.829851 0.081 15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.77446 0.952577 0.021 17 725 0.813694 0.974316 0.011 0.97237 0.97237 0.010 22 0.800 1.				0.023	0.947545	0.005995	0.006326	375	3
6 450 0.062425 0.024978 0.400129 0.398 7 475 0.095374 0.019073 0.199986 0.699 8 500 0.140567 0.023275 0.165577 0.781 9 525 0.188984 0.037448 0.198153 0.703 10 550 0.263103 0.088537 0.336512 0.473 11 575 0.318361 0.200872 0.630957 0.200 12 600 0.394600 0.278072 0.704693 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.829851 0.081 15 675 0.65666 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952677 0.021 17 725 0.813694 0.777466 0.955476 0.020 18 750 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 <td< td=""><td></td><td></td><td></td><td>0.050</td><td>0.892072</td><td>0.015143</td><td>0.016975</td><td>400</td><td>4</td></td<>				0.050	0.892072	0.015143	0.016975	400	4
7 475 0.095374 0.019073 0.199986 0.699 8 500 0.140567 0.023275 0.165577 0.781 9 525 0.189984 0.037448 0.198153 0.703 10 550 0.263103 0.088537 0.336512 0.473 11 575 0.318361 0.20072 0.30957 0.200 12 600 0.394600 0.278072 0.70493 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.829851 0.081 15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952677 0.021 17 725 0.813694 0.777466 0.955476 0.020 18 750 0.845083 0.921446 0.974399 0.011 20 800 1.000000 0.977237 0.010 22 21 0.601 0.800 0.900 0.900 <td></td> <td></td> <td></td> <td>0.050</td> <td>0.891046</td> <td>0.031648</td> <td>0.035517</td> <td>425</td> <td>5</td>				0.050	0.891046	0.031648	0.035517	425	5
8 500 0.140567 0.023275 0.165577 0.781 9 525 0.188984 0.037448 0.198153 0.703 10 550 0.263103 0.088537 0.336512 0.473 11 575 0.318361 0.200872 0.630957 0.200 12 600 0.394600 0.278072 0.704693 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.829851 0.081 15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952577 0.021 17 725 0.813694 0.777466 0.952577 0.020 18 750 0.945083 0.921446 0.97499 0.011 19 775 0.945083 0.921446 0.977237 0.010 21 Documentation 0.80 0.907237 0.977237 0.010 22 Cell D2=C2/B2 0.80 0.80 <td></td> <td></td> <td></td> <td>0.398</td> <td>0.400129</td> <td>0.024978</td> <td>0.062425</td> <td>450</td> <td>6</td>				0.398	0.400129	0.024978	0.062425	450	6
9 525 0.188984 0.037448 0.198153 0.703 10 550 0.263103 0.088537 0.336512 0.473 11 575 0.318361 0.200872 0.630957 0.200 12 600 0.394600 0.278072 0.704693 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.554295 0.468281 0.829851 0.081 15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952577 0.021 17 725 0.813694 0.777466 0.955476 0.020 18 750 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 0.977237 0.010 21 Documentation 22 23 Cell D2=C2/B2 23 23 Cell D2=C2/B2 24 0.90 0.30 0.30 33 0.30 0.30 0.40 0.40 <td></td> <td></td> <td></td> <td>0.699</td> <td>0.199986</td> <td>0.019073</td> <td>0.095374</td> <td>475</td> <td>7</td>				0.699	0.199986	0.019073	0.095374	475	7
10 550 0.263103 0.088537 0.336512 0.473 11 575 0.318361 0.200872 0.630957 0.200 12 600 0.394600 0.278072 0.704693 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.829851 0.081 15 675 0.65666 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952577 0.021 17 725 0.813694 0.777466 0.955476 0.020 18 750 0.845083 0.921446 0.974316 0.011 19 775 0.945083 0.927237 0.977237 0.010 21 Documentation 22 22 23 Cell D2=C2/B2 23 23 Cell D2=C2/B2 0.50 0.30 0.30 0.30 0.30 0.30 32 0.60 0.20 0.30 0.40 0.40 0.40 0.40 0.40				0.781	0.165577	0.023275	0.140567	500	8
11 575 0.318361 0.200872 0.630957 0.200 12 600 0.394600 0.278072 0.704693 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.829851 0.081 15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.955577 0.021 17 725 0.813694 0.777466 0.955476 0.020 18 750 0.885979 0.863224 0.974316 0.011 19 775 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 0.977237 0.010 21 Documentation 20 0.60 0.50 0.60 0.20 23 Cell E2=-LOG10(D2) 0.20 0.40 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.40 0.40 0.40				0.703	0.198153	0.037448	0.188984	525	9
11 575 0.318361 0.200872 0.630957 0.200 12 600 0.394600 0.278072 0.704693 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.829851 0.081 15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952577 0.021 17 725 0.813694 0.777466 0.020 18 19 775 0.945083 0.921446 0.97499 0.011 19 775 0.945083 0.927237 0.010 21 Documentation 20 23 Cell D2=C2/B2 24 0.90 23 Cell D2=C2/B2 24 0.90 25 0.30 26 0.30 27 0.30 20 33 0.10 0.30 0.30 0.30 24 0.90 40 40 40 40 40 40 40 40 40 40		1		0.473	0.336512	0.088537	0.263103	550	10
12 600 0.394600 0.278072 0.704693 0.152 13 625 0.477018 0.363525 0.762079 0.118 14 650 0.564295 0.468281 0.829851 0.081 15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952577 0.021 17 725 0.813694 0.777466 0.955476 0.020 18 750 0.885979 0.863224 0.974316 0.011 19 775 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 0.97237 0.010 21 Documentation 22 23 Cell E2=-LOG10(D2) 24 0.90 23 0.60 0.30 0.30 0.30 0.30 0.30 0.30 0.30 33 0.10 0.00 0.10 0.10 0.10 0.10 0.10 34 0.00 0.00 0.00 0.00 0.00 0.00				0.200	0.630957	0.200872		575	11
14 650 0.564295 0.468281 0.829851 0.081 15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952577 0.021 17 725 0.813694 0.777466 0.955476 0.020 18 750 0.885979 0.863224 0.974316 0.011 19 775 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 0.977237 0.010 21 Documentation 22 23 Cell E2=-LOG10(D2) 24 0.90 0.60 0.30 0.30 30 0.50 0.30 0.30 0.30 31 0.30 0.30 0.30 0.30 0.30 33 0.10 0.00 0.40 0.40 0.40 0.40 33 0.10 0.00 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	-				0.704693	0.278072	0.394600	600	12
15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952577 0.021 17 725 0.813694 0.777466 0.955476 0.020 18 750 0.885979 0.863224 0.974316 0.011 19 775 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 0.977237 0.010 21 Documentation		1		0.118	0.762079	0.363525	0.477018	625	13
15 675 0.655066 0.611062 0.932825 0.030 16 700 0.739180 0.704126 0.952577 0.021 17 725 0.813694 0.777466 0.955476 0.020 18 750 0.885979 0.863224 0.974316 0.011 19 775 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 0.977237 0.010 21 Documentation		1		0.081	0.829851	0.468281	0.564295	650	
17 725 0.813694 0.777466 0.955476 0.020 18 750 0.885979 0.863224 0.974316 0.011 19 775 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 0.977237 0.010 21 Documentation 2 2 2 2 23 Cell D2=C2/B2 2 2 2 2 24 0.90 0.60 2 2 2 2 26 0.80 0.40 3 0.50 3 3 0.10 3 3 0.10 3 3 0.10 3 3 0.10 3 3 0.10 3 3 0.10 3 3 0.10 3 3 1	-	1		0.030	0.932825	0.611062	0.655066	675	
17 725 0.813694 0.777466 0.955476 0.020 18 750 0.885979 0.863224 0.974316 0.011 19 775 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 0.977237 0.010 21 Documentation 2 2 2 2 23 Cell D2=C2/B2 2 2 2 2 24 0.90 0.60 2 2 2 2 26 0.80 0.40 3 0.30 3 0.30 3 0.30 3 0.30 3 0.30 3 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95/16 0.95/16 0.90 0.00 0.00 0.00 0.00 0.95/16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <t< td=""><td></td><td></td><td></td><td>0.021</td><td>0.952577</td><td>0.704126</td><td>0.739180</td><td>700</td><td>16</td></t<>				0.021	0.952577	0.704126	0.739180	700	16
18 750 0.885979 0.863224 0.974316 0.011 19 775 0.945083 0.921446 0.97499 0.011 20 800 1.000000 0.977237 0.977237 0.010 21 Documentation		1		0.020	0.955476	0.777466	0.813694	725	
20 800 1.000000 0.977237 0.977237 0.010 21 Documentation 22 Cell D2=C2/B2 23 Cell E2=-LOG10(D2) 24 0.90 0.60 0.60 0.60 0.60 29 0.60 0.50 0.40 0.30 0.30 30 4 0.20 0.00 0.00 0.00								750	
20 800 1.000000 0.977237 0.977237 0.010 21 Documentation 22 Cell D2=C2/B2 23 Cell E2=-LOG10(D2) 24 0.90 0.60 0.60 0.60 0.60 29 0.60 0.50 0.40 0.30 0.30 30 4 0.20 0.00 0.00 0.00				0.011	0.97499	0.921446	0.945083	775	19
22 Cell D2=C2/B2 23 Cell E2=-LOG10(D2) 24 0.90 25 0.80 26 0.70 27 0.60 29 0.50 30 eq. 0.40 31 0.30 32 eq. 0.20 33 0.10 34 0.00						0.977237		800	
23 Cell E2=-LOG10(D2) 24 0.90 25 0.80 26 0.70 27 0.60 29 0.50 30 que 0.40 31 0.30 32 que 0.20 33 0.10 34 0.00								Documentation	21
24 0.90 25 0.80 26 0.70 0.70 0.60 27 0.60 28 0.50 30 4 31 0.20 33 0.10 34 0.00		1						Cell D2=C2/B2	22
24 0.90 25 0.80 26 0.70 27 0.60 28 0.50 30 0.40 31 0.30 32 0.80 33 0.10 34 0.10 35 0.00		1					1	Cell E2=-LOG10(D2)	23
25 0.80 26 0.70 27 0.60 29 0.50 30 0.40 31 0.30 32 0.40 33 0.30 32 0.40 33 0.30 34 0.10 35 0.00		2			12 - X			-	24
26 0.00 27 0.70 28 0.60 29 0.50 30 0.40 31 0.30 32 0.30 33 0.10 34 0.00		100							
27 0.70 28 0.60 29 0.50 30 0.40 31 0.30 32 0.40 33 0.10 34 0.10 35 0.00		1000							
28 0.60 29 0.50 30 0.40 31 0.30 32 0.30 33 0.10 34 0.00		8.00				1 1			
29 30 0.50 30 4 0.30 31 0.20 33 0.10 34 0.00		1000				$/$ \setminus		0.60 -	
33 0.10 34 0.00		100			1	/		2 0.50 -	
33 0.10 34 0.00		1000			7			0 40 -	
33 0.10 34 0.00		800			1		I	5 0.30	
33 0.10 34 0.00		8			1		/	sq 0.30 -	
34 0.10 35 0.00		800			-		/		
35 0.00		8.00		×				0.10 -	
		-	+ + +	*	T.	<u>,</u>	+++++	0.00	
36 300 400 500 600 700 800		800	00	70	600	500	400	300	36
37									
38 Wavelength, nm		8			th. nm	Waveleng			
39		800			,	mavereng			

Chapter 26

26-1. (a) *Spectrophotometers* use a grating or a prism to provide narrow bands of radiation while *photometers* use filters for this purpose. The advantages of spectrophotometers are greater versatility and the ability to obtain entire spectra. The advantages of photometers are simplicity, ruggedness, higher light throughput and low cost.

(b) A *single-beam spectrophotometer* employs a fixed beam of radiation that irradiates first the solvent and then the analyte solution. In a *double-beam instrument* the solvent and solution are irradiated simultaneously or nearly so. The advantages of the double-beam instruments are freedom from problems arising from fluctuations in the source intensity due to drift in electronic circuits and easier adaptation to automatic spectral recording. The single-beam instrument offers the advantages of simplicity and lower cost.

(c) *Diode-array spectrophotometers* detect the entire spectral range essentially simultaneously and can produce a spectrum in less than a second. *Conventional spectrophotometers* require several minutes to scan the spectrum. Accordingly, diode-array instruments can be used to monitor processes that occur on fast time scales. Their resolution is usually lower than that of a conventional spectrophotometer.

- **26-2.** As a minimum requirement, the radiation emitted by the source of a single-beam instrument must be stable for however long it takes to make the 0% T adjustment, the 100% T adjustment, and the measurement of T for the sample.
- **26-3.** Electrolyte concentration, pH, temperature, nature of solvent, and interfering substances.
- **26-4.** The multiple standard-addition method provides a built-in test for Beer's law adherence (linearity), whereas the single point method assumes adherence to Beer's law.

26-5.
$$A = \varepsilon b c$$

 $c_{\min} = A/\varepsilon b = 0.10/(9.32 \times 10^{3} \times 1.00) = 1.1 \times 10^{-5} M$
 $c_{\max} = A/\varepsilon b = 0.90/(9.32 \times 10^{3} \times 1.00) = 9.7 \times 10^{-5} M$
26-6. $A = -\log(\% T/100\%) = \varepsilon bc$
 $c_{\min} = -\log(\% T/100\%) / \varepsilon b = -\log(85\%/100\%)/(6.17 \times 10^{3} \times 1.00) = 1.1 \times 10^{-5} M$
 $c_{\max} = -\log(\% T/100\%)/\varepsilon b = -\log(7\%/100\%) / (6.17 \times 10^{3} \times 1.00) = 1.9 \times 10^{-4} M$
26-7. $\log \varepsilon = 2.75$ $\varepsilon = 5.6 \times 10^{2}$
 $c_{\min} = A/\varepsilon b = 0.100/(5.6 \times 10^{2} \times 1.50) = 1.2 \times 10^{-4} M$
 $c_{\max} = A/\varepsilon b = 2.000/(5.6 \times 10^{2} \times 1.50) = 2.4 \times 10^{-3} M$
26-8. $\log \varepsilon = 3.812$ $\varepsilon = 6.49 \times 10^{3}$

$$c_{\min} = A/\epsilon b = 0.150/(6.49 \times 10^3 \times 1.25) = 1.85 \times 10^{-5} \text{ M}$$

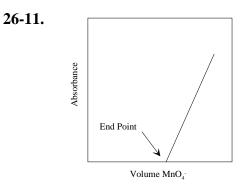
 $c_{\max} = A/\epsilon b = 1.500/(6.49 \times 10^3 \times 1.25) = 1.85 \times 10^{-4} \text{ M}$

26-9. (a)
$$T = 169 \text{ mV}/690 \text{ mV} = 0.245$$

 $A = -\log(0.245) = 0.611$

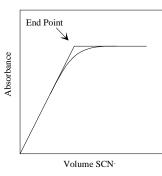
- (b) Since A is proportional to concentration, at $\frac{1}{2}$ concentration A = 0.611/2 = 0.305
- T = antilog(-A) = antilog(-0.305) = 0.495
- (c) Since A is proportional to light path, at twice the light path $A = 2 \times 0.611 = 1.222$

T = antilog(-A) = antilog(-1.222) = 0.060

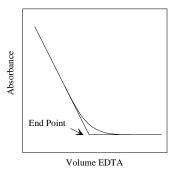

26-10. (a) $\% T = (23.7 / 75.5) \times 100\% = 31.4\%$

- **(b)** $A = -\log(31.4\% / 100\%) = 0.503$
- (c) Since *A* is proportional to concentration, at 1/3 concentration A = 0.503/3 = 0.168

T = antilog(-A) = antilog(-0.168) = 0.679


(d)
$$A = 2 \times 0.503 = 1.006$$

$$T = \operatorname{antilog}(-A) = \operatorname{antilog}(-1.006) = 0.099$$


A green filter should be used because the red permanganate solution absorbs green light.

26-12.

A green filter is used because the red $Fe(SCN)^{2+}$ absorbs green light.

26-13.

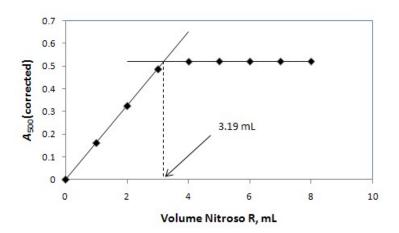
The absorbance should decrease approximately linearly with titrant volume until the end point.

After the end point the absorbance becomes independent of titrant volume.

26-14. The data must be corrected for dilution so

$$A_{\rm corr} = A_{500} \times \frac{10.00 \,\mathrm{mL} + V}{10.00 \,\mathrm{mL}}$$

For 1.00 mL


$$A_{\rm corr} = 0.147 \times \frac{10.00 \,\mathrm{mL} + 1.00 \,\mathrm{mL}}{10.00 \,\mathrm{mL}} = 0.162$$

~ ~

 $A_{\rm corr}$ is calculated for each volume in the same way and the following results are obtained.

Vol, mL	A_{500}	A _{corr}
0	0	0
1.00	0.147	0.162
2.00	0.271	0.325
3.00	0.375	0.488
4.00	0.371	0.519
5.00	0.347	0.521
6.00	0.325	0.520
7.00	0.306	0.520
8.00	0.289	0.520

A plot of these data is shown below.

The point of intersection of the linear portion of the plot can be determined graphically or evaluated by performing least-squares on the linear portions and solving the two linear simultaneous equations. Least-squares analysis gives the following results.

Points 1 to 4	Points 5 to 9
$b_1 = \text{slope} = 1.626 \times 10^{-1}$	$b_2 = 1.300 \times 10^{-4}$
$a_1 = \text{intercept} = 3.000 \times 10^{-4}$	$a_2 = 5.1928 \times 10^{-1}$
$y = a_1 + b_1 x$	$y = a_2 + b_2 x$
$a_2 - a_1$	

$$x = \frac{a_2 - a_1}{b_1 - b_2} = 3.19 \text{ mL}$$

$$\frac{3.19 \text{ mL} \times 2.44 \times 10^{-4} \frac{\text{mmol Nitroso R}}{\text{mL}} \times \frac{1 \text{ mmol Pd(II)}}{2 \text{ mmol Nitroso R}}}{10.00 \text{ mL solution}} = 3.89 \times 10^{-5} \text{ M}$$

26-15. For the unknown alone, we can write Beer's law in the form

 $A_x = \varepsilon b c_x V_x / V_t$ where V_t is the total volume of solution.

For the solution after standard addition

 $A_{\rm s} = \varepsilon b \left(c_x V_x + c_s V_s \right) / V_t$

Dividing the first equation by the second gives

$$\frac{A_x}{A_s} = \frac{c_x V_x}{c_x V_x + c_s V_s}$$

$$A_x c_x V_x + A_x c_s V_s = A_s c_x V_x$$

This equation can be rearranged to give

$$c_x (A_s V_x - A_x V_x) = A_x c_s V_s$$
$$c_x = \frac{A_x c_s V_s}{V_x (A_s - A_x)}$$

We can substitute numerical values to give

$$c_x = \frac{0.398 \times 3.00 \times 5.00}{25.00(0.510 - 0.398)} = 2.132 \text{ ppm Co}$$

$$\frac{2.132 \text{ g Co}}{10^6 \text{ g soln}} \times 500 \text{ g soln} = 1.066 \times 10^{-3} \text{ g Co}$$

percent Co =
$$\frac{1.066 \times 10^{-3} \text{ g Co}}{4.97 \text{ g sample}} \times 100\% = 0.0214\%$$

26-16. Applying the equation we developed in Solution 26-15 we write

$$c_x = \frac{0.231 \times 2.75 \times 5.00}{50.0(0.549 - 0.231)} = 0.200 \text{ ppm Fe}$$

26-17. $A_{365} = 3529 \times 1.00 \times c_{Co} + 3228 \times 1.00 \times c_{Ni}$

$$A_{700} = 428.9 \times 1.00 \times c_{\text{Co}} + 0.00 \times 1.00 \times c_{\text{Ni}}$$

 $c_{\text{Co}} = A_{700} / 428.9$ $c_{\text{Ni}} = (A_{365} - 3529 c_{\text{Co}}) / 3228$

Soln 1

$$c_{\text{Co}} = 0.0235/428.9 = 5.48 \times 10^{-5} \text{ M}$$

 $c_{\text{Ni}} = (0.617 - 3529 \times 5.48 \times 10^{-5})/3228 = 1.31 \times 10^{-4} \text{ M}$

Proceeding in the same way, we obtain,

Soln 2

$$c_{\rm Co} = 1.66 \times 10^{-4} \,\mathrm{M}$$
 $c_{\rm Ni} = 5.19 \times 10^{-5} \,\mathrm{M}$

Soln 3

$$c_{\rm Co} = 2.20 \times 10^{-4} \,\mathrm{M}$$
 $c_{\rm Ni} = 4.41 \times 10^{-5} \,\mathrm{M}$

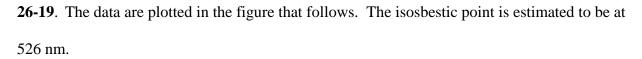
Soln 4

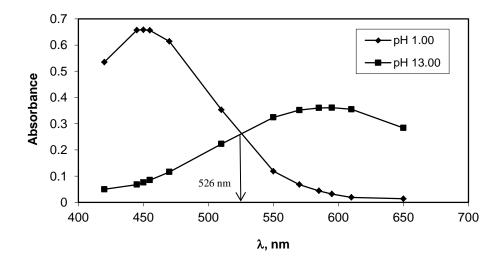
 $c_{\rm Co} = 3.43 \times 10^{-5} \,{\rm M}$ $c_{\rm Ni} = 1.46 \times 10^{-4} \,{\rm M}$

Soln 5

 $c_{\rm Co} = 1.26 \times 10^{-4} \,{\rm M}$ $c_{\rm Ni} = 7.46 \times 10^{-5} \,{\rm M}$

26-18.


$$A_{510} = 0.446 = 36400 \times 1.00 \times c_{Co} + 5520 \times 1.00 \times c_{Ni}$$


$$A_{656} = 0.326 = 1240 \times 1.00 \times c_{Co} + 17500 \times 1.00 \times c_{Ni}$$

$$c_{Co} = 9.530 \times 10^{-6} \text{ M} \qquad c_{Ni} = 1.795 \times 10^{-5} \text{ M}$$

$$c_{Co} = \frac{50.0 \text{ mL} \times 9.530 \times 10^{-6} \frac{\text{mmol}}{\text{mL}} \times \frac{50.0 \text{ mL}}{25.0 \text{ mL}} \times \frac{0.05893 \text{ g Co}}{\text{mmol}}}{0.425 \text{ g}} \times 10^{6} \text{ ppm} = 132 \text{ ppm}$$

$$c_{Ni} = \frac{50.0 \text{ mL} \times 1.795 \times 10^{-5} \frac{\text{mmol}}{\text{mL}} \times \frac{50.0 \text{ mL}}{25.0 \text{ mL}} \times \frac{0.05869 \text{ g Ni}}{\text{mmol}}}{0.425 \text{ g}} \times 10^{6} \text{ ppm} = 248 \text{ ppm}$$

26-20.
$$\alpha_0 = \frac{[\mathrm{H}_3\mathrm{O}^+]}{[\mathrm{H}_3\mathrm{O}^+] + K_{\mathrm{HIn}}} \qquad \alpha_1 = 1 - \alpha_0$$
$$A_{450} = \varepsilon_{\mathrm{HIn}} \times 1.00 \times [\mathrm{HIn}] + \varepsilon_{\mathrm{In}} \times 1.00 \times [\mathrm{In}^-]$$
$$= \varepsilon_{\mathrm{HIn}} \alpha_0 c_{\mathrm{In}} + \varepsilon_{\mathrm{In}} \alpha_1 c_{\mathrm{In}}$$
$$= (\varepsilon_{\mathrm{HIn}} \alpha_0 + \varepsilon_{\mathrm{In}} \alpha_1) c_{\mathrm{In}}$$

where c_{In} is the analytical concentration of the indicator ($c_{\text{In}} = [\text{HIn}] + [\text{In}^-]$). We may assume at pH 1.00 all of the indicator is present as HIn; at pH 13.0 it is all

present as In⁻. Therefore, from the data in Problem 26-19 we may write

$$\varepsilon_{\rm HIn} = \frac{A_{450}}{bc_{\rm HIn}} = \frac{0.658}{1.00 \times 8.00 \times 10^{-5}} = 8.22 \times 10^3 \,\mathrm{L}\,\mathrm{mol}^{-1}\,\mathrm{cm}^{-1}$$
$$\varepsilon_{\rm In} = \frac{A_{450}}{bc_{\rm In}} = \frac{0.076}{1.00 \times 8.00 \times 10^{-5}} = 9.5 \times 10^2 \,\mathrm{L}\,\mathrm{mol}^{-1}\,\mathrm{cm}^{-1}$$

(a) At pH = 4.92,
$$[H_3O^+] = 1.20 \times 10^{-5} \text{ M}$$

$$\alpha_0 = \frac{1.20 \times 10^{-5}}{1.20 \times 10^{-5} + 4.80 \times 10^{-6}} = 0.714$$

$$\alpha_1 = 1.000 - 0.714 = 0.286$$

 $A_{450} = (8.22 \times 10^{3} \times 0.714 + 9.5 \times 10^{2} \times 0.286) \times 8.00 \times 10^{-5} = 0.492$

	pН	$[\mathbf{H}_{3}\mathbf{O}^{+}]$	$lpha_0$	$lpha_1$	A_{450}
(a)	4.92	1.20×10^{-5}	0.714	0.286	0.492
(b)	5.46	3.47×10^{-6}	0.419	0.581	0.320
(c)	5.93	1.18×10^{-6}	0.197	0.803	0.190
(d)	6.16	6.92×10^{-7}	0.126	0.874	0.149

26-21. The approach is identical to that of Solution 26-20. At 595 nm and

at pH = 1.00,
$$\varepsilon_{\text{HIn}} = \frac{A_{595}}{bc_{\text{HIn}}} = \frac{0.032}{1.00 \times 8.00 \times 10^{-5}} = 4.0 \times 10^2 \text{ L mol}^{-1} \text{ cm}^{-1}$$

at pH = 13.00,
$$\varepsilon_{\text{In}} = \frac{A_{595}}{bc_{\text{In}}} = \frac{0.361}{1.00 \times 8.00 \times 10^{-5}} = 4.51 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1}$$

(a) At pH = 5.30 and with 1.00-cm cells, $[H_3O^+] = 5.01 \times 10^{-6}$ M and

$$\alpha_{0} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]}{[\mathrm{H}_{3}\mathrm{O}^{+}] + K_{\mathrm{HIn}}} = \frac{5.01 \times 10^{-6}}{5.01 \times 10^{-6} + 4.80 \times 10^{-6}} = 0.511$$
$$\alpha_{1} = 1 - \alpha_{0} = 0.489$$
$$A_{595} = (\varepsilon_{\mathrm{HIn}}\alpha_{0} + \varepsilon_{\mathrm{In}}\alpha_{1})c_{\mathrm{In}}$$

$$A_{595} = (4.0 \times 10^2 \times 0.511 + 4.51 \times 10^3 \times 0.489) \times 1.25 \times 10^{-4} = 0.301$$

Similarly for parts (b) and (c)

	pН	$[\mathbf{H}_{3}\mathbf{O}^{+}]$	$lpha_0$	$lpha_1$	A_{595}
(a)	5.30	5.01×10^{-6}	0.511	0.489	0.301
(b)	5.70	2.00×10^{-6}	0.294	0.706	0.413
(c)	6.10	7.94×10^{-7}	0.142	0.858	0.491

26-22. In these solutions the concentrations of the two absorbers HIn and In^- must be determined

by the analysis of mixtures, so

 $A_{450} = \varepsilon'_{\rm HIn} b[{\rm HIn}] + \varepsilon'_{\rm In} b[{\rm In}^{-}]$

$$A_{595} = \varepsilon''_{\text{HIn}} b[\text{HIn}] + \varepsilon''_{\text{In}} b[\text{In}^{-}]$$

From the solutions to 26-20 and 26-21

$$\varepsilon'_{\text{HIn}} = 8.22 \times 10^3 \quad \varepsilon'_{\text{In}} = 9.5 \times 10^2 \quad \varepsilon''_{\text{HIn}} = 4.0 \times 10^2 \quad \varepsilon''_{\text{In}} = 4.51 \times 10^3$$

Thus, $A_{450} = 0.344 = (8.22 \times 10^3)$ [HIn] + (9.5×10^2) [In⁻]

$$A_{595} = 0.310 = (4.0 \times 10^2)$$
[HIn] + (4.51×10^3) [In⁻]

Solving these equations gives

$$[HIn] = 3.42 \times 10^{-5} \text{ M}$$
 and $[In^{-}] = 6.57 \times 10^{-5} \text{ M}$

Chapter 26

$$K_{\text{HIn}} = \frac{[\text{H}_{3}\text{O}^{+}][\text{In}^{-}]}{[\text{HIn}]}$$
$$[\text{H}_{3}\text{O}^{+}] = K_{\text{HIn}} \frac{[\text{HIn}]}{[\text{In}^{-}]} = \frac{(4.80 \times 10^{-6})(3.42 \times 10^{-5})}{6.57 \times 10^{-5}} = 2.50 \times 10^{-6} \text{ M}$$
$$\text{pH} = -\log[\text{H}_{3}\text{O}^{+}] = -\log(2.50 \times 10^{-6}) = 5.60$$

The results for all solutions are shown in the table that follows.

Solution	[HIn]	[In ⁻]	pН	
Α	3.42×10^{-5}	6.57×10^{-5}	5.60	
В	5.69×10^{-5}	4.19×10^{-5}	5.19	
С	$7.70 imes 10^{-5}$	2.33×10^{-5}	4.80	
D	$1.72 imes 10^{-5}$	$8.27 imes 10^{-5}$	6.00	

26-23. (a) In this case,

	$[HIn]/[In^-] = 3.00$	and	$([HIn] + [In^{-}]) = 7.00 \times 10^{-5} \text{ M}$
SO	$[HIn] = 5.25 \times 10^{-5} M$	and	$[In^{-}] = 1.75 \times 10^{-5} M$

For each wavelength λ

 $A_{\lambda} = \varepsilon_{\text{HIn}} b[\text{HIn}] + \varepsilon_{\text{In}} b[\text{In}^{-}]$

At $\lambda = 595$ nm, for example,

$$\varepsilon_{\text{HIn}} = 4.0 \times 10^2$$
 and $\varepsilon_{\text{In}} = 4.51 \times 10^3$ (see solution 26-21)
 $A_{595} = 4.0 \times 10^2 \times 1.00 \times 5.25 \times 10^{-5} + 4.51 \times 10^3 \times 1.00 \times 1.75 \times 10^{-5} = 0.0999$

Results for the other wavelengths are tabulated and plotted as follows after part (c)

(b) Here, $[HIn] = [In^{-}] = 3.50 \times 10^{-5} \text{ M}$

Absorbance data are computed in the same way as in part (a), tabulated and plotted after part (c).

Chapter 26

(c) Here,
$$[HIn] = 1.75 \times 10^{-5} \text{ M}$$
 and $[In^{-}] = 5.25 \times 10^{-5} \text{ M}$

Absorbance data are computed in the same way as in part (a), tabulated and plotted.

λ, nm	8 _{HIn}	EIn	A (3:1)	A (1:1)	A (1:3)
420	6688	625	0.362	0.256	0.150
445	8212	850	0.446	0.317	0.188
450	8225	950	0.448	0.321	0.194
455	8200	1062	0.449	0.324	0.199
470	7675	1450	0.428	0.319	0.210
510	4412	2788	0.280	0.252	0.224
550	1488	4050	0.149	0.194	0.239
570	850	4400	0.122	0.184	0.246
585	550	4500	0.108	0.177	0.244
595	400	4512	0.100	0.171	0.237
610	238	4438	0.090	0.164	0.189
650	175	3550	0.071	0.130	0.216

11

26-24.

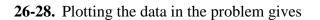
	A	В	С	D	E	F	G	Н
1	λ, nm	A(P)	ε(P), M ⁻¹ cm ⁻¹	AQ)	ε(Q), M ⁻¹ cm ⁻¹		A(P+Q)	
2	400	0.078			2.11E+03		7.35E-01	
3	420	0.087	1.02E+03	0.592	2.50E+03		8.66E-01	
4	440	0.096	1.12E+03	0.599	2.53E+03		8.82E-01	
5	460	0.102	1.19E+03	0.590	2.49E+03		8.75E-01	
6	480	0.106		0.564	2.38E+03		8.42E-01	
7	500	0.110	1.29E+03	0.515	2.17E+03		7.79E-01	
8	520	0.113	1.32E+03	0.433	1.83E+03		6.70E-01	
9	540	0.116	1.36E+03	0.343	1.45E+03		5.51E-01	
10	580	0.170	1.99E+03	0.170	7.17E+02		3.56E-01	
11	600	0.264	3.09E+03	0.100	4.22E+02		3.31E-01	
12	620	0.326	3.81E+03	0.055	2.32E+02		3.16E-01	
13	640	0.359	4.20E+03	0.030	1.27E+02		3.07E-01	
14	660	0.373	4.36E+03	0.030	1.27E+02		3.17E-01	
15	680	0.370	4.33E+03	0.035	1.48E+02		3.22E-01	
16	700	0.346	4.05E+03	0.063	2.66E+02		3.42E-01	
17								
18	[P]	8.55E-05	M			[P]	6.34E-05	M
19	[Q]	2.37E-04	M			[Q]	3.21E-04	M
20		1.000						
21		0.900 -					· · · · · ·	
22		0.800 -	The second					
23		0.700	•	~				
24	Absorbance	0.600 -		~				
25	- Pa	0.500 -		~				
26	pso	0.400 -				0251	_	
27	4	0.300 -						
28		0.200 -					-	
29		0.100 -					1.200	
30		0.000 +				1		
31		400	450 500	550	600	650	700	
32				Â, nr	n			
33								
34								
	-							
35								
36	[P]	3.86E-05						
36 37	[P] [Q]	5.37E-04	M					
36 37 38	[P] [Q] A	5.37E-04 1.401	M					
36 37 38 39	[P] [Q] A Part (c)	5.37E-04 1.401	M					
36 37 38 39 40	[P] [Q] A Part (c) [P]	5.37E-04 1.401 1.89E-04	M					
36 37 38 39 40 41	[P] [Q] A Part (c) [P] [Q]	5.37E-04 1.401 1.89E-04 6.84E-04	M					
36 37 38 39 40 41 42	[P] [Q] A Part (c) [P] [Q] A	5.37E-04 1.401 1.89E-04 6.84E-04 0.879	M					
36 37 38 39 40 41 42 43	[P] [Q] A Part (c) [P] [Q] A Docume	5.37E-04 1.401 1.89E-04 6.84E-04 0.879 entation	M G2=C2*\$G\$18		519			
36 37 38 39 40 41 42 43 44	[P] [Q] A Part (c) [P] [Q] A	5.37E-04 1.401 1.89E-04 6.84E-04 0.879 entation iB\$18	M	B37*E4				

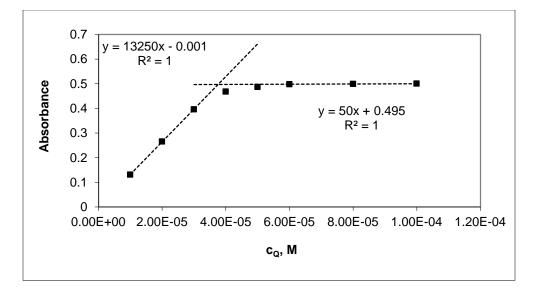
26-25. $A_{440} = \varepsilon'_{P}bc_{P} + \varepsilon'_{Q}bc_{Q} \qquad b = 1.00 \text{ cm}$ $A_{620} = \varepsilon''_{P}bc_{P} + \varepsilon''_{Q}bc_{Q}$ $c_{P} = \frac{A_{440} - \varepsilon'_{Q}c_{Q}}{\varepsilon'_{P}}$

Substituting for $c_{\rm P}$ in the second equation gives

$$A_{620} = \varepsilon_{\rm P}'' \left[\frac{A_{440} - \varepsilon_{\rm Q}' c_{\rm Q}}{\varepsilon_{\rm P}'} \right] + \varepsilon_{\rm Q}'' c_{\rm Q}$$

We then solve for c_Q and c_P as in the spreadsheet

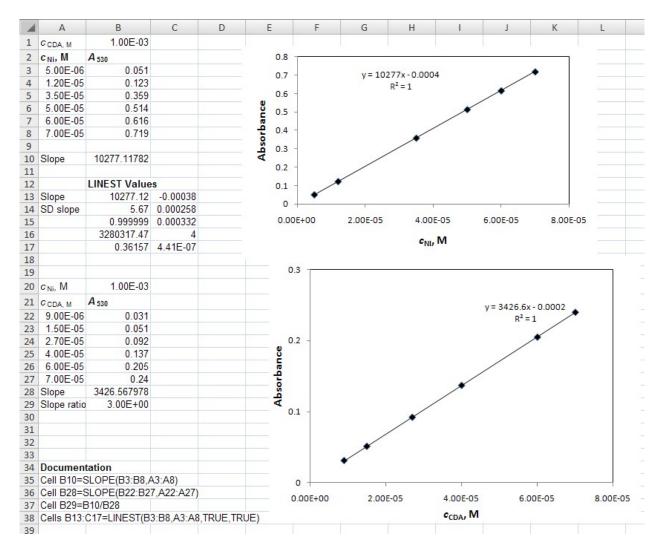

-	A	В	С	D	E
1		ε(P), M ⁻¹ cm-1	ε(Q), M ⁻¹ cm-1		
2	440	1.123E+03	2.527E+03		
3	620	3.813E+03	2.321E+02		
4					
5		A 440	A 620	[P], M	[Q], M
6	(a)	0.357	0.803	2.076E-04	4.901E-05
7	(b)	0.830	0.448	1.002E-04	2.839E-04
8	(C)	0.248	0.333	8.362E-05	6.098E-05
9	(d)	0.910	0.338	6.858E-05	3.296E-04
10	(e)	0.480	0.825	2.105E-04	9.640E-05
11	(f)	0.194	0.315	8.011E-05	4.117E-05
12	Docume	entation			
13	B2:C3 F	rom Problem 26			
14	D6=(B6-	\$C\$2*C6/\$C\$3	3)/(\$B\$2-\$C\$2*	\$B\$3/\$C\$3)
15	E6=(B6-	\$B\$2*D6)/\$C\$	2		


26-26.

	A	В	С	D	E	F	G	Н	1
1	Determination of Fe(II)								
2	Part (a)								
3	Conc. Fe(II), ppm	A 510	1.	8					1
4	4.00	0.160	1.	6 -					
5	10.00	0.390	1.	4 -					
6	16.00	0.630	1.	2 -					
7	24.00	0.950		· · · · · · · · · · · · · · · · · · ·				/	
8	32.00	1.260	o 1.	0 -			*		
9	40.00	1.580	◀ 0.	8 -					
10	Regression		0.	6 -		*			
11		0.03949	0.	4	~				
	Intercept	-0.001008			-				
	Part (b)		0.	2 -	•				
14	A 510 = 0.03949 - 0.001008	3	0.	0	ा ा	1	1	Г Г	12- 21
	Part (c)			0.00	5.00 10.00	15.00	20.00 25	.00 30.00	35.00 40.00
16	Error Analysis				51				
17	s_r (standard error in y)	0.0033			F	e(II) Con	centration	n, ppm	
18	N	6							
19	Sxx	926							
20	Σx_i	126							
21	Σx_i^2	3572							
22	Sm	1.100E-04							
23	Sb	2.7E-03							
24	Spreadsheet Documenta	ation							
25	Cell B11=SLOPE(B4:B9,A	A4:A9)							
	Cell B12=INTERCEPT(B4)								
27	Cell B17=STEYX(B4:B9,A	4:A9)							
	Cell B18=COUNT(B4:B9)								
	Cell B19=B18*VARP(A4:A	49)							
	Cell B20=SUM(A4:A9)								
	Cell B21=A4^2+A5^2+A6^		9^2						
	Cell B22=SQRT(B17^2/B1								
33	Cell B23=B17*SQRT(1/(B	18-(B20^2/B21)))							

26-27.

1	A	В	С	D	E	F
1	Determination of	Fe(II)				
2	Conc., ppm	A 510				
3	4.00	0.160	See Problem	26-26 for the cali	bration curve	
4	10.00	0.390	and regressio	n equation		
5	16.00	0.630	Second Second Second Second	and the second second		
6	24.00	0.950				
7	32.00	1.260				
8	40.00	1.580				
9						
10		Aunk	Conc. Fe, ppm	% RSD, 1 result	% RSD, 3 results	
11	(a)	0.143	3.65	2.8	2.1	
12	(b)	0.675	17.1	0.54	0.36	
13	(c)	0.068	1.7	6.1	4.6	
14	(d)	1.009	25.6	0.36	0.24	
15	(e)	1.512	38.3	0.27	0.20	
16	(f)	0.546	13.9	0.68	0.46	
17	~					
18	Slope	0.03949				
19	Intercept	-0.001008				
20	s_r (std error in y)	0.0033				
21	N	6				
22	Sxx	926				
23	y bar (avg. A)	0.828				
24	M for single	1				
	M for replicates	3				
26	Spreadsheet Docu	umentation				
27	Cell B18=SLOPE(E	3:B8,A3:A8)				
28	Cell B19=INTERCE	PT(B3:B8,A3:A8)				
	Cell B20=STEYX(B					
30	Cell B21=COUNT(B3:B8)					
31	Cell B22=B21*VARP(A3:A8)					
	Cell B23=AVERAG	E(B3:B8)				
	Cell B24=1 (entry)					
	Cell B25=3 (entry)	-				
	Cell C11=(B11-\$B\$					
	Cell D11=((\$B\$20/\$					
37	Cell E11=((\$B\$20/\$	B\$18*SQRT(1/\$B	\$25+1/\$B\$21+(8	B11-\$B\$23)^2/(\$B\$	518^2*\$B\$22)))/C11)	*100



Solving for the crossing point by using the 2 best fit equations gives, $c_Q = 3.76 \times 10^{-5}$ M.

(a) Since $c_{Al} = 3.7 \times 10^{-5}$ M and no more complex forms after $c_Q = 3.76 \times 10^{-5}$ M, the complex must be 1:1, or AlQ²⁺.

(b)
$$\varepsilon$$
 for AlQ²⁺ = (0.500)/(3.7 × 10⁻⁵) = 1.4 × 10⁴ L mol⁻¹ cm⁻¹

26-29.

(a) Based on the slope ratio, the complex ratio is 1:3 and the formula is $Ni(CDA)_3^{2+}$

(b) The molar absorptivity is obtained directly from the LINEST values (Slope and SD slope) for the first plot. Thus, $\varepsilon = 10277 \pm 6$

	A	В	С	D	E	F	G	Н	1	J	К	L	M
1	Solution	VM	VL	$V_{\rm M}/(V_{\rm M}+V_{\rm L})$	A 390								
2	0	10.00	0.00	1.00	0.000		0.900		/				
3	1	9.00	1.00	0.90	0.174		0.800 -		/				
4	2	8.00	2.00	0.80	0.353		V	= 1.789x + 0.0	004 /				
5	3	7.00	3.00	0.70	0.530		0.700 -		/*	•	y = -1.76	9x + 1.7679	11
6	4	6.00	4.00	0.60	0.672		0.600 -		/				
7	5	5.00	5.00	0.50	0.723	9	0.500 -	1	*	۲	<		
8	6	4.00	6.00	0.40	0.673	939	0.500 -	/			/		
9	7	3.00	7.00	0.30	0.537			*			*		
10	8	2.00	8.00	0.20	0.358		0.300 -	/					
11	9	1.00	9.00	0.10	0.180		0.200 -				<u> </u>		
12	10	0.00	10.00	0.00	0.000		0.100 -	/			~		
13							/					1	
	Slope 1	1.789					0.000 ¥	1	'				
	Intercept 1	0.0004					0.00	0.20	0.40	0.60	0.80	1.00	1.20
	Slope 2	-1.769							V	M/(VM+VL	1		
17	Intercept 2	1.7679							v	MILVMTVL)		
18	1.789x+1.	769x = 1.76	59-0.0004										
19	X	0.497											
20	C Cd2+	1.25E-04	M										
21	CR	1.25E-04	M										
22	b	1.00	cm	1									
23													
24		e values											
25	Soln1	13920.00		1									
	Soln2	14120.00		1									
		14133.33											
		14320.00											
29	Soln8	14320.00											
30	Soln9	14400.00											
31													
32	Average	14202											
	SD	162											

- (a) The two lines intercept at $V_M / (V_M + V_L) = 0.5$ (Cell B19). The Cd²⁺ to R ratio is 1:1.
- (b) The molar absorptivities can be obtained from solutions 1-3 where the reagent is limiting and solutions 7-9 where the metal is limiting. Rounding the results in Cells B32 and B33 the average $\varepsilon = 1400 \pm 200 \text{ L mol}^{-1} \text{ cm}^{-1}$
- (c) The absorbance at the volume ratio where the lines intersect is A = 0.723. Thus,

 $[CdR] = (0.723)/(14202) = 5.09 \times 10^{-5} M$

$$[Cd^{2+}] = [(5.00 \text{ mL})(1.25 \times 10^{-4} \text{ mmol/mL}) - (10.00 \text{ mL})(5.09 \times 10^{-5} \text{ mmol/mL})]/(10.00 \text{ mL})$$
$$= 1.16 \times 10^{-5} \text{ M}$$

$$[\mathbf{R}] = [\mathbf{Cd}^{2+}] = 1.16 \times 10^{-5} \text{ M}$$
$$K_{\rm f} = \frac{[\mathbf{Cd}\mathbf{R}]}{[\mathbf{Cd}^{2+}][\mathbf{R}]} = \frac{\left(5.09 \times 10^{-5}\right)}{\left(1.16 \times 10^{-5}\right)^2} = 3.78 \times 10^5$$

26-31.

1	A	В	C D	E	F	G	Н	1	J	
1	V _{Pd(II)}	10.00	_			5 25			210	
2	Cs	1.00E-05		0.9						
3				0.8	_				+	
4	Part (a)			0.7)	= 0.025 x + 0		-		
5	Vol. standard, mL	A 660	a	0.6		R ² = 0.999	-			
6	0.00	0.209	ĉ	0.5	_		-			
7	5.00	0.329	Absorbance	0.4						
8	10.00	0.455	0	0.4						
9	15.00	0.581	P							
10	20.00	0.707		0.2	1					
11	25.00	0.833		0.1	-					
12	Part (b)						· ·			
13	Slope	0.025029	-10.	00 -5.00	0.00 5.	00 10.00	15.00	20.00	25.00	30.00
14	Intercept	0.206143								
15	Part (c)				Vol. std. soln., mL					
16	SD m	9.90E-05								
17	SD b	0.001498		LINEST Va	alues					
18	Part (d)		m	0.025029	0.206143	b				
19	CPd(II), M	8.2363E-06	SD m	9.9E-05	0.001498	SD b				
20	Part (e)			0.999937	0.00207					
21	SD C Pd(II)	6.81502E-08		63948	4					
22				0.274063	1.71E-05					
23	Spreadsheet Doc	umentation								
24	Cell B13=SLOPE(E	B6:B11,A6:A11)								
25	Cell B14=INTERCE	EPT(B6:B11,A6:A	A11)							
26	Cells E18:F22=LIN	EST(B6:B11,A6:	A11, TRUE, TRU	E)						
27	Cell B16=E19									
28										
29	Cell B19=B14*B2/(
	Cell B21=B19*SQF	RT((B16/B13)^2+								

Chapter 26

26-32.

	A	В	С	D	E	F	G	Н	1	J
1	V _{Hg(II)} , mL	5.00								
2	Cs, M	5.00E-06		[1.2	T			
3									/	
4	Part (a)					1		/		
5	Vol. Std., mL	A 255				0.8		1		
6	0.00	0.582	Ce			0.8		•		
7	2.00	0.689	Absorbance			0.6				
8	4.00	0.767	LO LO			0.0	•			
9	6.00	0.869	Abs			0.4	_			
10	8.00	1.009	1			/		y = 0.0541	x+0.57	
11	10.00	1.127			/	0.2	-	R ² = 0.9		
12	Part (b)									
13	Slope	0.0541		1		0				
14	Intercept	0.57	.15	.00 -	10.00 -9	5.00 O	.00	5.00	10.00	15.00
15	Part (c)				10.00				10.00	15.00
16	SD m	0.002380576				vol. Sta.	Soln., ml	-	2	1
	SD b	0.014415105			LINEST Va					
18	Part (d)			m	0.0541	0.57	b			
19	с _{Hg(II)} , M	1.0536E-05		SD m	0.002381	0.014415	SD b			
20	Part (e)				0.992314	0.019917				
21	SD C Hg(II)	5.34734E-07			516.4525	4				
22					0.204877	0.001587				
23	Spreadsheet	Documentatio	on							
24		PE(B6:B11,A6								
25		ERCEPT(B6:B1								
26		=LINEST(B6:B	11,A6:A11	,TRUE,TR	UE)					
27	Cell B16=E19									
28	Cell B19=B14	*B2/(B13*B1)								
		*SQRT((B16/B								

26-33. From Figure 26F-2, the frequencies of the band maxima are estimated to be:

- (1) 740 cm^{-1} C-Cl stretch
- (2) 1270 cm^{-1} CH₂ wagging
- (3) 2900 cm^{-1} Aliphatic C-H stretch.

Chapter 27

27-1. (a) *Fluorescence* is a photoluminescence process in which atoms or molecules are excited by absorption of electromagnetic radiation and then relax to the ground state, giving up their excess energy as photons. The transition is from the lowest lying excited singlet state to the ground singlet state.

(b) *Vibrational relaxation* occurs when excited species collide with molecules, such as the solvent, and in doing so lose energy without emission of electromagnetic radiation. The energy of the excited species is decreased by an amount equal to the quantity of vibrational energy transferred.

(c) *Internal conversion* is the nonradiative relaxation of a molecule from a low energy vibrational level of an excited electronic state to a high energy vibrational level of a lower electronic state.

(d) *Phosphorescence* is a photoluminescence process in which atoms or molecules are excited by absorption of electromagnetic radiation. An excited triplet state is produced and the transition is from the excited triplet state to the ground singlet state.

(e) The *Stokes shift* is the difference in wavelength between the radiation used to excite fluorescence and the wavelength of the emitted radiation.

(f) The *quantum yield* of fluorescence is the ratio of the number of fluorescing molecules to the total number of excited molecules.

(g) An *inner filter effect* is a result of excessive absorption of the incident beam (primary absorption) or absorption of the emitted beam (secondary absorption).

(h) An *excitation spectrum* is a plot of fluorescence or phosphorescence emission intensity as a function of the excitation wavelength.

- **27-2.** For spectrofluorometry, the analytical signal, *F*, is given by F = 2.3K' εbcP_0 . The magnitude of *F*, and thus sensitivity, can be enhanced by increasing the source intensity, P_0 , or the transducer sensitivity. For spectrophotometry, the analytical *A* is given by $A = P/P_0$. Increasing P_0 or the detector's response to P_0 is accompanied by a corresponding increase in *P*. Thus, the ratio does not change nor does the analytical signal. Consequently, no improvement in sensitivity accompanies such changes.
- 27-3. (a) Fluorescein because of its greater structural rigidity due to the bridging -O- groups.
 (b) *o*,*o*'-dihdroxyazobenzene because the -N=N- group provides rigidity that is absent in the -NH-NH- group.
- **27-4.** Compounds that fluoresce have structures that slow the rate of nonradiative relaxation to the point where there is time for fluorescence to occur. Compounds that do not fluoresce have structures that permit rapid relaxation by nonradiative processes.
- **27-5**. Organic compounds containing aromatic rings often exhibit fluorescence. Rigid molecules or multiple ring systems tend to have large quantum yields of fluorescence while flexible molecules generally have lower quantum yields.
- **27-6.** Excitation of fluorescence usually involves transfer of an electron to a high vibrational state of an upper electronic state. Relaxation to a lower vibrational state of this electronic state goes on much more rapidly than fluorescence relaxation. Fluorescence almost always occurs from the lowest vibrational level of the excited electronic state to various vibrational levels of the ground electronic state. Such transitions involve less energy than the excitation energy. Therefore, the emitted radiation is longer in wavelength than the excitation wavelength.
 - 2

- 27-7. See Figure 27-8. A filter fluorometer usually consists of a light source, a filter for selecting the excitation wavelength, a sample container, an emission filter and a transducer/readout device. A spectrofluorometer has two monochromators that are the wavelength selectors.
- **27-8**. Most fluorescence instruments are double beam to compensate for fluctuations in the analytical signal due to variations in source intensity.
- **27-9**. Fluorometers are more sensitive because filters allow more excitation radiation to reach the sample and more emitted radiation to reach the transducer. Thus, a fluorometer can provide lower limits of detection than a spectrofluorometer. In addition, fluorometers are substantially less expensive and more rugged than spectrofluorometer, making them particularly well suited for routine quantitation and remote analysis applications.

27-10.

	A	B	С	D	E	F	G	Н	1	J
1	Determination of NA	ADH		20						
2	Part (a)			20						
3	Conc., µM	Fluorescence								
4	0.100	2.24		16	-	y = 22	2.346x + 0.00	04	•	
5	0.200	4.52		e		F	R ² = 0.9991	*		
6	0.300	6.63		5 12	-			/		
7	0.400	9.01		SSC			/	•		
8	0.500	10.94		5 8			*			
9	0.600	13.71		12 Binorescence 8			<			
10	0.700	15.49		1000		-				
11	0.800	17.91		4		/				
12	unknown	11.34			•					
13	Part (b)			0	-	1	1	1	1	
	Regression			0.	000	0.200	0.400	0.600	0.800	1.000
	Slope	22.346								
	Intercept	4.E-04					Concent	ration, μM		
	Conc. Unknown	0.51								
	Parts (c), (d), (e), (f)					nentation				
19	Error Analysis			Cell B15=S	SLOPE(B4	:B11,A4:A	11)			
20	s_r (std. error in y)	0.175		Cell B16=I	NTERCEP	T(B4:B11,A	4:A11)			
21	N	8		Cell B17=(B12-B16)/	B15				
22	S _{xx}	0.42		Cell B20=S	STEYX(B4	B11, A4:A	11)			
23	Sm	0.270		Cell B21=0	COUNT(B4	:B11)				
24	y bar	10.056		Cell B22=E	321*VARP	(A4:A11)				
25	M for part (e)	1		Cell B23=S	SQRT(B20	^2/B22)				
26	M for part (f)	3		Cell B24=/	AVERAGE	(B4:B11)				
27	Std. dev.of c (part (e)	0.008				part (e) (ent	ry)			
28	RSD for c (part (e)	0.016		Cell B26=r	eplicates	part (f) (entr	y)			
29	Std. dev. of c (part(f)	0.005		Cell B27=E	320/B15*S	QRT(1/B25	+1/B21+((B	12-B24)^2)/((E	B15^2)*B22))
30	RSD for c (part (f)	0.011		Cell B28=E	B27/B17					
31				Cell B29=E	320/B15*S	QRT(1/B26	+1/B21+((B	12-B24)^2)/((E	B15^2)*B22))
32				Cell B30=E	B29/B17					

27-11.

	A	В	С	D	E	F	G	Н	1	J
1	V (unk Zn ²⁺)	5.00				25			6	
2	cs, ppm	1.10								
3						20 -			*	
4	Part (a)				Ø	20			/	
5	Vol. Std, mL	Fluorescend	e		Fluorescence	1.000		-		
6	0.00	6.12			ce	15 -		/		
7	4.00	11.16			ē		~			
8	8.00	15.68			9	10 -	-	1 202		
9	12.00	20.64			Ē			y = 1.202x $R^2 = 0.9$		
10						-		R = 0.5	9990	
11	Part (b)									
12		1.202								
13		6.188		-	- F	0	1		1	
14	Part (c)		-1	10.00	-5.00	0.00	5.0	0	10.00	15.00
15	Sr	0.154402								
16	SD m	0.017263				Volume S	standard,	mL		
17	SD b	0.129182			Ĩ.					
18	Part (d)			LINEST	Values					
19	c unk, ppm	1.1326		m	1.202	6.188	b			
20	Part (e)			SD m	0.017263	0.129182	SD b			
21	SD unk, ppm	0.0287		R ²	0.999588	0.154402	Sr			
22				F	4848.336	2	DOF			
23				SSregr	115.5843	0.04768	SSresid			
24	Spreadsheet [Documentat	ion	1.1.1						
	Cell B12=SLOF									
26	Cell B13=INTER	RCEPT(B6:B	9,A6:A9)							
27	Cells E19:F23=	LINEST(B6:	B9,A6:A9	TRUE, TR	UE)					
28	Cell B15=F21									
29	Cell B16=E20									
	Cell B17=F20									
	Cell B19=B13*									
32	Cell B21=B19*	SQRT((B16/E	312)^2+(E	817/B13)^2	2)					

27-12.
$$c_Q = 100 \text{ ppm} \times 288/180 = 160 \text{ ppm}$$

160 ppm ×
$$\frac{100 \text{ mL}}{15 \text{ mL}}$$
 × $\frac{1 \text{ mg quinine}}{1 \times 10^3 \text{ g solution}}$ × $\frac{1 \text{ g solution}}{1 \text{ mL}}$ × 500 mL = 533 mg quinine

27-13.
$$c_{\rm Q} = \frac{A_{\rm l}c_{\rm s}V_{\rm s}}{(A_{\rm 2} - A_{\rm l})V_{\rm Q}} = \frac{(540)(50 \text{ ppm})(10.0 \text{ mL})}{(600 - 540)(20.0 \text{ mL})} = 225 \text{ ppm}$$

225 ppm × $\frac{1 \text{ mg quinine}}{1 \times 10^3 \text{ g solution}}$ × $\frac{1 \text{ g solution}}{1 \text{ mL}}$ × 1000 mL = 225 mg quinine

 $\frac{0.225 \text{ g Q}}{2.196 \text{ g tablet}} \times 10^6 = 1.02 \times 10^5 \text{ ppm}$

Chapter 28

- **28-1.** In *atomic emission spectroscopy* the radiation source is the sample itself. The energy for excitation of analyte atoms is supplied by a plasma, a flame, an oven, or an electric arc or spark. The signal is the measured intensity of the source at the wavelength of interest. In *atomic absorption spectroscopy* the radiation source is usually a line source such as a hollow cathode lamp, and the signal is the absorbance. The latter is calculated from the radiant power of the source and the resulting power after the radiation has passed through the atomized sample. In *atomic fluorescence spectroscopy*, an external radiation source is used, and the fluorescence emitted, usually at right angles to the source, is measured. The signal is the intensity of the fluorescence emitted.
- 28-2. (a) *Atomization* is a process in which a sample, often in solution, is volatilized and decomposed to form an atomic vapor.

(b) *Collisiional broadening* is an increase in the widths of atomic emission or absorption lines brought about by collisions between atoms and molecules in the gas phase. These collisions lead to slight changes in the energies of the states involved in emission or absorption and thus broadening of the spectral line. The amount of broadening increases with the increasing concentration (pressure) of the collision partners and with increasing temperature.

(c) *Doppler broadening* is an increase in the width of the atomic lines caused by the Doppler effect in which atoms moving toward a detector absorb or emit wavelengths that are slightly shorter than those absorbed or emitted b atoms moving at right angles to the detector. The reverse effect is observed for atoms moving away from the detector.

(d) *Nebulization* is the process that converts a liquid into a mist or an aerosol by the flow of gas around the end of a capillary tube the other end of which is immersed in the liquid.
(e) A *plasma* is a conducting gas that contains a large concentration of ions and/or electrons.

(f) A *laminar flow burner* is a premixed burner that provides a fairly quiet blame and a relatively long path length.

(g) A *hollow cathode lamp* consists of a tungsten wire anode and a cylindrical cathode sealed in a glass tube that contains argon at a pressure of 1 to 5 torr. The cathode is constructed from or supports the element whose emission spectrum is desired.

(h) *Sputtering* is a process in which atoms of an element are dislodged from the surface of a cathode by bombardment by a stream of inert gas ions that have been accelerated toward the cathode by a high electric potential.

(i) An *additive interference*, also called a blank interference, produces an effect that is independent of the analyte concentration. It could be eliminated with a perfect blank solution.

(j) A *spectral interference* in atomic spectroscopy occurs when a spectral line of an element in the sample matrix overlaps that of the analyte. It is an example of an additive interference.

(**k**) A *chemical interference* in atomic spectroscopy is encountered when a species interacts with the analyte in such a way as to alter the spectral emission or absorption characteristics of the analyte.

2

(1) A *radiation buffer* is a substance that is added in large excess to both standards and samples in atomic spectroscopy to prevent the presence of that substance in the sample matrix from having an appreciable effect on the results.

(**m**) A *protective agent* prevents interference by forming a stable, but volatile, compound with the analyte. It protects the analyte from forming non-volatile, but less stable interfering compounds.

(**n**) An *ionization suppressor* is a compound containing an easily ionized cation, such as potassium; it is introduced into a solution of an analyte to provide a high concentration of electrons during atomization. In this way, interference due to ionization of the analyte is minimized.

- **28-3.** In atomic emission spectroscopy, the analytical signal is produced by the relatively small number of *excited* atoms or ions, whereas in atomic absorption the signal results from absorption by the much larger number of *unexcited* species. Any small change in flame conditions dramatically influences the number of *excited species*, whereas such changes have a much smaller effect on the number of *unexcited species*.
- **28-4.** Ionization interference effects are less severe in the ICP because the large concentration of electrons from the ionization of argon maintains a more-or-less constant electron concentration in the plasma. In the flame, ionization of matrix elements can change the electron concentration and thus the extent of ionization of the analyte.
- **28-5**. In atomic absorption spectroscopy the source radiation is modulated to create an ac signal at the detector. The detector is made to reject the dc signal from the flame and measure the modulated signal from the source. In this way, background emission from the flame

and atomic emission from the analyte is discriminated against and prevented from causing an interference effect.

- 28-6. The resolution and selectivity in ICP emission comes primarily from the monochromator. As a result, a high resolution monochromator can isolate the analyte spectral line from lines of concomitants and background emission. It can thus reduce spectral interferences. In atomic absorption spectrometry, the resolution comes primarily from the very narrow hollow cathode lamp emission. The monochromator must only isolate the emission line of the analyte element from lines of impurities and the fill gas, and from background emission from the atomizer. A much lower resolution is needed for this purpose.
- **28-7**. The temperature and pressure in a hollow cathode lamp are much less than those in an ordinary flame. As a result, Doppler and collisional broadening effects are much less, and narrower lines results.
- 28-8. (a) Sulfate ion forms complexes with Fe(III) that are not readily volatilized and converted to free atoms. Thus, the concentration of iron atoms is lower in the presence of sulfate.
 (b) A releasing agent that forms more stable complexes with sulfate than iron forms could be added. A protective agent, such as EDTA, that forms a stable, but volatile complex with Fe(III) could be introduced. A higher temperature flame could be used.
- 28-9. The temperatures are high which favors the formation of atoms and ions. Sample residence times are long so that desolvation and vaporization are essentially complete. The atoms and ions are formed in a nearly chemically inert environment. The high and relatively constant electron concentration leads to fewer ionization interferences.
- **28-10**. The ICP is rarely used for atomic absorption measurements because the short optical path length of the ICP means that absorbances are small, which leads to lower sensitivity than

longer path length flames. Also, the high temperature of the plasma reduces the population of atoms in the ground state substantially.

- **28-11**. The radial geometry provides better stability and precision while the axial geometry can achieve lower detection limits. Many ICP emission systems allow both geometries.
- **28-12**. Deviations from linearity at low concentrations are often the result of significant ionization of the analyte. When a high concentration of an easily ionized metal salt is added, the ionization of the analyte is suppressed because of the electrons produced by ionization of the metal.
- **28-13**. By linear interpolation

$$0.400 + (0.502 - 0.396) \frac{(0.600 - 0.400)}{(0.599 - 0.396)} = 0.504 \text{ ppm Pb}$$

28-14.

	А	В	С	D	E	F	G	Н	1
1	Conc. Cr ₂ O ₇ ²⁻ , µg/mL	Rel. Intensity	1	.00 ¬					
2	0.000	3.1		.00					
3	2.000	21.5		80 -					
4	4.000	40.9		7		v = 9.2x +	2 10		-
5	6.000	57.1	Rel. Intensity	60 -		$R^2 = 0.99$		-	
6	8.000	77.3	te	C 200		K = 0.55	32		
7			÷.	40 -		+			
8	Slope	9.20	Sel		. /				
9	Intercept	3.18	_	20 -	-				
10	SD slope	0.152							
11	SD intercept	0.744		0 -	1	1		1	
12				0.000	2.000	4.00	0	6.000	8.000
13						~ ~	2. 1		
14					Co	nc. Cr ₂ O ₇	-, mg/m	L	
15									-
16					Linest Val	ues			
17				m	9.2	3.18	b		
18				SD m	0.151877	0.744043	SD b		
19	Sample Analysis			r2	0.999183	0.960555	SE		
20	MM (K2Cr2O7)	294.1846	g/mol	F	3669.364	3	dr		
21	MM (Cr ₂ O ₃)	151.9904	-	SSR	3385.6	2.768	SSE		
22	(2 0)		J						
23		Blank	Sample A	Sample B	Sample C				
	Replicate1	5.1			73.1				
		4.8	28.2		72.1				
	Replicate3	4.9	28.9		spilled				
	Average	4.933	28.567		72.600				
28	, working o		20.001						
29	Concentration	0.1906	2.7594	4.0783	7.5457				
	Blank subtract		2.5688		7.3551				
	% Cr ₂ O ₃		0.0133		0.0380				
	SD SD		0.0018		0.0037				
	% RSD		13.67		9.61				
34	70 TOD		13.07	12.00	5.01			-	
	Spreadsheet Docum	entation							
	Cell B8=SLOPE(B2:B6				Cell B29=(827-\$8\$9)	SB\$8		
	Cell B9=INTERCEPT(E				Cell C30=0		4D40		
	Cell B10=E18	2.00,72.70)			Cell C31=C		(\$B\$20*1	00)	
	Cell B11=F18							\$21/(\$B\$20	*100)
	Cells E17:F21=LINES	(B2-B6 42-46		E)	Cell C32=C				100)
	Cell B27=AVERAGE(E		INOL, INO	-/	001 000-0	J2/031 10	0		-

	A	B	С	D	E	F	G	Н		I.
1	Vcu	10.00	ſ		0.6	20 20		Pro-	1	
2	cs, ppm	12.2								
3					0.5 -			*		
4	Part (a)				0.4 -		/			
5	Vol. Std. Soln.	Absorbance			0.4 - 0.3 - 0.2 0.2		*			
6	0.0	0.201			0.3 -	*				
7	10.0	0.292			sol	V	= 0.0088x	+ 0.2022		
8	20.0	0.378			q 0.2		$R^2 = 0.9$			
9	30.0	0.467			-/					
10	40.0	0.554			0.1 -					
11					0	a 10				
12	Part (e)		-		100					
13	Slope	0.00881	-30.0	-20.0	-10.0 0.0	and the second se	20.0	30.0	40.0	50.0
14	Intercept	0.2022			Ve	ol. Std. So	In, mL			
15	Part (f)									
16	SD m	4.12E-05			Linest Val	ues				
17	SD b	1.010E-03		m	0.00881	0.2022	b			
18	Part (g)			SD m	4.12E-05	0.00101	SD b			
19	c _{Cu} , ppm	28.000454		R ²	0.999934	0.001304	SE			
20		1		F	45656.53	3	df		1	
21	SD c _{Cu} , ppm	0.192		SSregr	0.077616	5.1E-06	SSE			
22		1								
23		14		1	1				1	
24	Spreadsheet I	Documentation		1	1				1	
25		PE(B6:B10,A6:A1	0)	1						
		RCEPT(B6:B10,A		0						
	Cell B16=E18]						
28	Cell B17=F18									
29	Cells E17:F21=	LINEST(B6:B10,	A6:A10.	TRUE, TRU	JE)					
	Cell B19=B14*									
		SQRT((B16/B13)^	2+(B17/	B14)^2)					1	
32				1 10 10	1					

28-15.

(a) See plot in spreadsheet

(b)
$$A_s = \frac{\varepsilon b V_s c_s}{V_t} + \frac{\varepsilon b V_x c_x}{V_t} = k V_s c_s + k V_x c_x$$

(c) For the plot of
$$A_s$$
 versus V_s , $A_s = mV_s + b$ where $m = kc_s$
and $b = kV_xc_x$

Chapter 28

(d) From the equations in (c): $k = \frac{n}{c_1}$	$\frac{h}{s} = \frac{b}{V_x c_x}$		
Rearranging and solving for c_x :	$c_x = \frac{bc_s}{mV_x}$		
(e) From the values in the spreadsheet:	m = 0.00881	and	<i>b</i> = 0.2022
(f) From the values in the spreadsheet:	$s_m = 4.1 \times 10^{-5}$ and	$s_b = 1$	$.0 \times 10^{-3}$
(g) From the values in the spreadsheet:	$c_{\rm Cu} = 28.0 \ (\pm 0.2) \ \rm ppr$	n	

Chapter 29

- **29-1.** (a) The *Dalton* is one unified atomic mass unit and equal to 1/12 the mass of a neutral ${}^{12}_{6}$ C atom.
 - (b) A *quadrupole mass filter* consists of 4 cylindrical rods that only allow ions of a certain mass-to-charge (m/z) ratio to pass. With proper adjustment of the voltages applied to the rods, a stable path is created for ions of a certain m/z ratio to pass through the analyzer to the detector.
 - (c) The *mass number* is the atomic or molecular mass expressed without units.
 - (d) A *sector analyzer* consists of either a magnetic sector that deflects ions in a magnetic field or an electric sector in which the deflection is by means of an electrostatic field. In a double-focusing spectrometer, an electic sector precedes the magnetic sector.
 - (e) In a *time-of-flight* analyzer ions with nearly the same kinetic energy traverse a field-free region. The time required for an ion to reach a detector at the end of the field-free region is inversely proportional to the mass of the ion.
 - (f) An *electron multiplier* is a common transducer for mass spectrometry and consists of a cathode which when struck by ions produces secondary electrons. These electrons are attracted to dynodes that are each held at successively higher positive voltage and collisions with the dynodes yields additional cascading electrons.
- **29-2.** The temperatures are high which favors the formation of ions. Spectra consist of a simple series of isotope peaks for each element present along with some background ionic peaks. Sample residence times are long so that desolvation and vaporization are essentially complete.

29-3. The ICP torch serves both as an atomizer and ionizer.

- **29-4.** In an ordinary mass spectrum, the ordinate is ion abundance (number of ions, ion current, or counts) and the abscissa is the mass-to-charge ratio or sometimes just mass assuming singly charged ions.
- **29-5**. Interferences fall into two categories: spectroscopic interferences and matrix interferences. In a spectroscopic interference, the interfering species has the same mass-to-charge ratio as the analyte. Matrix effects occur at high concentrations where interfering species can interact chemically or physically to change the analyte signal.
- **29-6**. Internal standards are used in ICP-MS to compensate for instrument drifts, instabilities, and matrix effects when performing quantitative analysis.
- **29-7.** The higher resolution of the double focusing spectrometer allows the ions of interest to be better separated from background ions than with a relative low resolution quadrupole spectrometer. The higher signal-to-background ratio of the double focusing instrument leads to lower detection limits than with the quadrupole instrument.
- 29-8. With a gaseous ionization source, the sample is first vaporized and then ionized. With a desorption source, the solid or liquid sample is converted directly into gas-phase ions. Desorption sources have the advantage that they can be used to ionize nonvolatile and thermally unstable compounds. Gas-phase sources are often more reliable and reproducible. Many mass spectral libraries have spectra collected with gas-phase sources like the electron-impact source.
- **29-9**. The high energy of the beam of electrons used in EI sources is enough to break some chemical bonds and produce fragment ions. Such fragment ions can be useful in qualitative identification of molecular species.

- 29-10. A gas-phase sample is needed for mass spectrometry. The output of the LC column is a solute dissolved in a solvent, whereas the output of the GC column is a gas and thus directly compatible. As a first step in LC/MS, the solvent must be vaporized. When vaporized, however, the LC solvent produces a gas volume that is 10-1000 times greater than the carrier gas in GC. Hence, most of the solvent must also be removed.
- **29-11**. The ion selected by the first analyzer is called the precursor ion. It then undergoes thermal decomposition, reaction with a collision gas, or photodecomposition to form product ions that are analyzed by a second mass analyzer.
- **29-12**. A hard ionization source, such as an EI source, is often more useful for structural elucidation because the many fragments provide information about bonding in the molecule. A soft ionization source can provide accurate information about the molecular mass because the molecular ion is often the most abundant ion produced. Hard ionization sources provide many fragment ions which allows the mass spectrum to be used in qualitative identification. Most mass spectral libraries used in identifying compounds are based on electron-impact ionization, a hard ionization method.

Chapter 30

30-1. (a) The *order of a reaction* is the numerical sum of the exponents of the concentration terms in the rate law for the reaction.

(b) A reaction is pseudo-first-order when all reactants but one are in large excess so that their concentrations are essentially constant during the course of the reaction. The rate of the reaction then depends upon the concentration of the isolated reactant A. Under these conditions, rate = k[A] where k contains the concentration(s) of the reagents that are in excess.

(c) *Enzymes* are high molecular mass organic molecules that catalyze reactions of biological importance.

(d) A *substrate* is the reagent that is acted on by an enzyme.

(e) The *Michaelis constant* K_m is an equilibrium-like constant for the dissociation of the enzyme-substrate complex. It is defined by the equation $K_m = (k_{-1} + k_2)/k_1$, where k_1 and k_{-1} are the rate constants for the forward and reverse reactions in the formation of the enzyme-substrate complex. The term k_2 is the rate constant for the dissociation of the complex to give products.

(f) *Differential methods* are those in which the concentration of the analyte is determined from a differential form of the rate law. For example, the expression $-d[A]/dt = k[A]_0 e^{-kt}$ allows the computation of $[A]_0$ if the rate is measured at time *t* and *k* is known from other experiments.

(g) *Integral methods* use integrated forms of the rate equations to calculate concentrations from kinetic data.

(h) An *indicator reaction* (or *follow-up reaction*) is one used to monitor the appearance of a reactant or the disappearance of a product. For example, the reaction of 1,10-phenanthroline with Fe^{2+} is often used to monitor the progress of reactions that produce Fe^{2+} . The indicator reaction must not affect the rate of the reaction of interest.

- **30-2.** The "separation" of the components of a mixture is essentially carried out by finding the differences in their rates of reaction with a common reagent.
- **30-3.** Advantages would include; (1) measurements are made relatively early in the reaction before side reactions can occur; (2) measurements do not depend upon the determination of absolute concentration but rather depend upon differences in concentration; (3) selectivity is often enhanced in reaction-rate methods, particularly in enzyme-based methods. Limitations would include; (1) lower sensitivity, since reaction is not allowed to proceed to equilibrium; (2) greater dependence on conditions such as temperature, ionic strength, pH and concentration of reagents; (3) lower precision since the analytical signal is lower.
- **30-4.** *Pseudo-first order* conditions are used in kinetic methods because under these conditions the reaction rate is directly proportional to the concentration of the analyte.
- **30-5.** $[A]_t = [A]_0 e^{-kt}$ $\ln \frac{[A]_t}{[A]_0} = -kt$

For
$$t = t_{1/2}$$
, $[A]_t = [A]_0/2 \quad \ln \frac{[A]_0/2}{[A]_0} = \ln (1/2) = -kt_{1/2}$

$$\ln 2 = kt_{1/2}$$
$$t_{1/2} = \ln 2/k = 0.693/k$$

30-6. (a) $\tau = 1/k = 1/0.497 \text{ s}^{-1} = 2.01 \text{ s}$

(**b**)
$$\tau = 1/k = 1/6.62 \text{ h}^{-1} = 0.151 \text{ h}$$

 $0.151 \text{ h} \times \frac{60 \text{ min}}{\text{h}} \times \frac{60 \text{ s}}{\text{min}} = 544 \text{ s}$
(**c**) $\ln \frac{[A]_0}{[A]_t} = kt$ $\tau = 1/k = t/\ln([A]_0/[A]_t) = 3876 \text{ s}/\ln(3.16/0.496) = 2.093 \times 10^3 \text{ s}$

(d) Since 1 mole of product is formed for each mole of analyte reacted,

$$[\mathbf{P}]_{\infty} = [\mathbf{A}]_{0}$$
$$[\mathbf{P}]_{t} = [\mathbf{P}]_{\infty}(1 - e^{-kt})$$
$$[\mathbf{P}]_{t}/[\mathbf{P}]_{\infty} = 1 - e^{-kt}$$
$$1 - [\mathbf{P}]_{t}/[\mathbf{P}]_{\infty} = e^{-kt}$$
$$\ln\left(1 - \frac{[\mathbf{P}]_{t}}{[\mathbf{P}]_{\infty}}\right) = -kt$$

 $\tau = 1/k = -t /\ln(1 - [P]_t/[P]_\infty) = -9.54 \text{ s/ln}((1 - 0.0423)/0.176) = 34.7 \text{ s}$

(e)
$$t_{1/2} = 26.5 \text{ yr} \times \frac{365 \text{ d}}{1 \text{ yr}} \times \frac{24 \text{ h}}{1 \text{ d}} \times \frac{60 \text{ min}}{1 \text{ h}} \times \frac{60 \text{ s}}{1 \text{ min}} = 8.36 \times 10^8 \text{ s}$$

$$\tau = 1/k = t_{1/2}/0.693 = 8.36 \times 10^8 \text{ s}/0.693 = 1.2 \times 10^9 \text{ s}$$

(f)
$$\tau = 1/k = t_{1/2}/0.693 = 0.583/0.693 = 0.841$$
 s

30-7. (a)
$$\ln \frac{[A]_t}{[A]_0} = -kt$$
 $k = -\frac{1}{t} \ln \frac{[A]_t}{[A]_0}$

$$k = -\frac{1}{0.0100} \ln(0.75) = 28.8 \text{ s}^{-1}$$

(b)
$$k = -\frac{1}{0.100} \ln(0.75) = 2.88 \text{ s}^{-1}$$

Proceeding in the same way, except for different *t* values, we have

(c)
$$k = 0.288 \text{ s}^{-1}$$

(d) $k = 5.45 \times 10^{-5} \text{ s}^{-1}$
(e) $k = 1.07 \times 10^4 \text{ s}^{-1}$
(f) $k = 3.25 \times 10^7 \text{ s}^{-1}$

30-8. Let
$$m = \text{no. half-lives} = \frac{t}{t_{1/2}} = \frac{-\frac{1}{k} \ln \frac{[A]}{[A]_0}}{-\frac{1}{k} \ln \frac{[A]_0/2}{[A]_0}}$$

$$m = \frac{\ln[A]/[A]_0}{\ln 1/2} = -1.4427 \ln([A]/[A]_0)$$

(a)
$$m = -1.4427 \ln 0.90 = 0.152$$

(b)
$$m = -1.4427 \ln 0.50 = 1.00$$

- (c) $m = -1.4427 \ln 0.10 = 3.3$
- (d) $m = -1.4427 \ln 0.01 = 6.6$
- (e) $m = -1.4427 \ln 0.001 = 10$

(f)
$$m = -1.4427 \ln 0.0001 = 13$$

30-9. (a) $\ln ([A]/[A]_0) = -kt = -t/\tau$, where $\tau = 1/k$

At 10% completion $[A]/[A]_0 = 0.90$

$$n = \text{no. lifetimes} = t/\tau = -\ln([A]/[A]_0) = -\ln 0.90 = 0.105$$

- **(b)** $n = -\ln 0.50 = 0.69$
- (c) $n = -\ln 0.10 = 2.3$
- (d) $n = -\ln 0.01 = 4.6$
- (e) $n = -\ln 0.001 = 6.9$

(f) $n = -\ln 0.0001 = 9.2$

30-10. (a) $[R]_0 = 5.00[A]_0$ where 5.00 is the ratio of the initial reagent concentration to the initial concentration of the analyte.

At 1% reaction, $[A] = 0.99[A]_0$ $[R]_{1\%} = [R] - 0.01[A]_0 = 5.00[A]_0 - 0.01[A]_0 = 4.99[A]_0$ Rate_{assumed} = $k[R][A] = k(5.00[A]_0 \times 0.99[A]_0)$ Rate_{true} = $k(4.99[A]_0 \times 0.99[A]_0)$ relative error = $\frac{k(5.00[A]_0 \times 0.99[A]_0) - k(4.99[A]_0 \times 0.99[A]_0}{k(4.99[A]_0 \times 0.99[A]_0)}$

relative error = $\frac{k(5.00[A]_0 \times 0.99[A]_0) - k(4.99[A]_0 \times 0.99[A]_0)}{k(4.99[A]_0 \times 0.99[A]_0)}$

 $=\frac{(5.00\times0.99)-(4.99\times0.99)}{(4.99\times0.99)}=0.00200$

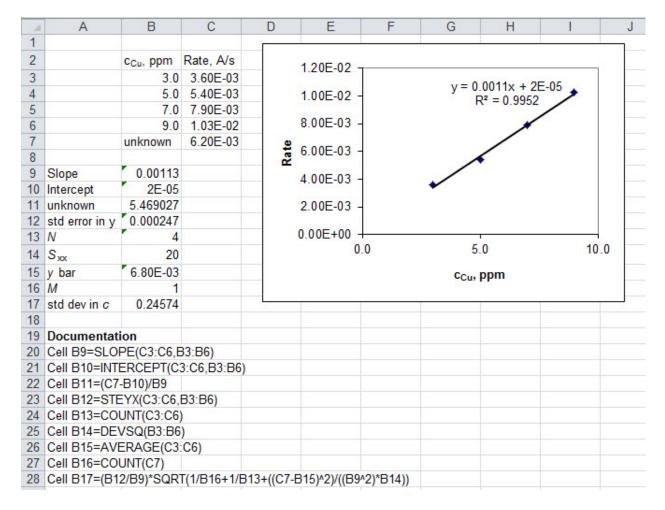
relative error $\times 100\% = 0.2\%$

(**b**) relative error = $\frac{(10.00 \times 0.99) - (9.99 \times 0.99)}{(9.99 \times 0.99)} = 0.00100$

relative error $\times 100\% = 0.1\%$

(c) (50.00 - 49.99)/49.99 = 0.000200 or 0.02%

- (d) 0.01/99.99 = 0.0001 or 0.01%
- (e) (5.00 4.95)/4.95 = 0.0101 or 1.0%
- (f) (10.00 9.95)/9.95 = 0.00502 or 0.5%
- (g) (100.00 99.95)/99.95 = 0.0005002 or 0.05%
- **(h)** (5.000 4.368)/4.368 = 0.145 or 14%
- (i) (10.000 9.368)/9.368 = 0.06746 or 6.7%


(**j**) (50.000 – 49.368)/49.368 = 0.0128 or 1.3%

(k)
$$(100.00 - 99.368)/99.368 = 0.00636 \text{ or } 0.64\%$$

30-11. $\frac{d[P]}{dt} = \frac{k_2[E]_0[S]}{[S] + K_m}$
At v_{max} , $\frac{d[P]}{dt} = k_2[E]_0$, Thus, at $v_{max}/2$, we can write
 $\frac{d[P]}{dt} = \frac{k_2[E]_0}{2} = \frac{k_2[E]_0[S]}{[S] + K_m}$
[S] + $K_m = 2[S]$
 $K_m = [S]$

30-12. (a) Plot 1/Rate versus 1/[S] for known [S] to give a linear calibration curve. Measure rate for unknown [S], calculate 1/Rate and 1/[S]_{unknown} from the working curve and find [S]_{unknown}.

(b) The intercept of the calibration curve is $1/v_{max}$ and the slope is K_m/v_{max} . Use the intercept to calculate $K_m =$ slope/intercept, and $v_{max} = 1$ /intercept.

30-13.

We report the concentration of the unknown as 5.5 ± 0.2 ppm

30-14.
$$R = 1.74 c_{Al} - 0.225$$
 $c_{Al} = (R + 0.225) / 1.74$

$$c_{\rm Al} = (0.76 + 0.225)/1.74 = 0.57 \ \mu {\rm M}$$

30-15. Rate =
$$R = \frac{k_2[E]_0[tryp]_t}{[tryp]_t + K_m}$$

Assume $K_m >> [tryp]_t$

$$R = \frac{v_{\max}[\text{tryp}]_t}{K_m} \quad \text{and } [\text{tryp}]_t = K_m / v_{\max}$$

 $[\text{tryp}]_t = (0.18 \ \mu\text{M/min})(4.0 \times 10^{-4} \ \text{M})/(1.6 \times 10^{-3} \ \mu\text{M/min}) = 0.045 \ \text{M}$

30-16.

1.54	A	В	С	D	E	F	G	H	L	J	K
1	Pb30-16										
2											
3	[A] ₀ = 0.01	00 M		0.0500 M		0.0750 M		0.100 M		unknown	
4	t	[P]	$\Delta[P]/\Delta t$	[P]	$\Delta[P]/\Delta t$	[P]	$\Delta[P]/\Delta t$	[P]	$\Delta[P]/\Delta t$	[P]	$\Delta[P]/\Delta t$
5	0			0.0000		0.00000		0.00000		0.00000	
6	10	0.00004	4.00E-06	0.0001	8 1.80E-05	0.00027	2.70E-05	0.00037	3.70E-05	0.00014	1.40E-05
7	20	0.00007	3.00E-06	0.0003	7 1.90E-05	0.00055	2.80E-05	0.00073	3.60E-05	0.00029	1.50E-05
8	50	0.00018	3.67E-06	0.0009	1 1.80E-05	0.00137	2.73E-05	0.00183	3.67E-05	0.00072	1.43E-05
9	100	0.00036	3.60E-06	0.0018	1 1.80E-05	0.00272	2.70E-05	0.00362	3.58E-05	0.00144	1.44E-05
10	Avg. Rate		3.57E-06		1.83E-05		2.73E-05		3.64E-05		1.44E-05
11	1. 150 F.				4 005 05	1 					
12		[A] ₀	Avg. Rate		4.00E-05]					
13	S	0.0100	3.57E-06		3.50E-05						
14		0.0500	1.83E-05							/	
15		0.0750	2.73E-05		3.00E-05	y = 3	8.645E-04x -	3.647E-08	1		
16		0.1000	3.64E-05		2.50E-05				/		
17	-	unknown	1.44E-05		2.50E-05 2.00E-05			/			
18					2.00E-05			*			
19	Slope	0.000364521			0 1.50E-05	-	/	/			
20	Intercept	-3.64686E-08			8		/				
21	Conc. Unk.	0.039695337			1.00E-05	-	/				
22					5.00E-06	- /					
23	Document	ation				*					
24		6-B5)/(\$A6-\$A5)			0.00E+00	-	T T	1	1	1.	1
25		VERAGE(C6:C			0.	.0000 0.0	0.04	0.060	0.0800	0.1000	0.1200
26		LOPE(C13:C16		-				[A] ₀ ,	M		
27	Cell B20=IN	NTERCEPT(C13	C16,B13:B	316)							
28	Cell B21=(0	C17-B20)/B19									

We would report the unknown concentration as 0.0397 M or 0.040 M

30-17.

, al		В	С	D	E	F	G	Н	1	J	K	L	M	N
1	Pb 30-17													
2	k'	0.015					_							
3	[A]0	0.005						0.005						
4	$[P]_t = [A]_0$	1-exp(-kt))								/				
5		t	[P]	[A]	Ri	% Completion		0.004 -	/					
6	2	0.000	0	0.005	2 C C C C C C C C C C C C C C C C C C C									
7		0.001	7.5E-08	0.005	7.49994E-05			10000	/					
B	-	0.01		0.004999	7.49944E-05		Σ	0.003 -						
9	-	0.1		0.004993	7.49438E-05		5	0.002 -	1					
0		0.2	1.5E-05	0.004985	7.48876E-05		E	0.002 -	/					
1		0.5		0.004963	7.47195E-05			100000	/					
2		1.0		0.004926	7.44403E-05			/						
3		1.2		0.004911	7.4329E-05			0.001 -						
4	-	1.3	9.66E-05	0.004903	7.42735E-05	1.93111		12						
5		1.4		0.004896	7.4218E-05			o —						
6		1.6		0.004881	7.41072E-05			0.0	100.0	20	0.0	300.0	400.0	500.0
7		1.8		0.004867	7.39966E-05		-				Time, s			
8		2.0	0.000148	0.004852	7.38862E-05						millo, e			
9		5.0	0.000361	0.004639	7.22565E-05	7.225651	-		5				5	
0		6.0	0.00043	0.00457	7.1724E-05									
1		7.0	0.000498	0.004502	7.11968E-05									
2	5	8.0		0.004435	7.06747E-05									
3		8.2	0.000579	0.004421	7.05709E-05									
24	-	10.0	0.000696		6.9646E-05									
25		20.0	0.001296	0.003704	6.47954E-05	25,91818								
26		50.0		0.002362	5.27633E-05									
27		100.0		0.001116	3.88435E-05									
28		200.0			2.37553E-05									
9		500.0	0.004997	2.77E-06	9.99447E-06	99,94469								
30	1	1000.0	0.005	1.53E-09	5E-06	99.99997								
31														
	True Ri	7.49994E-05												
3		7.42494E-05												
34	0.95Ri	7.12495E-05												
35														
6	Document	tation												
7	Cell C6=\$E	3\$3*(1-EXP(-\$B	\$2*B6))											
	Cell D5=\$E													
9	Cell E7=(C	7-\$C\$6)/(B7-\$B	\$6)											
		C14/0.005)*100	5 ⁶¹											
1	Cell B32=(C7-C6)/(B7-B6)												
	Cell B33=0													
13	Cell B34=0	.95*B32												

(a) The initial rate drops to $0.99R_i$ between times 1.3 and 1.4 s, which is $\approx 2\%$ of the reaction.

(b) Between 6.0 and 7.0 s so a little over 9% of the reaction is completed.

Chapter 31

- **31-1.** A *collector ion* is an ion added to a solution that forms a precipitate with the reagent which carries the desired minor species out of solution.
- **31-2.** A high concentration of salt added to a solution that leads to precipitation of a protein is a *salting-out* effect. At low salt concentrations, protein solubility is often increased with increasing salt concentration, termed a *salting-in* effect.
- **31-3.** The two events are transport of material and a spatial redistibrution of the components.
- **31-4.** Precipitation, extraction, distillation, ion exchange.
- 31-5. (a) *Elution* is a process in which species are washed through a chromatographic column by additions of fresh mobile phase.

(b) The *mobile phase* in chromatography is the one that moves over or through an

immobilized phase that is fixed in place in a column or on the surface of a flat plate.

(c) The *stationary phase* in chromatography is a solid or liquid phase that is fixed in

place. The mobile phase then passes over or through the stationary phase.

(d) The *distribution constant* is an equilibrium constant for the distribution of a species between two phases.

(e) The *retention time* for an analyte is the time interval between its injection onto a column and its appearance at the detector at the other end of the column.

(f) The *retention factor k* is defined by the equation $k = K_A V_S / V_M$ where K_A is the partition ratio for the species A and V_S and V_M are the volumes of the stationary and mobile phases, respectively

(g) The *selectivity factor* α of a column toward two species is given by the equation $\alpha = K_{\rm B}/K_{\rm A}$, where $K_{\rm B}$ is the distribution constant for the more strongly retained species B and $K_{\rm A}$ is the constant for the less strongly held or more rapidly eluting species A. (h) The *plate height*, H, of a chromatographic is defined by the relationship $H = \sigma^2 / L$ where σ^2 is the variance obtained from the Gaussian shaped chromatographic peak and L is the length of the column packing in centimeters.

- **31-6.** *Strong acid type exchangers* have sulfonic acid groups (-SO₃⁻H⁺)attached to the polymeric matrix and have wider application than *weak acid type exchangers*, which owe their action to carboxylic acid (–COOH) groups.
- **31-7.** The variables that lead to *band broadening* include: (1) large particle diameters for stationary phases; (2) large column diameters; (3) high temperatures (important only in gas chromatography); (4) for liquid stationary phases, thick layers of the immobilized liquid; and (5) very rapid or very slow flow rates.
- **31-8.** In gas-liquid chromatography, the mobile phase is a gas, whereas in liquid-liquid chromatography, it is a liquid.
- **31-9.** Determine the retention time t_R for a solute and the width of the solute peak at its base, *W*. The number of plates *N* is then $N = 16(t_R/W)^2$.
- **31-10.** Two general methods for improving the resolution of a column are to increase the column length and to reduce the plate height.

31-11.
$$[X]_i = \left(\frac{V_{aq}}{V_{org}K + V_{aq}}\right)^i [X]_0$$

(a) $[X]_1 = \left(\frac{50.0}{40.0 \times 8.9 + 50.0}\right) (0.200) = 0.0246 \text{ M}$

(b)
$$[X]_2 = \left(\frac{50.0}{20.0 \times 8.9 + 50.0}\right)^2 (0.200) = 9.62 \times 10^{-3} \text{ M}$$

(c)
$$[X]_4 = \left(\frac{50.0}{10.0 \times 8.9 + 50.0}\right)^4 (0.200) = 3.35 \times 10^{-3} \text{ M}$$

(**d**)
$$[X]_8 = \left(\frac{50.0}{5.0 \times 8.9 + 50.0}\right)^8 (0.200) = 1.23 \times 10^{-3} M$$

31-12. (a)
$$[Z]_1 = \left(\frac{25.0}{25.0 \times 5.85 + 25.0}\right) (0.0550) = 8.029 \times 10^{-3} \text{ M}$$

% Z =
$$8.029 \times 10^{-3} \times 100\% / 0.0550 = 14.6\%$$

(b)
$$[Z]_2 = \left(\frac{25.0}{12.5 \times 5.85 + 25.0}\right)^2 (0.0550) = 3.57 \times 10^{-3} \text{ M}$$

% Z = $3.57 \times 10^{-3} \times 100\%/0.0550 = 6.49\%$

(c)
$$[Z]_5 = \left(\frac{25.0}{5.0 \times 5.85 + 25.0}\right)^5 (0.0550) = 1.14 \times 10^{-3} \text{ M}$$

% Z =
$$1.14 \times 10^{-3} \times 100\% / 0.0550 = 6.49\% = 2.08\%$$

(**d**)
$$[Z]_{10} = \left(\frac{25.0}{2.50 \times 5.85 + 25.0}\right)^{10} (0.0550) = 5.5 \times 10^{-4} \text{ M}$$

% Z =
$$5.5 \times 10^{-4} \times 100\% / 0.0550 = 6.49\% = 1.0\%$$

31-13.
$$[A]_{i} = \left(\frac{V_{aq}}{V_{org}K + V_{aq}}\right)^{i} [A]_{0}$$
 $i = \frac{\log([A]_{i} / [A]_{0})}{\log\left(\frac{V_{aq}}{V_{org}K + V_{aq}}\right)}$

(a)
$$i = \frac{\log\left(\frac{1.00 \times 10^{-4}}{0.0500}\right)}{\log\left(\frac{25.0}{25.0 \times 8.9 + 25.0}\right)} = 2.7$$
 extractions. So 3 extractions are needed.

3

The total volume would be 75 mL with 3 extractions.

(b) As in part (a), i = 4.09 extractions, so 5 extractions are needed.

The total volume would be $5 \times 10 \text{ mL} = 50 \text{ mL}$

(c) i = 11.6 so 12 extractions are needed

The total volume would be $12 \times 2 \text{ mL} = 24 \text{ mL}$

31-14. (a)

$$i = \frac{\log\left(\frac{1.00 \times 10^{-5}}{0.0200}\right)}{\log\left(\frac{40.0}{50.0 \times 5.85 + 40.0}\right)} = 3.6 \text{ so } 4 \text{ extractions are needed or } 4 \times 50 \text{ ml} = 200 \text{ mL}$$

(b) As in part (a), i = 4.94 or 5 extractions. A total volume of 5×25 mL = 125 mL.

(c) i = 8.4 so 9 extractions. A total volume of 9×10 mL = 90 mL.

31.15. If 99% of the solute is removed then 1% of solute remains and $[A]_i / [A]_0 = 0.01$.

(a)
$$\frac{[A]_i}{[A]_0} = \left(\frac{50.0}{25.0K + 50.0}\right)^2 = 0.01$$

 $(0.01)^{1/2}(25.0K + 50.0) = 50.0$
 $2.5K + 5.0 = 50.0$
 $K = (50.0 - 5.0)/2.5 = 18.0$
(b) $\frac{[A]_i}{[A]_0} = \left(\frac{50.0}{10.0K + 50.0}\right)^5 = 0.01$
 $(0.01)^{1/5}(10.0K + 50.0) = 50.0$
 $3.98K + 19.9 = 50.0$
 $K = (50.0 - 19.9)/3.98 = 7.56$

31-16. (a) If 1.00×10^{-4} % of the solute remains, $[A]_i / [A]_0 = 1.00 \times 10^{-6}$.

$$\frac{[A]_i}{[A]_0} = \left(\frac{30.0}{10.0K + 30.0}\right)^4 = 1.00 \times 10^{-6}$$

$$(1 \times 10^{-6})^{1/4} (10.0K + 30.0) = 30.0$$

$$0.316K + 0.949 = 30.0$$

$$K = (30.0 - 0.949)/0.31 = 91.9$$
(b) For 1.00×10^{-3} %, $[A]_i / [A]_0 = 1.00 \times 10^{-5}$.
$$\frac{[A]_i}{[A]_0} = \left(\frac{30.0}{10.0K + 30.0}\right)^4 = 1.00 \times 10^{-5}$$

$$(1 \times 10^{-5})^{1/4} (10.0K + 30.0) = 30.0$$

$$0.562K + 1.69 = 30.0$$

$$K = (30.0 - 1.69)/0.562 = 50.3$$
(c) $\frac{[A]_i}{[A]_0} = \left(\frac{30.0}{10.0K + 30.0}\right)^4 = 1.00 \times 10^{-4}$

$$(1 \times 10^{-4})^{1/4} (10.0K + 30.0) = 30.0$$

$$1.00K + 3.00 = 30.0$$

$$K = (30.0 - 3.00)/1.00 = 27.0$$

31-17. (a) Recognizing that in each of the solutions [HA] = 0.0750 due to dilution, from the data

for solution 1,

$$[HA]_{org} = 0.0454 \text{ M}$$
$$[HA]_{aq} = \frac{25.0(0.0750) - 25.0(0.0454)}{25.0} = 0.0296 \text{ M}$$
$$K = [HA]_{org} / [HA]_{aq} = 0.0454 / 0.0296 = 1.53$$

(**b**) For solution 3, after extraction

$$[HA]_{aq} = [HA]_{org} / K = 0.0225 / 1.53 = 0.0147 M$$
$$[A^{-}] = (mols HA_{tot} - mols HA_{aq} - mols HA_{org})/(25.0 mL)$$
$$[A^{-}] = \frac{(25.0)(0.0750) - (25.0)(0.0147) - (25.0)(0.0225)}{25.0} = 0.0378 M$$

(c) Since
$$[H^+] = [A^-]$$
, $K_a = (0.0378)^2 / (0.0147) = 0.0972$

31-18. $[I_2]_{aq} = 1.12 \times 10^{-4} \text{ M}$

$$[I_2]_{org} = (\text{mols } I_{2tot} - \text{mols } I_{2aq})/(10.0 \text{ mL})$$
$$[I_2]_{org} = \frac{(25.0)(0.0100) - (25.0)(1.12 \times 10^{-4})}{10.0} = 0.0378 \text{ M}$$
$$[I_2]_{org} = 0.0247 \text{ M}$$

 $K = [I_2]_{org} / [I_2]_{aq} = 0.0247 / (1.12 \times 10^{-4}) = 221$

(b) after extraction, $[I_2]_{aq} = [I_2]_{org}/K = (1.02 \times 10^{-3})/221 = 4.62 \times 10^{-6} \text{ M}$

$$[I(SCN)_2^-] = [I^-] = (mmols I_{2tot} - mmols I_{2aq} - mmols I_{2org})/(25.0 mL)$$

 $[I(SCN)_2^{-}] = [I^{-}] = \frac{(25.0)(0.0100) - (25.0)(4.62 \times 10^{-6}) - (10.0)(1.02 \times 10^{-3})}{25.0} = 0.0095874 \text{ M}$

$$[SCN^-] = (mmols SCN_{tot} - 2 \times mmols I(SCN)_2)/(25.0 mL)$$

$$[SCN^{-}] = \frac{(25.0)(0.100) - 2 \times (25.0)(0.0095874)}{25.0} = 0.080825$$

$$K_f = \frac{[I(SCN)_2^{-}][I^{-}]}{[I_2][SCN^{-}]^2} = (0.0095874)^2 / (4.62 \times 10^{-6} \times (0.080825)^2) = 3.05 \times 10^3$$

31-19. (a) amount H⁺ resulting from exchange = $15.3 \text{ mL} \times 0.0202 \text{ mmol/mL} = 0.3091 \text{ mmol}$

mmols H^+ = mol cation = 0.3091 in 0.0250 L sample

0.3091 mmol cation/0.0250 L = 12.36 mmol cation/L

(b)
$$\frac{12.36 \text{ mmol cation}}{L} \times \frac{1 \text{ mmol CaCO}_3}{2 \text{ mmol cation}} \times \frac{100.087 \text{ mg CaCO}_3}{\text{mmol CaCO}_3} = 619 \text{ mg CaCO}_3/L$$

31-20.
$$2.00 \text{ L} \times \frac{0.1500 \text{ mol HCl}}{\text{L}} \times \frac{1 \text{ mol NaCl}}{1 \text{ mol HCl}} \times \frac{58.4425 \text{ g NaCl}}{\text{ mol NaCl}} = 17.53 \text{ g NaCl}$$

Dissolve 17.53 g of NaCl in about 100 mL water and pass through the column packed with a cation exchange resin in its acid form. Wash with several hundred milliliters of water, collecting the liquid from the original solution and washings in a 2.00-L volumetric flask. Dilute to the mark and mix well.

31-21. [HCl] = $17.53 \text{ mL} \times \frac{0.02932 \text{ mmol NaOH}}{\text{mL}} \times \frac{1 \text{ mmol HCl}}{1 \text{ mmol NaOH}} \times \frac{1}{25.00 \text{ mL}}$

= 0.02056 mmol/mL

amount H_3O^+/mL from exchange = 35.94 mL×0.02932 mmol/mL/10.00 mL = 0.10538

= (no. mmol HCl + $2 \times$ no. mmol MgCl₂)/mL

mmol MgCl₂/mL = (0.10536 - 0.02056)/2 = 0.0424

The solution is thus 0.02056 M in HCl and 0.0424 M in MgCl₂.

31-22. From Equation 31-12,

$$u_0 = F/\pi r^2 = F/\pi (d/2)^2 = \frac{0.95 \text{ cm}^3/\text{min}}{3.1415 \times \left(\frac{0.025 \text{ cm}}{2}\right)^2} \left(\frac{1 \text{ min}}{60 \text{ s}}\right) = 32.3 \text{ cm/s}$$

31-23. From equation 31-13,

$$u_0 = F/\varepsilon \pi r^2 = F/\varepsilon \pi (d/2)^2 = \frac{48 \text{ cm}^3/\text{min}}{0.43 \times 3.1415 \times \left(\frac{0.50 \text{ cm}}{2}\right)^2} \left(\frac{1 \text{ min}}{60 \text{ s}}\right) = 9.5 \text{ cm/s}$$

31-24. $N = 16(t_R/W)^2$

	А	В	С	D
1	Problem 31-2	4		
2		tr	W	Ν
3		5.4	0.41	2775.491
4		13.3	1.07	2472.041
5		14.1	1.16	2363.971
6		21.6	1.72	2523.31
7	Avg N			2533.703
8	Std. Dev N			174.3371
9	Н	0.009749		
10	Spreadsheet	Document	ation	
11	Cell D3=16*(B	3/C3)^2		
12	Cell D7=AVEF	RAGE(D3:D	6)	
13	Cell D8=STDE	EV.S(D3:D6)	
14	Cell B9=24.7/[07		

(a) See column D in the spreadsheet

(b)
$$\overline{N} = 2534 \approx 2.5 \times 10^3$$

 $s = 174 \approx 0.2 \times 10^3$
 $\overline{N} = 2.5 \ (\pm 0.2) \times 10^3$

(c) H = L/N = 0.0097 cm

31-25. (a) $k = (t_R - t_M)/t_M$

For A, $k_A = (5.4 - 3.1)/3.1 = 0.742 = 0.74$

For B, $k_{\rm B} = (13.3 - 3.1)/3.1 = 3.29 = 3.3$

For C, $k_{\rm C} = (14.1 - 3.1)/3.1 = 3.55 = 3.5$

For D, $k_{\rm D} = (21.6 - 3.1)/3.1 = 5.97 = 6.0$

(b) $K = k V_M / V_S$

For A, $K_A = 0.742 \times 1.37 / 0.164 = 6.2$

For compound B, $K_B = 3.29 \times 1.37 \ 0.164 = 27$

For compound C, $K_{\rm C} = 3.55 \times 1.37/0.164 = 30$

For compound D, $K_D = 5.97 \times 1.37/0.164 = 50$

31-26. (a)
$$R_S = 2[(t_R)_C - (t_R)_B]/(W_B + W_C)$$

$$R_S = 2(14.1 - 13.3)/(1.07 + 1.16) = 0.717 = 0.72$$

(b)
$$\alpha_{C,B} = \frac{(t_R)_C - t_M}{(t_R)_B - t_M} = \frac{14.1 - 3.1}{13.3 - 3.1} = 1.08 = 1.1$$

(c)
$$\frac{(R_s)_1}{(R_s)_2} = \frac{\sqrt{N_1}}{\sqrt{N_2}} = \frac{0.717}{1.5} = \frac{\sqrt{2534}}{\sqrt{N_2}}$$

 $N_2 = 2534 \times (1.5)^2 / (0.717)^2 = 11090 = 1.11 \times 10^4$
From solution 31-24 (c), $H = 9.75 \times 10^{-3}$ cm/plate
 $L = 11090 \times 9.75 \times 10^{-3} = 108$ cm

(d)
$$\frac{(t_R)_1}{(t_R)_2} = \frac{(R_S)_1}{(R_S)_2} = \frac{14.1}{(t_R)_2} = \frac{(0.717)^2}{(1.5)^2}$$

 $(t_R)_2 = [14.1 \times (1.5)^2]/(0.717)^2 = 61.7 = 62 \text{ min}$

31-27. (a) $R_S = 2[(t_R)_D - (t_R)_C] / (W_D + W_C)$ $R_S = 2(21.6 - 14.1)/(1.72 + 1.16) = 5.21 = 5.2$

(b)
$$\frac{(R_s)_1}{(R_s)_2} = \frac{\sqrt{N_1}}{\sqrt{N_2}} = \frac{1.5}{5.21} = \frac{\sqrt{N_1}}{\sqrt{2534}}$$

 $N_1 = 2534 \times (1.5)^2 / (5.21)^2 = 210$
 $L = 210 \times 9.75 \times 10^{-3} = 2.0 \text{ cm}$

Problems 31-28 through 31-31: See next two spreadsheets

	А	В	С	D	E
1	Problem 31-28				
2	Compound	t _R , min	W	N	
3	Air	1.9			
4	Methylcyclohexane	10	0.76	2770.083	
5	Methylcyclohexene	10.9	0.82	2827.127	
6	Toluene	13.4	1.06	2556.924	
7					
8	Average N			2718.045	
9	Std. Dev.			142.4196	
10	Column Length, L			40	
11	Plate Height, H			0.014716	
12	Spreadsheet Docume	entaion			
13	Cell D4=16*(B4/C4)^2				
14	Cell D8=AVERAGE(D4				
15	Cell D9=STDEV.S(D4:I	D6)			
16	Cell D11=D10/D8				
17	Drahlam 24.00				
18	Problem 31-29				
19	R _s (methylcylohexene -	methyl cyclo	phexane)		1.14
20	R _s (methylcyclohexene	- toluene)			2.66
21	R _s (toluene - methylcylo	hexane)			3.74
22	Spreadsheet Docume	entation			
23	Cell E19=2*(B5-B4)/(C3	5+C4)			
24	Cell E21=2*(B6-B4)/(C4	4+C6)			
25					
26	Problem 31-30				
27	To obtain $R_s = 1.75$	N ₂	6413.6		
28	Column Length, L		94.38549		
29	Retention time t_R		25.72005		
30	Spreadsheet Docume	entation			
31	Cell C27=D8*1.75^2/E*	19^2			
32	Cell C28=C27*D11				
33	Cell C29=B5*1.75^2/E1	19^2			

The following spreadsheet is a continuation of the previous spreadsheet.

	А	В	С	D	E
35	Problem 31-31				
36	k (methylcyclohexane)				4.263158
37	k (methylcyclohexene)				4.736842
38	k (toluene)				6.052632
39	V _M				62.6
40	Vs				19.6
41	K (methylcyclohexane)				13.62
42	K (methylcyclohexene)				15.13
43	K (toluene)				19.33
44	α (methylcyclohexane-	methylcyclol	hexene)		1.11
45	Spreadsheet Docume	entation			
46	Cell E36=(B4-\$B\$3)/\$E	3\$3			
47	Cell E41=E36*\$E\$39/\$	E\$40			
48	Cell E44=(B5-B3)/(B4-E	33)			

Problems 31-32 and 31-33

	Α	В	С	D	E	F	G
1	Problem 3	1-32		Problem 3	1-33		
2							
3	<i>K</i> (M)	5.99		5.81			
4	<i>K</i> (N)	6.16		6.20			
5	R	1.5					
6	$V_{\rm s}/V_{\rm M}$	0.425					
7	Н	1.50E-03					
8	F	6.75					
9							
10	<i>k</i> (M)	2.54575		2.54575			
11	<i>k</i> (N)	2.618		2.618			
12	α	1.028381		1.067126			
13	N	90274.26		17376.19			
14	L	135.4114		26.06428			
15	(t _R) _N	72.5805		13.97046			
16	Spreadsh	eet Docum	entati	ion			
17	Cell B10=\$	B\$3*\$B\$6					
18	Cell B11=\$	B\$4*\$B\$6					
19	Cell B12=E						
20	Cell B13=1	6*\$B\$5^2*(B12/(B12-1))^2*((1+B11)/B1	1)^2	
21	Cell B14=E	313*\$B\$7					
22	Cell B15=(16*\$B\$5^2*	\$B\$7	/\$B\$8)*(B12	2/(B12-1))^2	2*(1+B11)^3	3/B11^2

Chapter 32

- **32-1.** In *gas-liquid chromatography*, the stationary phase is a liquid that is immobilized on a solid. Retention of sample constituents involves equilibria between a gaseous and a liquid phase. In *gas-solid chromatography*, the stationary phase is a solid surface that retains analytes by physical adsorption. Here separation involves adsorption equilibria.
- **32-2.** Gas-solid chromatography has limited application because active or polar compounds are retained more or less permanently on the packings. In addition severe tailing is often observed owing to the nonlinear character of the physical adsorption process.
- **32-3.** Gas-solid chromatography is used primarily for separating low molecular mass gaseous species, such as carbon dioxide, carbon monoxide and oxides of nitrogen.
- **32-4.** Electronic, bubble, bubble with digital readout, digital mass or volume flow meters are used.
- **32-5.** A chromatogram is a plot of detector response versus time. The peak position, retention time, can reveal the identity of the compound eluting. The peak area is related to the concentration of the compound.
- **32-6.** *Temperature programming* involves increasing the temperature of a gas-chromatographic column as a function of time. This technique is particularly useful for samples that contain constituents whose boiling points differ significantly. Low boiling point constituents are separated initially at temperatures that provide good resolution. As the separation proceeds the column temperature is increased so that the higher boiling constituents come off the column with good resolution and at reasonable lengths of time.

- **32-7.** In *open tubular or capillary columns,* the stationary phase is held on the inner surface of a capillary, whereas in *packed columns,* the stationary phase is supported on particles that are contained in a glass or metal tube. Open tubular columns contain an enormous number of plates that permit rapid separations of closely related species. They suffer from small sample capacities.
- **32-8.** For satisfactory qualitative data, carrier gas flow rate, column temperature, injection port temperature, and injection volume (sample size) are among the most important variables.
- **32-9.** Sample injection volume, carrier gas flow rate and column condition are among the parameters which must be controlled for highest precision quantitative GC. The use of an internal standard can minimize the impact of variations in these parameters.
- 32-10. (a) The *thermal conductivity detector* is based on the decrease in thermal conductivity of the helium or hydrogen carrier gas brought about by the presence of analyte molecules.
 (b) The *flame ionization detector* is based on measuring the current that results from ions and electrons produced when organic compounds are combusted in a small air/hydrogen flame.

(c) The *electron capture detector* is based on the affinity of halogen-containing organic compounds for electrons emitted by nickel-63 leading to a reduction in the monitored current.

(d) The *thermionic detector* is based on the ion currents produced when the mobile phase is combusted in a hydrogen flame and then passed over a heated rubidium silicate bead. It is used primarily for detecting analytes that contain phosphorus or nitrogen.

(e) The *photoionization detector* is based on the ion currents that develop when analyte molecules are irradiated with an intense beam of far-ultraviolet radiation.

2

32-11. (a) Advantages of thermal conductivity: general applicability, large linear range, simplicity, nondestructive.

Disadvantage: low sensitivity.

(b) Advantages of flame ionization: high sensitivity, large linear range, low noise, ruggedness, ease of use, and response that is largely independent of flow rate.Disadvantage: destructive.

(c) Advantages of electron capture: high sensitivity selectivity towards halogen-

containing compounds and several others, nondestructive.

Disadvantage: small linear range.

(**d**) Advantages of thermionic detector: high sensitivity for compounds containing nitrogen and phosphorus, good linear range.

Disadvantages: destructive, not applicable for many analytes.

(e) Advantages of photoionization: versatility, nondestructive, large linear range.

Disadvantages: not widely available, expensive.

- **32-12.** A *hyphenated gas chromatographic method* is a method in which the analytes exiting from a column are identified by one of the selective techniques such as mass spectrometry, absorption or emission spectroscopy or voltammetry.
- 32-13. Megabore columns are open tubular columns that have a greater inside diameter (530 μm) than typical open tubular columns (150 to 320 μm). Megabore columns can tolerate sample sizes similar to those for packed columns, but with significantly improved performance characteristics. Thus, megabore columns can be used for preparative scale GC purification of mixtures where the compound of interest is to be collected and further analyzed using other analytical techniques.

32-14. a) A PLOT column is a porous layer open tubular column, which is also called a support coated open-tubular (SCOT) column. The inner surface of a PLOT column is lined with a thin film of a support material, such as a diatomaceous earth. This type of column holds several times as much stationary phase as does a wall-coated column.

(**b**) A WCOT column is simply a capillary tubing fashioned from fused silica, stainless steel, aluminum, copper, plastic or glass. Its inner walls are coated with a thin layer of the mobile phase.

- **32-15.** Currently, liquid stationary phases are generally bonded and/or cross-linked in order to provide thermal stability and a more permanent stationary phase that will not leach off the column. Bonding involves attaching a monomolecular layer of the stationary phase to the packing surface by means of chemical bonds. Cross linking involves treating the stationary phase while it is in the column with a chemical reagent that creates cross links between the molecules making up the stationary phase.
- **32-16.** The stationary phase liquid should have low volatility, good thermal stability, chemical inertness and solvent characteristics that provide suitable retention factor and selectivity for the separation.
- **32-17.** Fused silica columns have greater physical strength and flexibility than glass open tubular columns and are less reactive toward analytes than either glass or metal columns.
- **32-18.** Film thickness influences the rate at which analytes are carried through the column, with the rate increasing as the thickness is decreased. Less band broadening is encountered with thin films.
- **32-19.** (a) Band broadening arises from very high or very low flow rates, large particles making up packing, thick layers of stationary phase, low temperature, and slow injection rates.

(b) Band separation is enhanced by maintaining conditions so that k lies in the range of 1

to 10, using small particles for packing, limiting the amount of stationary phase so that

particle coatings are thin, and injecting the sample rapidly.

32-20.

	A	В	С	D	E	
1	Problem 32	2-20				
2	Compound	Relative area	Correction factor	Corrected area	Percentag	je
3	1	16.4	0.60	27.333333	22.85	
4	2	45.2	0.78	57.948718	48.45	
5	3	30.2	0.88	34.318182	28.69	
6						
7			Total area	119.6002331		
8						
9	Spreadshe	et Documenta	tion			
10	Cell D3=B3/	C3				
11	Cell D7=SU	M(D3:D5)				
12	Cell E3=D3/	\$D\$7*100				

32-21.

	A B		С	D	E
1	Problem 32	-21			
2	Compound	Relative area	Correction factor	Corrected area	Percentage
3	Α	32.5	0.70	46.428571	21.09
4	В	20.7	0.72	28.750000	13.06
5	С	60.1	0.75	80.133333	36.40
6	D	30.2	0.73	41.369863	18.79
7	E	18.3	0.78	23.461538	10.66
8					
9			Total area	220.143306	
10					
11	Spreadshee	et Documentati	ion		
12	Cell D3=B3/	C3			
13		`			
14	Cell E3=D3/	\$D\$9*100			

	Α	В	С		D	E	F	G	Н		J
1	Problem 32-22										
2	Percent Analyte	Peak Height		100 -	1						
3	0.05	18.8		90 -	-	v = 220	4x + 8.01			•	
4	0.10	48.1		80 -			.4x + 8.01 0.9175		/		
5	0.15	63.4		70 -		N - 1					
6	0.20	63.2	•		1			• /			
7	0.25	93.6	Peak Heidht	60				/	•		
8	unknown	58.9	-	50 -	-		• /				
9			400	40 -			/				
10	Regression		4	30 -		/					
11	Slope	329.4									
12	Intercept	8.01		20 -		•					
13	c unknown	0.1545		10 -							
14	Error Analysis			0 -							
15	Sr	9.0170		0.	00	0.05	0.10	0.15	0.20	0.25	0.30
16	N	5					Pe	rcent Analyt	e		
17	S _{xx}	0.025									
18	Sm	57.029									
19	y bar	57.42									
20	M	1									
21	SD of c	0.030									
22	RSD of c	0.194									
23											
	Spreadsheet Doo										
	Cell B11=SLOPE(
26	Cell B12=INTERC	EPT(B3:B7,A3:	A7)								
	Cell B13=(B8-B12										
	Cell B15=STEYX(
	Cell B16=COUNT(
	Cell B17=DEVSQ										
	Cell B18=SQRT(B										
	Cell B19=AVERA										
	Cell B21=B15/B11		1/B16+	(B8-B1	9)^2)/((B11^2)*B1	7))				
34	Cell B22=B21/B13	3									

32-22.

The percentage of the analyte in the unknown by the method of external standards is 0.15 ± 0.03 , which is substantially less precise than the value determined using the method of internal standards which obtained an unknown concentration of 0.163 ± 0.008 . The internal standards compensate for variations in sample injection volume, carrier gas flow rate, and column conditions.

Chapter 33

- **33-1.** (a) Substances that are somewhat volatile and are thermally stable.
 - (b) Molecular species that are nonvolatile and are thermally stable.
 - (c) Substances that are ionic.
 - (d) Molecules that selectively bind the affinity ligand usually biomolecules.
 - (e) High molecular mass compounds that are soluble in nonpolar solvents.
 - (f) High molecular mass hydrophilic compounds.
 - (g) Chiral compounds (enantiomers).
- **33-2.** (a) In an *isocratic elution*, the solvent composition is held constant throughout the elution.

(**b**) In a *gradient elution*, two or more solvents are employed and the composition of the eluent is changed continuously or in steps as the separation proceeds.

(c) In a *normal-phase packing*, the stationary phase is quite polar and the mobile phase is relatively nonpolar.

(d) A *reversed-phase packing* is a nonpolar packing that is used in partition

chromatography with a relatively polar mobile phase.

(e) In a *bonded-phase packing*, the stationary phase liquid is held in place by chemically bonding it to the solid support.

(**f**) In *chiral chromatography*, enantiomers are separated based on their different interactions with a chiral resolving agent.

(g) In *ion-pair chromatography* a large organic counter-ion is added to the mobile phase as an ion-pairing reagent. Separation is achieved either through partitioning of the

neutral ion-pair or as a result of electrostatic interactions between the ions in solution and charges on the stationary phase resulting from adsorption of the organic counter-ion.
(h) An *eluent-suppressor column* is located after the ion-exchange column in ion chromatography. It converts the ionized species used to elute analyte ions to largely undissociated molecules that do not interfere with conductometric detection.
(i) *Gel filtration* is a type of size-exclusion chromatography in which the packings are hydrophilic, and eluents are aqueous. It is used for separating high molecular mass polar compounds.

(**j**) *Gel permeation* is a type of size-exclusion chromatography in which the packings are hydrophobic and the eluents are nonaqueous. It is used for separating high molecular mass nonpolar species.

- 33-3. (a) diethyl ether, benzene, *n*-hexane.(b) acetamide, acetone, dichloroethane.
- 33-4. (a) ethyl acetate, dimethylamine, acetic acid.(b) hexane, propylene, benzene, dichlorobenzene.
- **33-5.** In *adsorption chromatography*, separations are based on adsorption equilibria between the components of the sample and a solid surface. In *partition chromatography*, separations are based on distribution equilibria between two immiscible liquids.
- **33-6.** In *size-exclusion chromatography* separations are based on the size, and to some extent the shape, of molecules with little interactions between the stationary phase and the sample components occurring. In *ion-exchange chromatography*, in contrast, separations are based on ion-exchange reactions between the stationary phase and the components of the sample in the mobile phase.

- **33-7.** *Gel filtration* is a type of size-exclusion chromatography in which the packings are hydrophilic and eluents are aqueous. It is used for separating high molecular mass polar compounds. *Gel permeation chromatography* is a type of size-exclusion chromatography in which the packings are hydrophobic and the eluents are nonaqueous. It is used for separating high molecular mass nonpolar species.
- **33-8.** Nonvolatile and thermally unstable compounds.
- **33-9.** In an *isocratic elution*, the solvent composition is held constant throughout the elution. Isocratic elution works well for many types of samples and is simplest to implement. In a *gradient elution*, two or more solvents are employed and the composition of the eluent is changed continuously or in steps as the separation proceeds. Gradient elution is best used for samples in which there are some compounds separated well and others with inordinately long retention times.
- **33-10.** *Pneumatic pumps* are simple, inexpensive and pulse free. They consist of a collapsible solvent container housed in a vessel that can be pressurized by a compressed gas. This pump has limited capacity and pressure output and is not adaptable to gradient elution. The pumping rate depends on solvent viscosity. *Screw-driven syringe pumps* consist of a large syringe in which the piston is moved by a motor-driven screw. They are pulse free and the rate of delivery is easily varied. They suffer from lack of capacity and are inconvenient when solvents must be changed. *Reciprocating pumps* are versatile and widely used. They consist of a small cylindrical chamber that is filled and then emptied by the back-and-forth motion of a piston. Advantages include small internal volume, high output pressures, adaptability to gradient elution, and constant flow rates that are independent of viscosity and back pressure. The pulsed output must be damped.

- **33-11.** In *suppressor-column ion chromatography* the chromatographic column is followed by a column whose purpose is to convert the ions used for elution to molecular species that are largely nonionic and thus do not interfere with conductometric detection of the analyte species. In *single-column ion chromatography*, low capacity ion exchangers are used so that the concentrations of ions in the eluting solution can be kept low. Detection then is based on the small differences in conductivity caused by the presence of eluted sample components.
- **33-12.** A gas-phase sample is needed for mass spectrometry. The output of the LC column is a solute dissolved in a solvent, whereas the output of the GC column is a gas and thus directly compatible. As a first step in LC/MS, the solvent must be vaporized. When vaporized, however, the LC solvent produces a gas volume that is 10-1000 times greater than the carrier gas in GC. Hence, most of the solvent must also be removed.
- **33-13.** Comparison of Table 33-1 with Table 32-1 suggests that the GC detectors that are suitable for HPLC are the mass spectrometer, FTIR and possible photoionization. Many of the GC detectors are unsuitable for HPLC because they require the eluting analyte components to be in the gas-phase.
- **33-14.** The ideal HPLC detector would have all the same characteristics as listed for the ideal GC detector. In addition, the HPLC detector should have low dead volume and be compatible with the liquid flows and pressures encountered in HPLC.
- **33-15.** A number of factors that influence separation are clearly temperature dependent including distribution constants and diffusion rates. In addition, temperature changes can influence selectivity if components A and B are influenced differently by changes in

temperature. Because resolution depends on all these factors, resolution will also be temperature dependent.

(a) For a reversed phase chromatographic separation of a steroid mixture, selectivity and, as a consequence, separation could be influenced by temperature dependent changes in distribution coefficients.

(**b**) For an adsorption chromatographic separation of a mixture of isomers, selectivity and, as a consequence, separation could be influenced by temperature dependent changes in distribution coefficients.

33-16.

	Α	В	С	D	E	
1	Problem 3	33-16				
2	t _{R1}	10.5				
3	t _{R2}	10.86667				
4	t _M	1.05				
5	α	1.038801				
6	kв	9.349206				
7	Rs	Ν				
8	0.50	11044.1				
9	0.75	24849.22				
10	0.90	35782.88				
11	1.00	44176.4				
12	1.10	53453.44				
13	1.25	69025.62				
14	1.50	99396.89				
15	1.75	135290.2				
16	2.00	176705.6				
17	2.50	276102.5				
18	Spreadsh	eet Docum	entation			
19	Cell B3=B2	2+22/60				
20	Cell B4=63					
21		3-B4)/(B2-E	34)			
22	Cell B6=(B					
23	Cell B8=16	5*A8^2*(\$B	\$5/(\$B\$5-1))^2*((1+\$B\$	5)/\$B\$5)^2	

33-17.

- 21	A	В	С	D	E	F		G	Н	1	J
1	Problem 33-1	7									
2	c, ibuprofen	Rel. peak area	12	0.0							
3	0.5	5.0									
4	1.0	10.1	10	0.0 -						/	•
5	2.0	17.2	8			2669x+3.			_		
6	3.0	19.8	8 8 9 8 8 8 8 8 8	0.0 -	F	² = 0.9957	7				
7	6.0	39.7	e l					+			
8	8.0	57.3	• 6	0.0 -			٠				
9	10.0	66.9	ţ								
10	15.0	95.3	ୁ <mark>ୟୁ</mark> 4	0.0 -		×					
11	Slope	6.2669091									
12	Intercept	3.2694545	2	0.0 - 🖌 🖌	4						
13				**							
14				D.O +	1	1	1	1	1	1	
15				0.0 2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0
16						c, ibu	profen,	µg/mL			
17											
18			-								
19	Time, hr	Peak area	c, ibuprofer	h % Change/0.5 I	hr						
20	0.0	0									
21	0.5	91.3	14.046884								
22	1.0	80.2	12.275676								
23	1.5	52.1	7.791807	36.53							
24	2.0	38.5	5.621678	27.85							
25	3.0	24.2	3.339851	20.29							
26	4.0	21.2	2.861147	7.17							
27	6.0	18.5	2.430312	3.76							
28	8.0	15.2	1.903737	5.42							
29		Documentation									
		PE(B3:B10,A3:A									
		RCEPT(B3:B10,A	A3:A10)								
	Cell C21=(B21										
		-C25)/(2*C24)*10									
35	Cell D27=(C26	-C27)/(4*C26)*10	0								

The largest loss of ibuprofen as a percentage occurs between 1.0 and 1.5 hours.

Chapter 34

34-1. (a) Nonvolatile or thermally unstable species that contain no chromophoric groups.

(b) Particularly important for drug purity determination and in clinical laboratories.
(c) Inorganic anions and cations, amino acids, catecholamines, drugs, vitamins, carbohydrates, peptides, proteins, nucleic acids, nucleotides, and polynucleotides.
(d) Molecules with molecular masses exceeding 10⁶ like polymers, biological macromolecules, natural and industrial colloids, emulsions and subcelluar particles.
(e) Proteins, synthetic polymers, and colloidal particles.

(f) Low molecular mass aromatic phenols and nitro compounds.

34-2. (a) A *supercritical fluid* is a substance that is maintained above its critical temperature so that it cannot be condensed into a liquid no matter how great the pressure.

(**b**) The *critical point* is the point on a temperature / pressure phase diagram above which the gas acquires supercritical fluid properties.

(c) In *two-dimensional thin layer chromatography*, development is carried out with two solvents that are applied successively at right angles to one another.

(d) The *electrophoretic mobility* is the ratio of the migration rate of an ion to the applied electric field.

(e) The *critical micelle concentration* is the level above which surfactant molecules begin to form spherical aggregates made up to 40 to 100 ions with their hydrocarbon tails in the interior of the aggregate and their charged ends exposed to water on the outside.

(f) In *electrical* FFF, an electric field is applied perpendicular to the flow direction.

Retention and separation occur based on electrical charge.

- **34-3.** The properties of a supercritical fluid that are important in chromatography include its density, its viscosity, and the rates at which solutes diffuse in it. The magnitude of each of these lies intermediate between a typical gas and a typical liquid.
- **34-4.** Pressure increases the density of a supercritical fluid, which causes the retention factor *k* for analytes to change. Generally, increases in pressure reduce the retention times of solutes.
- 34-5. (a) Instruments for supercritical-fluid chromatography are very similar to those for HPLC except that in SFC there are provisions for controlling and measuring the column pressure. (b) SFC instruments differ substantially from those used for GC in that SFC instruments must be capable of operating at much higher mobile phase pressures than are typically encountered in GC'
- **34-6.** It is an excellent solvent for a variety of nonpolar organic molecules. It transmits in the UV range and is odorless, nontoxic, readily available, and remarkably inexpensive relative to other chromatographic solvents. In addition, its critical temperature and pressure are relatively low allowing a wide selection of temperatures and pressures to be used without exceeding the operating limits of modern instrumentation.
- **34-7.** Their ability to dissolve large nonvolatile molecules, such as large *n*-alkanes and polycyclic aromatic hydrocarbons.
- **34-8.** Like GC, SFC is inherently faster than liquid chromatography because of the lower viscosity and higher diffusion rates in the mobile phase. Unlike GC, however, the intermediate diffusivities and viscosities of supercritical fluids reduce longitudinal band spreading, similar to the situation encountered in HPLC.
- **34-9.** (a) An increase in flow rate results in a decrease in retention time.

2

(b) An increase in pressure results in a decrease in retention time.

(c) An increase in temperature results in a decrease in density of supercritical fluids and thus an increase in retention time.

- **34-10.** In solution, amino acids exist as zwitterions that bear both a positive and a negative charge. At low pH values, the net effective charge is positive owing to the interaction of hydrogen ions with the amine groups of the amino acid, whereas at high pH values the net charge is negative due to the dissociation of the carboxylic acid groups. Thus, at low pH values the protein molecules will be strongly attracted toward the negative electrode, while in basic solutions the reverse will be the case.
- **34-11.** *Electroosmotic flow* is the migration of the solvent towards the cathode in an electrophoretic separation. This flow is due to the electrical double layer that develops at the silica/solution interface. At pH values higher than 3 the inside wall of the silica capillary becomes negatively charged leading to a build-up of buffer cations in the electrical double layer adjacent to the wall. The cations in this double layer are attracted to the cathode and, since they are solvated they drag the bulk solvent along with them.
- **34-12.** Electroosmotic flow can be repressed by reducing the charge on the interior of the capillary by chemical treatment of the surface. Sometimes, species elute from the capillary before they are resolved because of electroosmotic flow. Flow rates can also be erratic due to surface capillary conditions such non-uniform charge distributions and adsorption of ions.
- **34-13.** Under the influence of an electric field, mobile ions in solution are attracted or repelled by the negative potential of one of the electrodes. The rate of movement toward or away from a negative electrode is dependent on the net charge on the analyte and the size and

shape of analyte molecules. These properties vary from species to species. Hence, the rate at which molecules migrate under the influence of the electric field vary, and the time it takes them to traverse the capillary varies, making separations possible.

34-14. (a)
$$N = \frac{\mu_e V}{2D} = \frac{(5.13 \times 10^{-4})(5000)}{2(9.1 \times 10^{-6})} = 1.41 \times 10^5$$

(b) $N = (5.13 \times 10^{-4})(10000)/(2 \times 9.1 \times 10^{-6}) = 2.8 \times 10^5$
(c) $N = (5.13 \times 10^{-4})(20000)/(2 \times 9.1 \times 10^{-6}) = 5.6 \times 10^5$
(d) $N = (5.13 \times 10^{-4})(30000)/(2 \times 9.1 \times 10^{-6}) = 8.4 \times 10^5$

34-15. The electrophoretic mobility is given by

$$v = \frac{\mu_{\rm e} V}{L} = \frac{5.13 \times 10^{-4} \text{ cm}^2 \text{ s}^{-1} \text{ V}^{-1} \times 20000 \text{ V}}{50} = 0.2052 \text{ cm s}^{-1}$$

The electroosmotic flow rate is given as 0.65 mm $s^{-1} = 0.065$ cm s^{-1}

Thus, the total flow rate = 0.2052 + 0.065 = 0.2702 cm s⁻¹, and

$$t = [(40.0 \text{ cm})/0.2702 \text{ cm s}^{-1})] \times (1 \text{ min}/60 \text{ s}) = 2.5 \text{ min}$$

34-16. In *micellar electrokinetic capillary chromatography* surfactants are added to the operating buffer in amounts that exceed the critical micelle concentration. The components of a sample added to this system distribute themselves between the aqueous phase and the hydrocarbon phase in the interior of the micelles according to their partition coefficients, similar to partition chromatography. The negatively charged micelles do exhibit electrophoretic flow but at a much slower rate than the buffer. Thus, MEKC is a true chromatography, where CZE separates sample components simply on the basis of ion mobility in a homogeneous buffer solution.

- **34-17.** Higher column efficiencies and the ease with which pseudostationary phase can be altered.
- **34-18.** Particle size and mass.
- **34-19.** B⁺ followed by A^{2+} followed by C^{3+} .
- **34-20.** FFF methods are particularly well suited to high molecular mass materials such as polymers, large particles and colloids. In addition, no packing material or stationary phase is needed for separation to occur avoiding undesirable interactions between the packing material and the sample constituents. Finally, the geometry and flow profiles in FFF are well characterized allowing fairly exact theoretical predictions of retention and plate height to be made.